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1 Introduction

Today’s Internet is no longer only controlled by a single stakeholder, e.g. a stan-
dard body or a telecommunications company. Rather, the interests of a multitude
of stakeholders, e.g. application developers, hardware vendors, cloud operators,
and network operators, collide during the development and operation of ap-
plications in the Internet. Each of these stakeholders considers di�erent Key
Performance Indicators (KPIs) to be important and attempts to optimise scenar-
ios in its favour. This results in di�erent, often opposing views and can cause
problems for the complete network ecosystem.

One example of such a scenario are Signalling Storms [23] in the mobile In-
ternet, with one of the largest occurring in Japan in 20121 due to the release
and high popularity of a free instant messaging application. The network tra�c
generated by the application caused a high number of connections to the Inter-
net being established and terminated. This resulted in a similarly high number
of signalling messages in the mobile network, causing overload and a loss of
service for 2.5 million users over 4 hours. While the network operator su�ers
the largest impact of this signalling overload, it does not control the application.
Thus, the network operator can not change the application tra�c characteristics
to generate less network signalling tra�c. The stakeholders who could prevent,
or at least reduce, such behaviour, i.e. application developers or hardware ven-
dors, have no direct bene�t from modifying their products in such a way. This
results in a clash of interests which negatively impacts the network performance
for all participants.

1https://www.techinasia.com/docomo-outage, Accessed: November, 21st 2015
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1 Introduction

The goal of this monograph is to provide an overview over the complex struc-
tures of stakeholder relationships in today’s Internet applications in mobile net-
works. To this end, we study di�erent scenarios where such interests clash and
suggest methods where tradeo�s can be optimised for all participants. If such
an optimisation is not possible or attempts at it might lead to adverse e�ects, we
discuss the reasons.

In the remainder of this chapter we �rst introduce the stakeholders considered
in this work in Section 1.1. Then, in Section 1.2, we provide an overview over
the scienti�c contributions of this monograph with respect to the stakeholders
interest. Finally, Section 1.3 provides an outline of this monograph.

1.1 Scope of Considered Stakeholders

In this section we introduce the stakeholders considered in the remainder of this
monograph and show their interactions in Figure 1.1.

First, we consider the network operator. The network operator owns, man-
ages and operates a mobile network. By manipulating network con�guration,
the operator can in�uence the connection state of the User Equipment (UE), re-
sulting in changes to the power drain, i.e. battery life, of the UE produced by the
hardware vendor and reduced signalling load in the components of its mobile
network.

The application provider develops and deploys applications and is interested
in increasing the Quality of Experience (QoE) for the user, thus attracting a large
user base. An additional considered KPIs for the application provider is cost, for
example incurred due to use of compute or network resources in Infrastructure
as a Service (IaaS) or Platform as a Service (PaaS) scenarios. Design and con�g-
uration of applications have an impact on tra�c patterns which result in sig-
nalling tra�c in the network of the mobile network operator and also in�uence
the power drain of the UE of the hardware vendor.

These UEs are developed and sold by hardware vendors. While they theoreti-
cally implement standards proposed by the 3rd Generation Partnership Project

2



1.1 Scope of Considered Stakeholders

Cloud user

Network 
operator

Worker Employer

Cloud 
operator

Hardware 
vendor

Application 
developer

Crowdsourcing 
platform operator

VNF 
operator

Video 
provider

Storage 
provider End user

Figure 1.1: Stakeholder interactions considered in this monograph. Solid lines show
stakeholder interactions, dotted lines show is-a relationships.
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1 Introduction

(3GPP) in order to establish connectivity with mobile networks, in reality ven-
dors can deviate from this standard to increase their own KPIs. One example of
such a deviation from a standard are proprietary fast dormancy mechanisms [24]
implemented by some hardware vendors. These algorithms reduce power drain
by disconnecting the UE earlier from the network to extend battery life and in-
crease end user QoE. However, this has the consequence of increased signalling
in the operator’s network and can lead to increased web page loading times, i.e.
decreased QoE from the end user’s point of view.

End users employ UEs to execute applications in the system of the network
operator. They are usually interested in increasing their QoE, i.e. by increasing
the battery life of their UE or increasing satisfaction during video playback over
the network.
Cloud operators provide services, i.e. compute, storage, or network resources,

to cloud users according to speci�ed Service Level Agreements (SLAs) for mone-
tary compensation. They attempt to reduce the costs of operating infrastructure,
e.g. by reducing power drain to increase revenue while still satisfying the SLA
negotiated with the cloud users. Resources provided by cloud operators are pur-
chased by cloud users. Further, they attempt to provide the best possible service
to their own customers while reducing the number of required resources pro-
vided by the cloud operator in order to reduce cost of operation. In this mono-
graph we consider two exemplary cloud users, which will be described in the
following:

A Virtualised Network Function (VNF) operator uses virtualised resources ob-
tained from a cloud operator to provide virtualised network services to other
stakeholders. In the example considered in this monograph, the VNF operator
uses cloud compute resources to provide a Gateway GPRS Support Node (GGSN)
to a mobile network operator. The KPIs of the VNF operator are to satisfy the
SLA with the mobile network operator and to reduce the use of compute re-
sources of the cloud operator.

The second cloud user considered is the crowdsourcing platform operator who
uses cloud resources in order to provide a crowdsourcing platform. The crowd-

4



1.2 Scienti�c Contribution

sourcing platform operator in turn has to consider the requirements of its two
main stakeholders: The crowdsourcing employer requires a set of microtasks to
be completed in a short time to use the generated results in future business pro-
cesses. Crowdsourcing workers complete microtasks for a speci�ed amount of
money. They are interested in completing as many tasks as possible and reduce
their idle time, thus increasing their income.

The interactions of these stakeholders result in complex interactions, which
are studied in this monograph. The next section introduces the considered in-
teractions and provides an overview over the scienti�c contributions provided
by this monograph.

1.2 Scientific Contribution

This monograph studies the interactions between di�erent stakeholders in
three, partially overlapping, scenarios in order to provide an overview of to-
day’s interlocking network and application ecosystem.

In Figure 1.2 we classify the areas of research as well as scienti�c methods
used in relation to the chapters of this monograph. The x-axis shows the im-
pacted areas of research, i.e. topics related to the mobile network, the application
domain or cloud technologies. The y-axis details the applied scienti�c method.
In the theoretical area methods from queueing theory, mean value analysis and
the analysis of random variables are used. Measurements were performed using
testbeds and custom software tools. Simulation studies, performed using Dis-
crete Event Simulation (DES), and created analysis tools are summarised in the
practical area.

