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Abstract—Internet access networks in general and wireless
mesh access networks in particular, are the bottleneck of to-
day’s communication networks and consequently most strongly
responsible for determining the user satisfaction. The limited
bandwidth and the fact that access network are most often
used as mere bit pipes are however unfavorable for the users’
quality of experience (QoE). The lack of application-specific
service guarantees is especially inadequate in the face of an
increasing degree of heterogeneity of Internet applications and
their individual service requirements. Application and quality of
experience resource management, Aquarema for short, addresses
this challenge by enabling application specific network resource
management and thereby improves the user QoE. This is achieved
by the interaction of application comfort (AC) monitoring tools,
running at the clients, and a network advisor which may trigger
different resource management tools. AC quantifies how well an
application is running and in particular, enables a prediction
of the user experience, thereby allowing the network advisor to
act upon an imminent QoE degradation. We demonstrate the
appeal of Aquarema at the example of YouTube video streaming
in a congested IEEE 802.11 based mesh testbed where AC-aware
traffic shaping guarantees the successful video playback.

I. INTRODUCTION

In today’s consumer Internet, most traffic is transmitted on a

best effort basis without supporting application-specific quality

requirements. Neither in the backbone nor in the wireless

access networks,the focus of our research interest, exist ser-

vice guarantees for the predominant consumer Internet traffic

consisting of applications as different as P2P or client-server

file sharing, web browsing, gaming or video streaming [1],

[2]. Technical solutions enforcing quality guarantees exist, see

e.g. [3], but in general the network does neither know if it is

carrying Internet applications requiring a service guarantee nor

which quality requirements to meet.

These prerequisites for providing quality of service (QoS)

support for Internet applications require a cross-layer approach

which allows an information exchange between application

and network. Detecting packets belonging to a specific appli-

cation in the packet stream is most often done using deep

packet inspection [4]. Deep packet inspection has however

become rather challenging as the browser tends to be the

user’s interface to the Internet for an increasing number

of applications like videos, large file downloads or browser

games, Obviously, detecting packets would not be necessary

if applications simply communicated their presence to the
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network. The downside of this method is however that it

requires a modification of the application.

Detecting packets is only halve the coin as the network has

not only to be aware about the presence of an application, it

also has to know about appropriate quality parameters. De-

riving such application-specific parameters from an observed

traffic flow is even more complex than detecting it, in partic-

ular for reactive TCP traffic. Letting the client communicate

these parameters to the network would again be a solution,

but for many applications, like videos with variable bit rate,

not all QoS requirements are a priori known.

Giving strict QoS guarantees is moreover neither possible in

wireless networks in general nor in the IEEE 802.11 wireless

mesh networks (WMNs) we concentrate on, as a link between

two nodes typically does not have a constant capacity but has

to share its access time with surrounding links. Quality of

experience (QoE) based resource management, see e.g. [5], [6]

therefore continuously adapts the network resources to quality

feedback from the application and is better suited for WMNs.

Resource management in WMNs, see e.g. [7], covers rout-

ing including gateway selection, channel and interface alloca-

tion in multi-radio multi-channel mesh networks, prioritization

of medium access through contention parameters, and finally

traffic shaping. Aquarema, realizing an application and QoE

resource management, therefore foresees the interaction of

a network advisor which decides upon the use of different

resource management tools in case the application QoE is

imminent. The structure of such an universal architecture is

rather complex, as reputation systems and policies regulating

the situation if several applications are active have to be

included. We are however convinced that despite these chal-

lenges radio resource management when the user experience

can be derived from application layer information offers an

enormous potential for WMNs.

QoE is a measure for the subjective quality that a user

experiences [8]. In contrast to QoS, the QoE depends not only

on the network but also on the situation and user specific

factors and is therefore less easy to derive. Moreover do

the large number of QoE models which exist e.g. for VoIP

traffic [9], [10] or video streaming [11], [12], [13] only allow

to quantify the user satisfaction after the application has been

terminated. Our goal is however to use the QoE as an input

for a network management tool. Therefore, we need to know

the user satisfaction during the execution of the application.

To avoid a QoE degradation, a network management tool
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has moreover to be notified if a QoE degradation has not

yet happened, but is only imminent. This is achieved by

monitoring the application comfort (AC) which characterizes

how well the application is doing and allows an prediction

of a QoE degradation. A vital part of Aquarema is therefore

the AC monitor, a generic tool installed at the client which

signals the presence of an application to the network advisor

and constantly monitors the AC. If it falls below an alarm

threshold, this is immediately reported to the network advisor

which triggers a suitable resource management tool.

In this work we illustrate the potential of Aquarema using a

simple setup with one supported application and one resource

management tool. For this setup the presence of a network

advisor is not necessary, as the AC tool may directly trigger

the resource management tool. YouTube is chosen as a rep-

resentative example for an Internet application, as YouTube

and Flash video (FLV) streaming portals in general, make up

for roughly 10% of the traffic volume of a private households

which use a WMN as Internet access network [2] and will

exceed 91% of the overall Internet traffic in 2014 [1]. The

resource management tool is realized by a bandwidth shaper.

The rest of this paper is structured as follows: In Section II

we give an overview of the publications related to our work.

The YouTube AC monitoring tool YoMo and the bandwidth

shaping tool OTC are introduced in Section III and Section IV

respectively. Their cooperation is evaluated in Section V. In

Section VI we summarize the contributions of this paper and

give an outlook on future work.

II. RELATED WORK

Works related to the ideas beneath Aquarema cover recently

published radio resource management techniques and frame-

works. Of particular interest are approaches deriving the QoE

from network or application layer parameters and using them

for resource management.

The IEEE is currently developing standards towards an

improved usage of radio resources in heterogeneous wireless

access network. A management system allowing the dis-

tributed optimization of radio resource usage and improving

the QoS in heterogeneous wireless networks is defined by

IEEE 1900.4 [14]. The upcoming IEEE 802.21 has the goal

of specifying standards for media independent handover in

heterogeneous radio access networks [15]. Both approaches

have in common that they aim at optimizing resource usage

in heterogeneous wireless networks, establish a signaling

framework between terminals and network, and try to enable

context-aware resource management decisions.

A similar idea is presented in [16] where Ong and Khang

introduce a cooperative radio resource management frame-

work for enabling seamless multimedia service delivery. The

framework enables a terminal to take a handover decision

based on the QoS information broadcasted by the access

networks. A simulation study demonstrates that the QoS

broadcasting mechanism may be implemented within the IEEE

802.11 beacon frames and that the scheme allows to decrease

the uplink and downlink packet delay and packet loss rates

while maximizing the network throughput. A comparable but

more general framework has been presented by Bullot et

al. [17] who propose an architecture for decentralized network

management and control. Their main contribution is the idea

of a piloting system which uses a control plane to measure

different system parameters and provides them to control

algorithms like routing or mobility management. This reduces

the measurement and storage overhead, as system information

can be used by several algorithms. In a simulation study

of a mobile-initiated handover, this framework taking into

account the load of the APs, results in less rejected VoIP calls

and a lower end-to-end delay than the traditional policy of

considering the received signal strength only.

For WMNs many other possibilities for resource manage-

ment than just handover exist. Akyildiz et al. [7] give an

overview on the existing alternatives, we therefore refrain from

an exhaustive enumeration and introduce the work of Pries

et al. [6] which has inspired this work, as an example. The

authors propose to dynamically constrain the bandwidth of

best effort traffic in order to ensure the quality of service

requirements of multimedia applications. This is realized by

the interaction of two tools, the traffic observer (TO) and the

traffic controller (TC) running at each mesh node. The TO

continuously monitors the QoE of the VoIP flows, which is

calculated as Mean Opinion Score (MOS) from the measured

packet loss. As soon as the MOS falls below a threshold,

signaling messages are sent via the OLSR Hello message

system to assure that the TC instances running on the same

and on the neighboring nodes throttle the interfering best effort

traffic. The evaluation of this concept in a mesh testbed shows

that TO and TC together allow to maintain a satisfying MOS

score even in the presence of disturbing traffic.