Annotations are used to highlight scienti�c publication whose content con-
tributes to the respective chapters.

The �rst contribution of this monograph is a discussion of the impact of mo-
bile application tra�c on mobile communication networks, especially consider-
ing the current network con�guration. We study the impact of di�erent tra�c
types, both from real-world applications and synthetic tra�c distributions, and

5
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Figure 1.2: Contribution of this work as a classi�cation of the research studies con-
ducted by the author.

investigate the potential of network parameter optimisation as a means to re-
duce signalling tra�c.

As a second contribution, we provide models for two popular applications, i.e.
Video Streaming and Cloud File Synchronisation, thus enabling the study of the
impact of di�erent mechanisms implemented in these applications. We show
that the streaming mechanism allows the most �exible con�guration and can
provide Pareto-optimal results for all pairs of metrics. However, further study
shows that in fact no Pareto-optimal value exists which satis�es the KPIs of all
participating stakeholders. Furthermore, we provide parametrisable QoE models
for di�erent user groups. For the Cloud File Synchronisation we compare di�er-
ent upload scheduling algorithms and �nd that, both the size based algorithm
as well as the time based algorithm, can be used to specify a tradeo� between
the di�erent considered KPIs.

As a third contribution, we discuss the impact of resource dimensioning and

6



1.3 Outline of Thesis

management schemes in cloud environments. To this end, we study the per-
formance of a power conservation mechanism for cloud environments using
a queueing model. We derive guidelines for selecting Pareto-optimal results re-
garding both the waiting time before a job can begin processing and power drain
of the cloud. Furthermore, we discuss a mechanism to reduce cost for cloud users
by disabling compute instances while still allowing con�gurable SLAs and eval-
uate this mechanism using a queueing simulation. Finally, we present a mech-
anism to dimension worker numbers in a human-cloud scenario which can be
used to ensure satisfaction of the key stakeholders of a crowdsourcing platform
operator.

1.3 Outline of Thesis

In Chapter 2 we study the impact of mobile network con�guration settings on
participating stakeholders. First, we present an algorithm to infer power drain
and signalling messages caused by a given application tra�c. Then, we per-
form application tra�c measurements and discuss general tra�c characteris-
tics before applying the introduced algorithm to the measurements. Finally, we
generalise our results by introducing a theoretical model for power drain and
signalling messages for arbitrary independent and identically distributed (iid)
tra�c distributions.

Chapter 3 focusses on the impact of applications design and choice of al-
gorithm by the application developers on the other stakeholders. To this end,
we study two prominent applications in today’s Internet: Video Streaming and
Cloud File Sychronisation. For Video Streaming, we study the impact of di�erent
video transmission mechanisms and parameter con�gurations on energy con-
sumption of the UE, signalling in the mobile network and resource consumption
at the application developer using a DES. Furthermore, we provide a queueing
model for video streaming algorithms and derive a parametrised QoE model.
To address the second scenario, we discuss di�erent scheduling algorithms for
Cloud File Synchronisation services. In order to accomplish this, we use data

7



1 Introduction

obtained from large scale, testbed based [25] measurements, implement a sim-
ulation model, and investigate relevant KPIs.

In Chapter 4 we study resource allocation strategies in the cloud and evaluate
which management decisions of the cloud platform operators impact the other
stakeholders. First, we consider an energy saving scheme where a cloud operator
scales the number of available servers according to the available load. To eval-
uate this scenario, we introduce a queueing model and carry out a performance
evaluation to study optimal parameter settings. Then, we consider the role of a
cloud user renting virtual machines in the cloud to provide a service to users on
the example of a virtualised network operator. We analyse tra�c characteristics
and use them as input for a simulation model of a virtualised GGSN. Combining
these results, we evaluate the impact of di�erent virtual server con�gurations
and scaling strategies. Finally, we consider resource allocation in human-clouds.
Based on data obtained from a commercial crowdsourcing provider, we extract
characteristic distributions and apply them as input to both an analytic queueing
model as well as a simulation model. Further, we derive dimensioning guidelines
for the crowdsourcing provider.

In Chapter 5 we provide a summary of the major contributions of this work
and suggest future potential research directions.

8



2 Impact of Application Tra�ic on

Mobile Infrastructure

This chapter considers interactions between multiple stakeholders in future mo-
bile networks and studies the resulting tradeo�s. These tradeo�s have only ap-
peared recently with the advent of smartphones. With traditional cell phones,
tra�c in networks was largely dominated by voice tra�c and to a smaller de-
gree by text and signalling messages. The introduction of smartphones resulted
in an increased amount of applications, developed by a decentralised developer
community. With the application ecosystem no longer being under control of
network operators, as in the case of voice or text messages, or hardware ven-
dors, as with the rudimentary bundled applications of early feature phones, new
types of network tra�c occurred and replaced voice and signalling as the main
tra�c type. Furthermore, the amount of tra�c is no longer the only performance
indicator for the network operator, and the network operator is no longer the
only stakeholder involved in the mobile network ecosystem.

Each of the stakeholders shown in Figure 2.1 is interested in optimising the
network, device, or application performance in order to improve relevant Key
Performance Indicators (KPIs). To this end, each of the stakeholders can ma-
nipulate the parts of the network that it controls. The network operator can
change network con�guration parameters in order to reduce signalling in the
network. Hardware vendors can con�gure smartphones in such a way that data
connections are terminated as soon as possible, decreasing power drain. Appli-
cation developers can decrease polling intervals in their application layer proto-
cols in order to increase Quality of Experience (QoE). However, the parameters

9



2 Impact of Application Tra�c on Mobile Infrastructure

Application Developer

Network Operator

Developer 1 Developer nd

Hardware Vendor Vendor 1 Vendor nv…

Operator 1 Operator no…

…

Figure 2.1: Stakeholders investigated in the network scenarios.

the stakeholders can in�uence in order to optimise the KPI of their individual
concerns, also in�uence the complete network and thus all other KPIs, possi-
ble to the detriment of the other stakeholders. When a stakeholder attempts to
optimise KPIs of interest, the consequences for other stakeholders have to be
considered, as they could consider optimising their respective KPIs in turn, re-
sulting in a net loss for all participating stakeholders. Thus, a tradeo� between
all considered KPIs is required in order to satisfy the participating stakeholders.

Current best practices result in each participant optimising the respective
KPIs individually, without addressing the needs of the other stakeholders [26,
27].

The contribution of this chapter is threefold:

a) We provide an algorithm to infer metrics for the relevant KPIs for the
stakeholders from tra�c traces, and evaluate exemplary traces for a set
of popular applications.

b) We develop an analytical model in order to analyse theoretical and empir-
ical application tra�c distributions and derive KPIs for the stakeholders.

c) We study the impact of network timer optimisation, a practice where
network operators modify network parameters in order to optimise sig-

10



2.1 Background and Related Work

nalling unilaterally, and show the impact for other stakeholders and high-
light potential consequences for the network operator.

The content of this chapter is taken from [4, 15]. Its remainder is structured
as follows. First, we give a background of mobile networks and survey related
work in Section 2.1. In Section 2.2, we perform application tra�c measurements
and investigate the impact of application tra�c on User Equipment (UE) power
drain, network signalling and web QoE for a selected set of applications. Then,
we generalise our results by introducing an analytical model in order to derive
metrics for the state transition frequency and power drain from arbitrary traf-
�c distributions in Section 2.3. Finally, we conclude this chapter with lessons
learned in Section 2.4.

2.1 Background and Related Work

This section discusses the technical background relevant to the remainder of
this chapter. First, in Section 2.1.1, we introduce the Universal Mobile Telecom-
munications System (UMTS) mobile communication standard, and the Radio
Resource Control (RRC) protocol. Then, we discuss existing approaches to mea-
sure RRC protocol transactions and optimise the signalling load generated by
RRC messages in Section 2.1.2. Finally, Section 2.1.3 tackles smartphone power
drain and QoE, two metrics in�uenced by the con�guration of the RRC protocol.

2.1.1 UMTS Networks and RRC Protocol

A Third Generation (3G) UMTS mobile network consists of three main com-
ponents, which are depicted in Figure 2.2: the UE, the Radio Access Network
(RAN), and the Core Network (CN). The RAN is used to establish connectivity
between the UE and the CN, which in turn can establish connectivity to the
Internet if required.

UEs are devices used by end users, i.e. smartphones, tablets or data card en-
abled notebooks, but can also include Machine to Machine (M2M) devices. The

11



2 Impact of Application Tra�c on Mobile Infrastructure

User
Equipment

Radio Access Network Core Network Internet

NodeB Radio
Network

Controller

Mobile
Switching

Center

Packet
GateWay

Figure 2.2: Overview of a 3G mobile network.

RAN is, amongst other tasks, responsible for RRC, packet scheduling and han-
dover control. It includes the NodeB and the Radio Network Controller (RNC).
The CN provides the backbone network of the UMTS network and provides con-
nectivity to the Internet and the Public Switched Telephone Network (PSTN).
Furthermore, the CN provides billing, authentication, and location management
functionalities.

RRC Protocol In UMTS networks, the radio resources in the RAN between
base station and UE are controlled and managed by the RRC protocol [28]. The
protocol is responsible for control-band signalling between the UEs and the
RAN. It is used to establish, maintain, and tear down connections between a UE
and the RAN. Furthermore, the RRC protocol performs broadcasting of network
information, Quality of Service (QoS) control, and reporting and cell selection
management, which are out of scope for this text. The protocol is divided into
di�erent parts: services for upper layers, communication with lower layers, pro-
tocol states, RRC procedures, and error control. In particular, the RRC protocol
also participates in the co-ordination of other resource management operations,
channel measurements, and handovers. All RRC procedures rely on protocol
states. The states are de�ned per UE and for the connection between the UE and
the NodeB. Depending on the RRC state and network activity, originating or tar-
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geted at the UE, protocol actions can be triggered and transitions to other RRC
states may occur. Typically there are �ve RRC states characterising a connection
between UE and NodeB:RRC_Idle,URA_PCH,CELL_PCH,RRC_DCH, and
RRC_FACH. Whether a speci�c RRC state is used in a speci�c mobile network
depends on the con�guration of the network by the provider. In the follow-
ing we concentrate on the most commonly observed RRC states [29]: idle mode
(RRC_Idle), Dedicated CHannel (CELL_DCH), and Forward Access CHan-
nel (CELL_FACH). We omit URA_PCH and CELL_PCH in this study. While
URA_PCH plays only a role in scenarios of high mobility,CELL_PCH is not yet
widely implemented. Our results are still of general nature and do not depend
on the number of considered RRC states.

RRC State Transitions If the UE is switched on and no data connection to the
mobile network is established, the UE is in RRC_Idle state. If the UE wants
to send data, radio resources are allocated by the NodeB for the handset and the
UE will transition to either the CELL_FACH or the CELL_DCH state. Then, a
corresponding channel for data transmission is assigned to the UE and the UE
is connected to the network. The CELL_FACH and the CELL_DCH state can
be distinguished in that way that in CELL_DCH state a high-power dedicated
channel for high speed transmission is allocated whereas in CELL_FACH state
a shared access channel for general sporadic data transmission is used. Thus,
CELL_FACH consumes signi�cantly less power than the CELL_DCH state.

The possible transitions between the di�erent states are de�ned by the
network operator and the RRC protocol stack. Typically, the following state
transitions are included: RRC_Idle → CELL_FACH, CELL_FACH →
CELL_DCH to switch from lower radio resource utilisation and low UE power
drain to another state using more resources and power, and CELL_DCH →
CELL_FACH, CELL_FACH→ RRC_Idle, CELL_DCH→ RRC_Idle to
switch to lower resource usage and power drain. According to [29, 30], the tran-
sitions are triggered by user activity and radio link control bu�er level at the base
station. A transition from CELL_DCH to CELL_FACH usually occurs when
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Figure 2.3: RRC state machine diagrams.

the bu�er is empty and a threshold for a release timer is exceeded, resulting
into the corresponding RRC protocol message �ow. A transition in the reverse
direction is triggered if the bu�er level exceeds a speci�ed threshold value for a
prede�ned time period. The UE will transition into RRC_Idle state if the RNC
detects overload in the network or no data was sent by the UE for a speci�ed
time.