The exponential relation between packet loss and MOS used

in [6] has been discovered by Hoßfeld et al. [18] and is

one example of mapping measurable QoS parameters to user

experience. Many contributions similar to this work exist, see

e.g. [9], [10], [11], which are increasingly used for resource

management. One example is the work of Bohnert et al. [19]

who modify the QoE model for speech quality proposed by

Raake [9] in order to obtain a QoE estimation for an aggregate

of VoIP calls. The resulting QoE based admission control

scheme successfully avoids long periods of user dissatisfaction

in an IEEE 802.16 access network. Another example is the

work of Khan et al. [20] who use the peak signal to noise ratio

for deriving the average QoE for video streams. The authors

present a resource management scheme that optimizes video

source rate, time slot allocation and modulation scheme in

order to maximize the average video stream QoE.

For the case of YouTube, this and other QoE models for

video streaming (cf. to [11] for a survey) are not applicable, as

they assume UDP as transport layer protocol. UDP results in a

strong impact of delay, jitter, and packet loss on the video QoE

as they cause artifacts or missing frames. YouTube videos, in

contrast, are transported via HTTP over TCP. Consequently,

YouTube has not to cope with lost or reordered packets, and

the only quality degradation which may be caused by the



transmission, is a stalling of the video. The only approach

applicable for deriving the YouTube QoE we are aware of is

the work of Gustafsson et al. [12] who derive the YouTube

QoE from video parameters, the packet loss rate, and the

number of buffering events during the playback.

If however the QoE shall be used for network management,

the user satisfaction has to be known in real time. Moreover, a

management tool needs a prediction of the QoE, i.e. it needs

to be notified if the YouTube player is about to stall in order

to avoid this event. Dalal et al. [21] propose a QoE prediction

mechanism for UDP video streaming. It however uses lost and

retransmitted packets only, a method which does not work

in case of YouTube. Deriving QoE from QoS parameters

is always problematic, as a mapping is highly application

and technology dependent. We therefore propose to predict

the QoE from application and not network parameters, for

allowing a reactive adaption of network parameters.

III. MONITORING THE YOUTUBE AC

The QoE of a YouTube user depends on factors as different

as the video content, the video- and audio-quality, or the time

until the playback starts. Determining the YouTube QoE is

hence a difficult task and out of scope of this work. What in

any case negatively affects the user satisfaction is a stalling

of the video, i.e. an interruption of the video playback. This

is our motivation for defining the YouTube AC as “bad” if the

video playback will be interrupted soon and “good” otherwise.

The YouTube AC monitoring tool YoMo has to fulfill

several tasks: (1) it has to detect that a YouTube flow exists

and to communicate this information to the network advisor.

(2) it has to collect as much information as possible about

the YouTube flow. And (3), it has to monitor the YouTube

AC and raise an alarm if the AC becomes bad. To make the

concept of YoMo more easy to understand, we first of all

analyze the technology behind YouTube in III-A, before we

introduce the main ideas of YoMo and their implementation

in III-B and III-C.

A. The Technology Behind YouTube

The YouTube player is a proprietary Flash application which

concurrently plays a Flash video (FLV) file and downloads

it via HTTP. Each YouTube video is encoded as an FLV

file which is a container format for media files developed by

Adobe Systems. An FLV file encapsulates synchronized audio

and video streams and has a dedicated header starting with an

FLV signature. The tags encapsulate the data from the video

streams and contain information on their payload including the

payload type, the length of the payload, and the time to which

the tag payload applies. FLV files may also contain metadata

which contain information about the duration of the video, the

audio and video rate, and the file size.

The concept of concurrent video download and playback

used by YouTube is called pseudostreaming. This technique

follows a dual-threshold buffering strategy which means that

at the beginning the download, the client fills an internal

buffer and starts the video playback as soon as a minimum

Tt β < βa t

Fig. 1. The YoMo Parameters

buffer level, γ, is reached. During the time of simultaneous

playback and downloading, the buffer grows until a certain

larger threshold is reached and as long as the download

bandwidth is larger than the video rate. Otherwise it shrinks.