Considered Network Models We consider two di�erent state transition
models, depicted in Figure 2.3, based on the RRC protocol. The �rst model in-
cluding theRRC_Idle,CELL_FACH, andCELL_DCH states is shown in Fig-
ure 2.3a and is in the following called the Three State Model. If the UE is in the
RRC_Idle state and activity is detected, i.e. a packet is sent or received, the
connection transitions to CELL_DCH state. After each transmission a timer
TDCH is started and reset whenever a new packet is sent or received. If the timer
expires, the connection transitions to the CELL_FACH state; upon entering,
the TFACH timer is started. If a new transmission occurs, the connection again
transitions to the CELL_DCH state. If TFACH expires, the connection transitions
to RRC_Idle state.
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The second model, denoted as the Two State Model, and shown in Fig-
ure 2.3b, only includes the RRC_Idle and CELL_DCH state. If the UE is in the
RRC_Idle mode and a packet is sent or received, the connection transitions
to the CELL_DCH state. Once in CELL_DCH mode, the TDCH timer is started
and it is reset whenever a new packet is sent or received. If the timer expires,
the UE transitions back to RRC_Idle state.

Proprietary Fast Dormancy Extensions While the Three State Model is
closer to the speci�ed RRC protocol, the Two State Model is similar to some
proprietary Fast Dormancy implementations used by UE vendors. In these Fast
Dormancy implementations, the UE tears down the connection to the network
state as soon as no data is ready to be sent for a certain time, i.e., it forces the
network to transition to RRC_Idle state. In contrast to the Three State Model,
there is no transition to the CELL_FACH state. If a device disconnects from the
network by transitioning to the RRC_Idle state, it has to be re-authenticated
before another transition to the CELL_DCH state can occur. This results in
additional signalling tra�c and causes more load on the network [27] due to
frequent re-establishments of the RRC connection. These proprietary Fast Dor-
mancy algorithms do not adhere to the RRC speci�cation [24], but nonetheless
exist in the real world and have been identi�ed as possible causes for signalling
storms. The major reason for Fast Dormancy implementations is the decrease
in power drain on the UE, since the transmission unit of the UE consumes only
1 % to 2 % of the power inRRC_Idle state compared to theCELL_DCH state.
Thus, both models warrant further investigation.

2.1.2 Measurements of RRC Parameters and Optimisation
of Resource Consumption

In the literature the con�guration of the inactivity timers used for the RRC pro-
tocols have been investigated in detail. In [30] a measurement tool for RRC pro-
tocol states is presented. It is used to determine RRC state transition parameters,
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channel setup delays, and paging delay by measuring the one-way round trip
time of data packets. The results are validated by monitoring the power drain
in di�erent RRC states. One outcome is the observation that UMTS network
con�gurations vary signi�cantly by network operator. The CELL_DCH release
timer as well as the inactivity timer value triggering transition to RRC_Idle
state were measured. The values range from 1.2 s for the CELL_DCH release
timer to more than one minute for the RRC_Idle timer. Similar results are
presented in [29]. Here, the observed values vary between 5 s and 12 s. Addition-
ally, they also determined the exact RRC state transitions for two networks, i.e.
RRC_Idle→ CELL_FACH→ CELL_DCH or RRC_Idle→ CELL_DCH
directly without transitioning through the CELL_FACH state. The 3rd Gen-
eration Partnership Project (3GPP) has released a technical report [31] about
the adverse impact of mobile data applications. This report states that frequent
connection re-establishments due to small data packets caused by e.g. status up-
dates of social network or instant messaging applications can lead to problems
of increased signalling. This highlights the importance of this topic.

Furthermore, there are papers that propose optimising strategies that take
the RRC states into account. In [26] the impact of di�erent application tra�c
patterns is studied to reveal resource usage in mobile networks. By identifying
packet bursts, they infer the RRC states of the UE. Radio resources are quanti�ed
by channel occupation time and power drain. They propose an algorithm that
tries to optimise application tra�c patterns by e.g. piggybacking, batching up
data, or decreasing the update rate of an application. The algorithm is evaluated
for six applications: two news applications, the Pandora streaming application,
Google search, a Tune-In radio and Mobelix. In [32] RRC states are studied for
network optimisation. The authors optimise the inactivity timers to allow a bet-
ter resource utilisation. They propose an application-to-network interface to
avoid unnecessary timer periods after data transmission.
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2.1.3 Smartphone Power Consumption and QoE

As discussed at the beginning of this chapter, power drain of the UE and the QoE
for the end user are important KPIs for the hardware vendor and the application
developer, respectively. Power drain of the UE varies according to the devices’
current RRC state. The power drain caused by CELL_DCH mode was mea-
sured on speci�c devices at about 600 mW to 800 mW [26, 29]. InCELL_FACH
mode, the power drain of an HTC TyTN II was measured at about 400 mW to
460 mW depending on the UE and the network operator [29]. A precise mea-
surement of the power drain of di�erent RRC states is performed in [29, 33, 34].
The authors report that the power drain depends on two factors: a) user interac-
tions and applications, b) platform hardware and software. Methods for reduc-
ing power drain in Long Term Evolution (LTE) Machine to Machine scenarios
are considered in [35]. The authors consider tradeo�s between responsiveness
and power drain by means of prolonging the discontinuous reception cycles in
the LTE standard. The authors of [36] perform a measurement of power drain
and RAN signalling during playback of a YouTube video in 3G and LTE UEs.
They employ a proxy server in order to ensure that tra�c is sent in bursts, thus
decreasing power drain at the cost of additional signalling tra�c.

In [37] the authors performed a four week long study with 29 participants to
identify factors in�uencing the QoE of mobile applications. The study comprises
a) data from context sensing software, b) user feedback using an experience sam-
pling method several times per day, and c) weekly interviews of the participants.
To determine the factors of in�uence, the authors analyse the frequency of spe-
ci�c keywords in the interviews and the surveys. They �nd that the term battery
is mentioned by the participants with the highest frequency. According to the
authors this is reasonable since the battery e�ciency has a strong impact on the
user perceived quality, in particular when the UE is nearly discharged.
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2.2 Inferring Signalling Frequency and Power
Consumption from Network Traces

All participating stakeholders, i.e. network operators, hardware vendors, and
application developers, need to assess the impact of potential changes of parts
of the mobile network, e.g. change of network parameters, introduction of new
hardware or modi�cation of applications, on their considered KPIs without
rolling out changes to the production network. To this end, we propose speci�c
metrics in order to quantify the impact of changes on the network on the con-
sidered KPI. We introduce an algorithm to infer metrics from application tra�c
measurements, network parameters and power and signalling con�gurations.
In Section 2.2.1 we present the algorithm and methods to describe the relevant
metrics. Then, in Section 2.2.2, we use the proposed methodology to evaluate
the impact of various network con�gurations on four popular applications.

2.2.1 Inferring State Transitions and Deriving Metrics

A UE’s �rmware triggers RRC state transitions based on application tra�c.
While solutions exist to capture RRC state transitions on speci�c hardware [38]
they are not available for all modern smartphone platforms. Other options to
measure the required information include using costly hardware and use speci�c
UEs, which are usually not available to researchers and application developers.
This prevents the developers from evaluating the e�ect of their applications on
the overall health of the network. Consequently, they can not take measures to
prevent the harmful behaviour of their applications. However, it is possible to
infer the RRC state transitions for a given packet trace if the network con�gu-
ration is known.

First, we describe the setup used to capture network packet traces for arbi-
trary apps. Then, we give an algorithm to infer the RRC state transitions for a
given packet trace. Based on these state transitions, we can calculate the number
of signalling messages generated by the packet trace. Finally, we use the infor-

18



2.2 Inferring Signalling Frequency and Power Consumption from Network Traces

mation on when which RRC state was entered to calculate the power drain of
the UE’s radio interface.

Measurement Procedure and Setup

To investigate the behaviour of the application under study, we capture traf-
�c during a typical use of the application on a Samsung Galaxy SII smart-
phone. The smartphone runs the Android operating system and is connected
to the 3G network of a major German network operator. To obtain the network
packet traces we use the tcpdump application. This application requires root
privileges which are obtained by rooting the device and installing the custom
cyanogenmod ROM 1. Once tcpdump is installed and running, we start the ap-
plication under study and capture packet traces while the application is running.
Then, the android debugging bridge is used to copy the traces to a workstation.
The traces contain Internet Protocol (IP) packets embedded in Linux Cooked
Captures. We require the IP packets, which are extracted for use in the follow-
ing analysis.

Inferring Network State of a UE

In this section we study the in�uence of the application tra�c on RRC state tran-
sitions and signalling messages. Since RRC state transitions can not be captured
using commonly available tools, we introduce an algorithm to infer RRC state
transitions from IP packet traces. Using this algorithm we analyse the RRC state
transition frequency and signalling message load for the Two State Model and
Three State Model.

Tra�c below the network layer can not be measured without speci�c equip-
ment which interfaces with the proprietary �rmware of the UE and is often
out of reach for developers interested in assessing the impact of their applica-
tions on the network. Based on the Two State and Three State models intro-
duced in Section 2.1.1, we process tcpdump captures of the application tra�c.

1http://www.cyanogenmod.org, Accessed: November, 21st 2015
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However, it should be noted that this method is not restricted to a speci�c net-
work model, but can be extended to any other network model as well. Using
these captures, we extract the timestamps when IP packets are sent or received.
Furthermore, we require the timer values of the transition from CELL_DCH
state to CELL_FACH state, TDCH, and the timer for the transition between
CELL_FACH and RRC_Idle states, TFACH.

Based on this information Algorithm 1 infers the timestamps of state transi-
tions according to the 3GPP speci�cation [28] for the Three State Model. This
algorithm can be simpli�ed to also work for the Two State Model. Alternatively,
a method to post-process the results of the algorithm to obtain results for the
Two State Model is given at the end of this section. The algorithm �rst computes
the inter-arrival times of all packets. Then, each timestamp is considered. If the
UE is currently in RRC_Idle state, a state transition to CELL_DCH occurs at
the moment the packet is sent or received. If the inter-arrival time exceeds the
TDCH timer the UE transitions to CELL_FACH TDCH seconds after the packet
was sent or received. Similarly, if the inter-arrival time exceeds both the TDCH

and TFACH timers a state transition to RRC_Idle occurs TDCH seconds after the
state transition to CELL_FACH.

Decreasing the power drain of their devices is always a goal of UE vendors. A
straightforward way to achieve this, if only the well-being of the UE is consid-
ered, is to transition from CELL_DCH state to RRC_Idle as soon as no addi-
tional data is ready for sending. While this transition is not directly available in
the 3GPP speci�cation for the RRC protocol [28], a UE may reset the connection,
e�ectively transitioning from any state to RRC_Idle. This behaviour can be
modelled using the Two State Model introduced in Section 2.1.1.

State transitions for the Two State Model can be calculated using a similar
algorithm. Alternatively, the behaviour of the Two State Model can be emulated
using Algorithm 1 if TFACH is set to 0 s and all state transitions to CELL_FACH
are removed in a post processing step.
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Algorithm 1 Inferring RRC state transitions based on IP timestamps.
Require: Packet arrival timestamps ts

CELL_DCH to CELL_FACH timer TDCH
CELL_FACH to RRC_Idle timer TFACH

Ensure: Times of state transition state_time
New states after state transitions state
interarrival(i)← ts(i+1) - ts(i)
index← 0
for all ts(i) do

if state(index) = RRC_Idle then
index← index + 1
state(index)← CELL_DCH
state_time(index)← ts(i)

end if
if interarrival(i-1) > TDCH then

index← index + 1
state(index)← CELL_FACH
state_time(index)← ts(i) +TDCH

end if
if interarrival(i-1) > TDCH + TFACH then

index← index + 1
state(index)← RRC_Idle
state_time(index)← ts(i) +TDCH + TFACH

end if
end for
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Table 2.1: Number of signalling messages per RRC state transition perceived at the
RNC [28].

From/to RRC_Idle CELL_FACH CELL_DCH

RRC_Idle – 28 32
CELL_FACH 22 – 6
CELL_DCH 25 5 –

Calculating Signalling Frequency and Power Drain

In reality, the number of state transitions is not the metric of most importance
if network signalling is to be evaluated. Each state transition results in a num-
ber of RRC messages between the UE and di�erent network components. For
this study we consider the number of messages observed at the RNC, which can
be found in [28] and is summarised in Table 2.1. It can be seen that transitions
from or to the RRC_Idle state are especially expensive in terms of number
of messages sent or received. This is due to the fact that upon entering or leav-
ing the RRC_Idle state, authentication has to be performed. Note that for
the Two State Model only transitions from or to the RRC_Idle state occur.
This results in the fact that for the same network packet trace the number of
signalling messages occurring in the Two State Model is generally higher than
in the Three State Model. To obtain the total number of signalling messages,
we weigh the number of state transitions with the number of messages sent
per state transitions. Then, we average the number of state transitions over the
measurement duration to obtain a metric for the signalling load at the RNC, i.e.
the Signalling frequency (SF). The inference algorithm does not di�erentiate be-
tween state changes caused by upstream or downstream tra�c. State changes
caused by downstream tra�c usually generate some additional signalling mes-
sages, as paging is involved. The inference algorithm can easily be enhanced
to support this behaviour. However, the results discussed in the next section
would only change quantitatively. Furthermore, the algorithm can be adapted
to new networking models or other numbers of signalling messages sent per
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Table 2.2: Power consumption of the UE radio interface depending on current RRC
state [26].