If the buffer runs empty, the video stalls and the YouTube

player state changes from “playing” to “buffering”. This state

is hidden to the normal user, but can be retrieved from the

YouTube API by JavaScript or ActionScript.

B. The Main YoMo Functionality

The YouTube player opens a new TCP connection each

time it downloads a new FLV file or if the user jumps to

another time in the video. YoMo runs at the client and parses

all incoming TCP flows. Consequently it recognizes each flow

containing FLV data as soon as the header of an FLV file is

found. Once a flow containing FLV data is recognized, its data

is continuously parsed in order to retrieve the available meta

information from the FLV file. Detecting the YouTube flow is

thus easily done. The AC monitoring task is more complex

and will be explained in the following.

The YouTube AC is defined as the buffer status of the

YouTube player. This is simply the time, β, the player can

continue playing if the connection to the server is interrupted.

Fig. 1 shows β for the YouTube video “Madagascar I like

to move music video”1 and how it can be calculated as the

difference between the amount of already downloaded play-

time T and the current time of the video t. YoMo constantly

computes and visualizes β in a GUI and checks that it does not

drop below an alarm threshold βa. In such a situation, like the

one depicted in Fig. 1, the video is still playing, but β < βa

which means that the AC is bad as the video is about to stall.

YoMo predicts this upcoming stalling and notifies the network

advisor which now is able to take measures for preventing the

stalling and the QoE degradation.

1http://www.youtube.com/watch?v=0x3W6hutEj8, last accessed 07/10, re-
moved due to YouTube terms of service violations



C. Estimating the Buffered Playtime

YoMo decodes the FLV tags in real time, and is hence

able to derive the currently available playtime T from the

time stamp of the last completely downloaded tag. Intuitively,

t could easily be calculated as the time difference between

the actual time and the time when the player starts to play

the video. During our measurements we found that the dual-

threshold buffering strategy makes this task non-trivial. Re-

call that the playback of a YouTube video does not start

immediately after the player has loaded, but only after an

amount γ of bytes has been downloaded. An experiment with

different videos and connection speeds revealed that γ is

independent of the connection speed, but is varying between

50 and 300 kB for different videos. Analyzing the coefficient

of correlation between γ and different video characteristics

including information about the frame types of the original

H264 file embedded in the FLV tags, did not show a clear

correlation which allows to derive γ from the properties of

the displayed video (cf. to [22] for details).

It is hence not possible to calculate the amount of time

elapsing between the user request and the time when the

video actually starts to play. The assumption that the video

playback starts as soon as the first FLV tag is completely

downloaded introduces an error in the calculation of β. In [23]

we showed that in the case of a sudden connection interruption

this method estimates the video to stall time on average 2

seconds earlier than it actually stalls. The estimation error

decreases with an increasing connection speed, but we decided

to improve YoMo’s estimation accuracy by obtaining t from

the YouTube player API. Recall that the YouTube API can be

accessed by scripting languages only. In order to make YoMo

applicable for productive environments, it has to work with

the original YouTube web page where no scripts querying the

player API are running. It is also unrealistic to redirect all

YouTube traffic to a dedicated web page where scripts for

YoMo are running. Hence, YoMo uses a Firefox plugin which

runs a JavaScript that retrieves t from the YouTube player. The

plugin additionally embeds a Java applet in the YouTube site

which sends the actual value of t to YoMo.

The cooperation with the Firefox plugin allows YoMo

to estimate the video on average to stall roughly 0.1 sec

earlier than it actually did [22], [23]. In most cases, YoMo

underestimates the remaining play time, i.e. predicts the time

of stalling earlier than it actually happened. The maximal

estimation error in this direction is 0.5 sec which is accurate

enough for radio resource management. YoMo and the Firefox

plugin may be downloaded from the G-Lab website2.