RRC State Power consumption
RRC_Idle 0 mW
CELL_FACH 650 mW
CELL_DCH 800 mW

state transition.

From a user’s point of view, the signalling message frequency is of little im-
portance. The user is interested in a low power drain as this increases the bat-
tery life of the device. To calculate the battery life, we use the time when state
transitions occurred, and the new state, to calculate the relative amount of time
that was spent in each state. Given the relative time spent in each state, we
use Table 2.2, taken from [26], to compute the Power drain (PD) of the radio
interface during the measurement phase. We focus on the power drain of the
radio interface, as it is possible to measure the aggregated power drain using
out-of-the-box instrumentation techniques provided by the hardware vendor.

2.2.2 Impact of Application Tra�ic Pa�erns

In the measurement study, we apply the methods introduced in Section 2.2.1 to
four popular smartphone applications to infer signalling tra�c and power drain.
First, we characterise the applications in terms of tra�c patterns, application
usage, as well as bandwidth requirements. Then, we study the SF and power
drain caused by these applications if the inactivity timers, i.e. TDCH or TFACH are
modi�ed. Finally, we analyse the in�uence of network parameters on web QoE
in terms of Mean Opinion Score (MOS) depending on page load times which are
in�uenced by the network settings.

23



2 Impact of Application Tra�c on Mobile Infrastructure

Table 2.3: Qualitative characterization of applications under study.

Application Tra�c Application Required
characteristic use bandwidth

Angry Birds Interactive Foreground Low bandwidth
Aupeo Interactive Background High bandwidth
Twitter Periodic, Low frequency Background Low bandwidth
Skype Periodic, High frequency Background Low bandwidth

Characterisation of Tra�ic Pa�erns for Selected Applications

For this study we chose four speci�c applications in order to cover a broad spec-
trum of tra�c characteristics, as described in Table 2.3. First, we discuss said
characteristics for these applications. We di�erentiate between applications,
where the user interaction causes the generation of tra�c, and those, where
the application periodically sends or receives tra�c. Finally, we consider the
amount of bandwidth used by the application.

Angry Birds for Android is a popular interactive free-to-play game and runs
in the foreground. To �nance the game, an advertisement is shown once the
player starts or restarts a level. Advertisements are downloaded on demand by
the application, but require low bandwidth. Thus, the time between two adver-
tisements depends on the frequency of the player advancing to the next level or
deciding to restart the current one.

Aupeo is an Internet radio application, allowing a user to listen to content
from personalised radio stations, while running in the background. Content is
not streamed but downloaded at the beginning of the track. The exact duration
depends on the radio stations chosen by the user and is thus interactive. This
results in large times of inactivity during the playback of the track itself. Due to
the fact that audio �les are downloaded, there is a high bandwidth requirement.

The Twitter client is used to send and receive new short messages from
the user’s Twitter account. Transferring these messages requires relatively low
bandwidth. To this end, the user can specify an update frequency when to pull
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new messages in the background. Thus, the downloads occur with a periodic be-
haviour of low frequency, where the client sends an HTTP Over TLS (HTTPS)
request to the Twitter server and in return receives new Tweets for the user’s
account. We do not consider an active user who is publishing new Tweets. Such
behaviour would manifest as additional tra�c to the periodic one generated by
the status updates. Due to the fact that publishing updates occurs relatively in-
frequently, and updating the feed occurs more often, the tra�c generated by
publishing updates is dominated by that occurring due to updates, and thus can
be neglected.

Finally, we consider the Skype application. We do not consider any Voice over
IP (VoIP) calls, but the application’s idle behaviour, i.e. when the application is
running in the background. During this time, the application sends keep-alive
messages to the network. These keep-alive messages are sent with a high fre-
quency and require low bandwidth.

In addition to the applications considered, there exist other categories of ap-
plications which are running in the foreground and interactively require a high
bandwidth. One example for such an application is Skype while taking a VoIP
call. These applications are not considered in this study, as this kind of behaviour
causes the UE to be always online. This results in the minimal amount of sig-
nalling messages to be sent and a maximal power drain at the UE, indepen-
dent of network model or used parameters. Other combinations of tra�c criteria
also exist. However, from both, a signalling frequency as well as a power drain
point of view, they can be mapped to one of the discussed cases. For example,
if an application is sending periodic updates with low bandwidth without user
interaction, then the fact that the application is running in the foreground or
the background is without consequence for the generated signalling frequency
or power drain. However, these cases should be considered when optimisation
strategies for message sending are under study. Background applications, for in-
stance, could allow for the batching of messages, due to the fact that the trans-
mission is usually not urgent, while foreground applications do not allow for
such behaviour as it would delay the user interactions and consequently de-
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Figure 2.4: CDF of inter-arrival times for considered applications.

crease QoE.
Next, we describe the applications under study in more detail. For each ap-

plication we show the Cumulative Density Function (CDF) of the inter-arrival
times in Figure 2.4 and give information about the mean values and standard
deviation of both inter-arrival times and bandwidth in Table 2.4, respectively.

a) Angry Birds We see that there are no distinct peaks in inter-arrival time,
which would indicate a periodic behaviour. Furthermore, we see that 5 %

of all inter-arrival times are greater than 1 s. As we consider only TDCH

values above 1 s, those are candidates for triggering state transitions.
The mean inter-arrival time is 0.66 s, with a relatively high standard de-
viation of 15.90 s. This is caused by the low inter-arrival times in one
advertisement request at the beginning of each new level and the rela-
tively large inter-arrival times between two advertisements. Mean band-
width is relatively low with 4.42 kbit s−1 and a high standard deviation
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Table 2.4: Mean and standard deviation of inter-arrival time and bandwidth for
considered applications.