IV. WMN RESOURCE MANAGEMENT FOR YOUTUBE

If a YouTube video stalls, this means that the corresponding

download has not enough bandwidth. In a wireless environ-

ment, this could be caused by a bad link quality, fading,

or a crowded channel. We, however, consider a WMN with

stationary clients and assume that the links used by the

2http://www.german-lab.de/go/yomo, last accessed 01/11

YouTube flow are fast enough to display the video. One reason

for a lack of bandwidth could hence be that links used by the

YouTube flow are overloaded. The other reason could be the

one that the nodes forwarding the flow can not access the

channel often enough as neighboring nodes are highly loaded

and thereby cause too much interference. The first problem is

known from the wired domain and caused by in-band cross

traffic. The second problem is wireless specific and due to out-

band cross traffic. We illustrate the difference between those

two types of cross traffic in Fig. 2 which shows the wireless

mesh testbed used for evaluating Aquarema.

In both situations the YouTube flow gets more bandwidth

and the video playback continues smoothly if the bandwidth

of the cross traffic is reduced. This is exactly the idea of

the bandwidth shaper tool OTC we describe in the following.

OTC is short for obedient traffic controller as it is inspired

by the previously discussed work of Pries et al. [6] who

propose TC traffic controller instances which cooperate with

TO instances running on the same mesh node. OTC in contrast,

reacts only if it receives messages sent by YoMo and is hence

called obedient traffic controller. Realizing the communication

between AC monitoring tools like YoMo, the network advisor

and OTC in a distributed fashion is necessary as application

information can only be gathered at the edge of the network.

The advantage of this solution is that measuring the AC allows

to predict an imminent QoE degradation and works also for

cases where the dependency between network parameters and

QoE is not as direct than in cases like the one studied by [6].

OTC classifies all traffic to be either low priority best effort

traffic like email or file transfers or high priority traffic, like

YouTube, VoIP, or signaling traffic. The Linux tool tc allows

OTC to set up an egress root queuing discipline as a priority

queue with two different sub queues. The sub queue for high

priority traffic uses the stochastic fairness queuing discipline.

This results in a FIFO queue for each high priority stream from

which packets are dequeued in a round robin fashion. The sub

queue for the low priority best effort traffic uses the token

bucket filter queuing discipline which allows to upper bound

the rate. In the normal case, both classes share the bandwidth

available on the link, but if necessary, the maximum bandwidth

of the best effort class can be limited.

In contrast to the approach proposed by [6] which uses the

OLSR messaging system, the communication between YoMo

and the OTC instances is independent from the underlying

routing protocol. It is assured by two types of dedicated

messages: The flow detection message (DM) is sent as soon as

YoMo detects a new YouTube flow. If the AC becomes bad, i.e.

if β falls below βa, YoMo sends a flow alert message (AM).

Both message types contain the unique combination of source

and destination IP and port of the flow they refer to, and are

tagged to be high priority in order to ensure the packet delivery

despite a congested network. If a mesh access point receives

a DM or AM from a YoMo instance running at the client,

it broadcasts this message. All mesh nodes which receive a

DM or an AM and which are forwarding the corresponding

flow, rebroadcast this message one time. This ensures that only



Node A Node B

Node C Node D

Client

YouTube

traffic

In-band
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Out-band
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Fig. 2. The mesh testbed used for the experimental evaluation

nodes forwarding the YouTube flow, or direct neighbors to this

flow receive the DM and AM messages.

Upon the reception of a DM, a node forwarding the corre-

sponding flow tags it as high priority. Additionally, the in-band

cross traffic is throttled by reducing the maximal available

bandwidth for the best effort traffic is reduced by a factor

∆Bd. To handle the out-band cross traffic, both forwarding

and non-forwarding nodes reduce the bandwidth of the best

effort traffic by ∆Bd if they receive an AM. As long as β
is smaller than βa, YoMo sends AM messages every ∆Td

sec. If the YouTube video has been completely downloaded

or if β > βa, no AM messages are sent any more. All mesh

nodes which throttled their best effort flows and which do not

receive an AM, increase the maximum bandwidth of the best

effort class by an amount ∆Bi each ∆Ti sec. This ensures that

cross traffic not limiting the capacity of the YouTube flow is

not unnecessarily constrained.

V. EXPERIMENTAL EVALUATION

This section evaluates the functionality of Aquarema in the

form of the cooperation between YoMo and OTC. Section V-A

examines the improvements of the user QoE resulting from

this cooperation. The effects of different parameterizations

for the alarm threshold βa are more deeply investigated

in Section V-B.

A. Cooperation of YoMo and OTC

The experimental setup used for the evaluation is shown

in Fig. 2. The client is a standard laptop running Microsoft

Windows Vista, the Mozilla Firefox browser and YoMo. The

WMN consists of four Saxnet Meshnode III which use one

channel of the IEEE 802.11b spectrum in the 2.45 GHz

band. All mesh nodes run OTC which is configured with

∆Td = 2 sec, ∆Bd = 4, ∆Ti = 0.6 sec, and ∆Bi = 20 kbps.

YoMo is configured with βa = 15 sec. The used parameters

performed best during our experiments, an extensive parameter

study is the scope of future works. Mesh node B is connected

to the access router of the university via Ethernet. The client is

connected to mesh node A, which is configured as access point.

On node A, two wireless interfaces are activated, one for the

connection to the WMN and the other for the connection to the

client. All other nodes use only one interface. As our testbed

is located in one of our laboratories, it is fully meshed. The

indicated topology is created with restricting firewall rules.

For this experiment, the YouTube video “Madagascar I like

to move music video” whereof a snapshot is shown in Fig. 1

is used. It has a playtime of 2:49 minutes and a file size of

6.8 MB. To evaluate the performance of OTC, we need a

heavily loaded network where the YouTube flow gets less than

the roughly 300 kbps it needs for a smooth video playback.

To make it easier to generate overload on the links, the link

rate is reduced to 1 Mbps. The Linux tool iperf generates

the cross traffic as bidirectional TCP flows, which consume

as much bandwidth as possible and bidirectional UDP flows

at a fixed rate of 800 kbps. Two test scenarios are used:

an in-band scenario where the cross traffic is generated at

nodes A and B, and an out-band scenario where the cross

traffic is between nodes C and D. For each of the four

combinations of in-band/out-band, TCP/UDP we perform two

types of experiments. At the beginning of each experiment,

the cross traffic flows are started. Roughly ten seconds later,

the client starts to display the video. During the first type

of experiments, OTC is disabled, for the second type, it is

enabled. During all experiments, all packets are captured with

tcpdump and analyzed with Wireshark.

The four figures of Fig. 3 show the results from the four

different experiments carried out for the out-band scenario.

The results for the in-band scenario are very similar and can

be found in [22]. Fig. 3(a) and 3(b) depict the experiments

without, Fig. 3(c) and 3(d) the experiments with OTC. Each

of the four figures contains three subfigures visualizing the

behavior of the three different considered parameters. In the

topomost subfigure, the bandwidth of the three flows are

shown. Here, the area at the bottom accounts for the bandwidth

consumption of the flow from nodes D to C, the area above

for the bandwidth consumption of the flow from nodes C to

D, and the area on top for the bandwidth consumption of

the YouTube traffic. The subfigure in the middle shows the

player state which is either buffering (b) or playing (p). The
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Fig. 3. Video playback with out-band cross traffic

subplot at the bottom depicts the amount of buffered playtime

β, where, in Fig. 3(c) and 3(d), a dashed line visualizes the

alarm threshold βa.

The fact that the buffer playtime is always under the critical

value in the experiments with a disabled OTC visualized

by Fig. 3(a) and 3(b) already illustrates that the YouTube AC

in this case is always bad and the video is moreover repeatedly

stalling. Let us now discuss the results obtained for these

experiments more closely. In the presence of both TCP and

UDP cross traffic without OTC the YouTube flow gets about

one third of the total bandwidth. The representation of the

player state and of the buffering level in Fig. 3(a) and 3(b)

demonstrate that this is not enough to guarantee a smooth

playback but alternates between buffering and playing. The

reason for this is is visualized by the zig-zag shape shown by

the subfigure at the bottom: the buffered playtime increases as

long as the player stalls. As the download rate is smaller than

required, the buffer shrinks again as soon as the video playback

starts and the player stalls again. The small amount of available

bandwidth also causes the download not to complete until the

230 sec of the measurement we show, whereas the playtime

of the video is only 169 sec. Moreover does the video stall

41 times regardless the cross traffic type.