Application Inter-arrival time (s) Bandwidth (kbit s−1)
Mean Standard deviation Mean Standard deviation

Angry Birds 0.66 15.90 4.42 4.50
Aupeo 0.06 3.06 129.76 482.63
Twitter 8.91 44.09 0.27 0.04
Skype 0.55 1.95 1.30 1.84

of 4.5 kbit s−1. These di�erences can be explained by considering the
behaviour of the application. During long phases of use no tra�c is sent,
and after a level is restarted, a new advertisement has to be obtained,
causing the transmission of data. Note that no level data is downloaded
during gameplay at all, as the complete game is downloaded during the
installation process.

b) Aupeo We see that the application generates packets with relatively
small inter-arrival times with a small mean inter-arrival time of 0.06 s.
The high standard deviation of 3.06 s is caused by the waiting be-
tween two tracks. Furthermore, we see a high mean bandwidth of
129.76 kbit s−1, and a standard deviation of 482.63 kbit s−1. This is
caused by the di�erence in tra�c activity between times when tracks
are either downloaded or not.

c) Twitter We see that 90 % of all transmissions occur with an inter-arrival
time of less than 1 s. Also, we can observe a high mean inter-arrival time
of 8.91 s and a high standard deviation of 44.49 s. Additionally, the mean
bandwidth is low with only 0.27 kbit s−1 and a low standard deviation
of 0.04 kbit s−1 due to the fact that Twitter text messages are only 140

characters in length and thus only a low volume of tra�c needs to be
transmitted.
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Figure 2.5: Autocorrelation of inter-arrival times for considered applications.

d) Skype Similar to the Twitter application, we see that 90 % of all packets
occur with an inter-arrival time of less than 1 s. However, in contrast to
Twitter, we see a low mean inter-arrival time of 0.55 s with a standard
deviation of 1.95 s. Further, we observe a relatively low mean bandwidth
of 1.30 kbit s−1 and a standard deviation of 1.8 kbit s−1.

To further study the tra�c patterns of the applications, we study the au-
tocorrelation of the packet inter-arrival time with regard to the lag length in
Figure 2.5. We note that all studied applications present completely di�erent
autocorrelations for the inter-arrival times. This is one of the reasons that the
applications under consideration will display di�erent signalling behaviour in
the next section.
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Influence of Application Characteristics on Optimisation with
Network Timers

This section studies the impact of tra�c generated by applications on both the
network and the QoE of the user. We consider two metrics. First, we consider
the frequency of signalling messages induced at network components in the
RAN. In light of network outages caused by so called signalling storms, a large
number of signalling messages leading to overload at network equipment, it is in
the interest of a network operator to reduce the number of signalling messages
arriving at the RNC. One possible way to reduce the signalling frequency SF is
to modify network timer values, i.e., TDCH and TFACH.

As discussed in Section 2.1.3, the QoE a user perceives while using the device
is in�uenced by the battery life of the UE. Thus, the second metric considered
is the device’s power drain which is in�uenced by the used network model and
associated timer settings. As described in Section 2.2.1, based on a measurement
trace for an application we use Algorithm 1 to infer the state transitions occur-
ring during the use of the application. Then, we calculate the relative time spent
in each state and use Table 2.2 to compute the mean power drain of the radio
interface during the measurement. We study both metrics, �rst on their own
and then aggregated for both network models introduced in Section 2.1.1.

In this section we �rst consider the Three State Model, which describes the
default behaviour in 3G networks. Then, we describe the in�uence of the Two
State Model which models a network behaviour similar to that if proprietary
fast dormancy algorithms are used. These algorithms have been identi�ed as
one of the causes of a signalling storm [27]. Finally, we summarise the results
and discuss the possible rami�cations of using network timer values to reduce
the signalling frequency.

Three State Model: Signalling Frequency vs. Power Consumption First,
we investigate the signalling frequencies generated by the studied applications
for the Three State Model. Figure 2.6 shows the signalling frequency SF with
regard to the TDCH timer. For all studies of the Three State Model, the TFACH
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Figure 2.6: Signalling frequency SF for varying TDCH timers for the Three State
Model.

timeout is set to TFACH = 2 ·TDCH, a realistic value as shown in [26]. We see that
forTDCH timers shorter than 6 s the Skype application inRRC_Idlemode gen-
erates the highest signalling frequency. The Angry Birds application generates
the second highest frequency of signalling messages, followed by the Aupeo ap-
plication. The Twitter application generates the smallest signalling frequency. If
the TDCH value is longer than 15 s, this order changes. However, in general the
signalling frequency for higher TDCH timeouts is lower than for shorter TDCH

timeouts. Now, the Aupeo application has the highest signalling frequency, fol-
lowed by the Twitter application. The signalling frequency for the Angry Birds
application takes the third place. The application which generated the highest
signalling frequency generates the lowest frequency for higher timeout values.
This behaviour can be explained by the fact that the Skype application sends
keep-alive messages with an interval of less than 20 s. If the timer is greater than
the interval time of the keep-alive messages, the UE stays always connected and

30



2.2 Inferring Signalling Frequency and Power Consumption from Network Traces

thus generates almost no signalling.

These results show that the tra�c patterns of the application have a large in-
�uence on the generated signalling frequency. Signalling is generated for every
pause in sending or receiving larger than the con�gured timeouts. If such pauses
occur frequently, this increases the signalling frequency as shown on the exam-
ples of Skype and Angry Birds. Applications with more time between sending or
receiving of data cause less signalling, as shown by Aupeo and Twitter. Further-
more, we can observe that the signalling frequency can be reduced by increasing
the TDCH timeout, with the minimum being reached as TDCH approaches in�nity.
From a signalling frequency perspective, a value of 20 s would probably be su�-
cient, however if other metrics, e.g. radio resource consumption, are considered
10 s would be acceptable for a network operator.

Based on this �nding, we see that increasing the TDCH timer decreases the sig-
nalling frequency SF at the RNC. However, the actual signalling frequency de-
pends on the application running at the UE. From a network operator’s point of
view, the Three State Model should always be preferred to the Two State Model
as it generates less signalling messages per second, thus decreasing the load at
the RNC. This view does however not consider the additional radio resources
which are kept in use for a longer time if larger TDCH values are used. Addi-
tionally, it should be noted that the choice of the network model is sometimes
outside of the domain of the network operator. Proprietary Fast Dormancy al-
gorithms, as the considered Two State Model, are enabled on the UE by the user.