Let us now see if and how YoMo and OTC improve

the situation. During the experiments with OTC, the video

playback is terminated normally which is illustrated by the

fact that the player state depicted in the middle subfigures

of Fig. 3(c) and 3(d) does not change to buffering after the

initial buffering phase any more. The reason for this is that

YoMo sends a DM and AMs until β is larger than the alarm

threshold as soon as it has detected the first FLV tag. As a

result nodes C and D throttle their traffic, an effect which

translates to decreasing cross-traffic bandwidth shown in the

upper-most subfigure. The zig-zag shape of the bandwidth

consumption curves of Fig. 3(c) illustrates that as soon as

no AM messages are sent any more, the UDP cross traffic

increases, thereby causing the YouTube buffer to decrease and

the controlling algorithms has to start again. In contrast, the

TCP congestion control mechanism limits the increase of the

cross traffic (cf. Fig. 3(d)).

A comparison between the player states shown in Fig. 3(a)

and 3(c), and Fig. 3(b) and 3(d) respectively visualizes that

the video playback does not begin faster with OTC than

without. The reason for this is that YoMo detects the YouTube

connection only after the first FLV tag has been downloaded.

The download of the YouTube player and the first tag are hence

not prioritized. Currently we are working on mechanisms

suitable for recognizing a YouTube flow before the first FLV
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tag has been downloaded in order to speed up the begin of the

playback. The representation of the cross traffic bandwidth

in Fig. 3(c) visualizes another inherent problem of YoMo:

Shortly before the video download is completed, the playtime

buffer reaches the alarm threshold, AMs are sent, and hence

nodes C and D limit the best effort traffic. In this case this is

unnecessary, as the video is nearly completely loaded and the

YouTube flow does not need as much bandwidth any more. A

future extension for YoMo will hence incorporate the status

of the download progress in the decision about sending AMs.

B. Parameter study for βa

The previous section demonstrated that YoMo and OTC

are cooperating successfully. This section will more closely

analyze the advantages and disadvantages of different param-

eterizations of βa, a factor which has a major influence on

the performance of the controlling algorithm. For this purpose

we use the same setup as before but create a higher degree of

congestion. This is achieved by generating bidirectional TCP

in-band cross traffic and bidirectional UDP out-band cross

traffic at the same time. As a result, the YouTube flow gets

at most 1 kbps before YoMo can send the first message. For

each experiment, the cross traffic is started shortly before the

client starts to display the video. YoMo is always activated

with different values for the buffer alarm threshold. Results

from this experiment are summarized in Fig. 4.

Observe first that the number of stall times visualized

by Fig. 4(a) does not decrease to zero, even if βa is very

large. The reason for this is that the used video has a particular

buffering behavior (cf. Fig. 3(c) and 3(d)): β increases until

it is roughly larger than 2 seconds. The playback begins and

β decreases nearly to 0 before it starts increasing again. In

this experiment, where the network is more heavily congested,

this buffering behavior that for all parameterizations of βa

the video stalls after the first 3 seconds of playback, as the

playtime buffer is not refilled fast enough. Therefore, we

repeated the experiment with a second video, “Al Hirt Rocky”3

with a length of 3:28 min and a size of 8.6 MB. While this

3http://www.youtube.com/watch?v=X60jEHxEAY4, last accessed 01/11

video, called video 2 in the following, is both longer and larger

than the previously considered video 1, the behavior of the

buffer status shows the same trend and the video also stalls

after the first seconds of playback. Analyzing or optimizing

the buffering behavior of YouTube videos is not our goal, we

just want to point out that this mechanism is the reason why

both videos are stalling at least one time, even if βa ≥ 10 sec.

A closer analysis of Fig. 4(a) illustrates the drawbacks of

unsuitable values for βa: If the alarm threshold is chosen too

small, the video stalls significantly more often as the reaction

of OTC upon the reception of an AM simply does not allow the

YouTube player to refill its buffer fast enough. If in contrast,

βa is chosen too large, more overhead in terms of AMs is

caused. If this threshold is small, e.g. if βa = 1 sec, than

the buffer runs empty before the reduction of the cross traffic

flows allows the YouTube player to grab more bandwidth and

the video stalls again. This allows the buffer to fill quickly

and only a few messages are sent until β is again larger than

the alarm threshold. If in contrast, a larger threshold is chosen,

the video playback continues longer thereby consumes a larger

amount of buffered playtime. Consequently, it takes longer

until β is again larger than βa and more AM messages are sent.

At the moment, OTC is configured to send an AM each two

seconds as long as β is below the threshold which we found to

be a good compromise between reactivity and overhead. Other

message frequencies would change the quantitative outcome

of this experiment, but not its qualitative statement.

The price for avoiding a stalling of a YouTube video is not

only an increased AM message overhead, but also a reduction

of the best effort traffic. In Fig. 4(b) we illustrate the positive

and negative consequences of βa by visualizing the bandwidth

consumptions of YouTube and the cross traffic averaged over

the video playback time. Recall from the last experiment

(cf. Fig. 3(a) and 3(b)) that before YoMo and OTC start

to control the bandwidth in the network, the YouTube flow

gets roughly 1 kbps. Small values for βa < 10 sec already

increase this bandwidth, but are not suitable for guaranteeing

the roughly 300 kbps required for a smooth playback. This

threshold is only only reached if βa ≥ 10 sec at the price



of a significant restriction of the best effort traffic. Observe

that values in the range of βa = 5 sec are insofar interesting

as they allow to strike the balance between a smooth video

playback, overhead and reduction of best effort traffic.
The results presented in this section are suitable for il-

lustrating the configuration possibilities of YoMo, but any

optimization of βa has to be done in respect to the network

situation. More exhaustive parameter studies involving the

parameters of OTC under different load conditions and in

larger topologies are hence the subject of our future studies.

VI. CONCLUSION AND OUTLOOK

In this work, the idea of the application and QoE aware radio

resource management framework Aquarema has been intro-

duced. For demonstrating Aquarema’s appeal, we exemplarily

show how the YouTube QoE can be improved if a tool is moni-

toring the YouTube application comfort and communicates this

information to a WMN resource management tool. Monitoring

the YouTube AC is done by YoMo which is able to identify a

YouTube video and to determine its buffered playtime. Thus,

YoMo is able to detect an imminent QoE degradation, i.e.

a stalling of the video. In this case, the YouTube flow lacks

bandwidth and YoMo sends alarm messages which cause both

the forwarding nodes and the one-hop neighbors to limit their

best effort traffic. We are able to show that the cooperation

of YoMo and the bandwidth shaper OTC successfully avoids

stall times for the case where the cross traffic is on a link used

by the YouTube flow as well as on an interfering link.
The core idea of Aquarema is application comfort moni-

toring which enables a cross-layer resource management ap-

proach as the usage of applications, their quality requirements,

and the experienced AC are measured at the client and commu-

nicated to a resource management instance. AC goes beyond

QoE because it also considers the future development of the

QoE and consequently allows to trigger resource management

decisions in order to avoid QoE degradations. If users run

YoMo or a similar tool, the provider gets valuable information

which it may use for improving the user QoE for specific

applications by running a network advisor tool which is able

to trigger tools similar to the discussed OTC.
Our future work will therefore be dedicated to developing

Aquarema in two directions. Firstly, we will refine YoMo

and develop similar tools for other popular applications like

VoIP, scalable video, or web traffic. Secondly, we will work

on towards improving the Aquarema architecture in order

to enable intelligent access mechanisms, gateway selection,

channel selection, and routing for WMNs in the presence of

various applications.
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