In Figure 2.7 we consider the power drain if the network uses the Three State
Model, i.e. if the Fast Dormancy mode of the UE is disabled. The �gure shows
the mean power drain PD of the device with regard to the TDCH timeout. Possi-
ble values range between 0 mW, if the UE was in RRC_Idle state during the
whole measurement, and 800 mW, if the UE was in CELL_DCH state during
the complete measurement. We see that the lowest power over all considered
TDCH values is consumed by the Twitter application. The second least power
drain is required by Aupeo, followed by Angry Birds. Finally, the most power is
consumed by Skype. Here we see that the maximum value of 800 mW is reached
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Figure 2.7: Power drain PD for varying TDCH timers for the Three State Model.

at a TDCH timeout of 20 s. Due to the periodic tra�c behaviour of Skype, the de-
vice is always in CELL_DCH state. Again we see that the tra�c characteristics
of the applications impact the power drain. Applications with more network ac-
tivity are forced to stay in connection states requring a larger amount of power
for a longer time. We see that for very small network timers, the power drain
is minimal. However, as seen in the last section small timers increase the sig-
nalling frequency at the RNC. Again, a choice of 10 s for the TDCH timer can be
seen as a compromise between signalling frequency SF and power drain PD.

Finally, we aggregate both metrics in in Figure 2.8. The x-axis of the �gure
gives the signalling frequency. On the y-axis we show the power drain PD. Dif-
ferent TDCH values are shown by di�erent colours as speci�ed by the colour
bar. First, we consider Angry Birds. We observe that as the signalling frequency
approaches zero, the power drain rapidly increases, even if only small gains in
signalling frequency reduction can be achieved. The Aupeo application presents
a completely di�erent picture. Here, we can see multiple almost horizontal lines
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Figure 2.8: In�uence of manipulating TDCH timer on signalling frequency SF and
power drain PD for the Three State Model. Filled marker highlights
TDCH = 11 s.
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of markers. If TDCH is chosen in this range, each increase of TDCH brings a small
decrease in signalling frequency SF for an increase in power drain PD. However,
some points of discontinuity exist. If for example the CELL_DCH timer is in-
creased from 10 s to 11 s, a decrease in signalling frequency SF of 40 % can be
achieved by only su�ering from a small increase in power drain. These points
of discontinuity would present themselves to be suitable targets of optimisa-
tion. Next, we consider the Twitter application. It displays a similar behaviour
as the Aupeo application, with multiple points of discontinuity. Note that Twit-
ter exhibits a di�erent point of discontinuity, and the TDCH value of 10 s, which
provided good results for Aupeo, is not optimal for Twitter. Finally, Skype again
shows a completely di�erent picture than all the other considered applications.
First, note that due to the large signalling frequency SF of Skype for small val-
ues of TDCH, TDCH = 1 s is not displayed in the �gure. Furthermore, as the TDCH

timer increases above 20 s the signalling frequency SF does not decrease any
further, and the power drain PD remains at the maximum value. We observe
that there is no common optimal value for all applications which would result
in an acceptable tradeo�.

Two State Model: Signalling Frequency vs. Power Drain Now, we study
the consequences of the application tra�c in a network using the Two State
Model. The Two State Model occurs in reality if Fast Dormancy implementa-
tions are considered. Here, the UE disconnects from the network if for a certain
time no tra�c is sent or received in order to reduce power drain. As for the
Three State Model, Figure 2.9 shows the signalling frequency SF with regard to
the setting of the TDCH timer. We see the same general behaviour as with the
Three State Model, however the signalling frequencies generated by each of the
applications for the Two State Model are usually higher. For example, even for
relatively high TDCH timeout values of 10 s, the Angry Birds application causes
270 % of the signalling frequency SF with respect to a network using the Three
State Model.

Next, we consider the changes in the power drain of the UE if the user decides
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Figure 2.9: Signalling frequency SF for varyingTDCH timers for the Two StateModel.
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Figure 2.10: Power drain PD for varying TDCH timers for the Two State Model.
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Figure 2.11: In�uence of manipulating TDCH timer on signalling frequency SF and
Power drain PD for the Two State Model. Filled marker highlights
TDCH = 11 s.

to enable Fast Dormancy, i.e. switch to a Two State Model, in Figure 2.10. As
with the signalling frequency, we only see a quantitative di�erence to the Three
State Model. Again, we compare the di�erences between Two State Model and
Three State Model on the example of the Angry Birds application. For the same
considered TDCH timeout of 10 s, we see a decrease of 81 % in power drain PD
when compared with the Three State Model.

Finally, we compare the in�uence of changes of the TDCH timeout on both sig-
nalling frequency SF and power drain PD for the Two State Model in Figure 2.11.
As for the Three State Model, we see that there is no tradeo� between power
drain and signalling frequency which would be acceptable for all application.
Even for single applications TDCH values, as for example the earlier discussed
10 s, which for Angry Birds was an acceptable tradeo�, is no longer a good
choice in the Two State Model.
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Figure 2.12: In�uence of manipulating TDCH timer on di�erent applications.

Consequences of Trade-O�: Signalling Frequency vs. Power Drain

In order to illustrate the impact of the behaviour discussed in the previous sec-
tion, we compare the in�uence of the TDCH timer on two applications with dif-
ferent tra�c characteristics in Figure 2.12.

First, we consider the Aupeo application as shown in Figure 2.12a. The sig-
nalling frequency SF before the increase of the TDCH timer was 0.55 messages
per second, after the change to TDCH = 8 s the signalling frequency remains un-
changed. Thus, the policy change based on one application brings no signi�cant
gain to other applications. However, from a user’s point of view, the power drain
PD increased from 121 mW to 183 mW. Again, we assume the user activates
fast dormancy to deal with the increase in power drain of more than 50%. This
results in a decrease of power drain PD to 117 mW, and an increase of over-
all signalling frequency SF to 0.76 messages per second. By changing the value
without considering all applications, the network operator reduces the QoE for
other users, and worsens the overall situation. Thus, due to the large number
of applications it seems impossible to optimise the TDCH timeout to reduce the
signalling frequency without negatively impacting the users QoE in unexpected
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ways. The Angry Birds application shown in Figure 2.12b shows quantitatively
similar results.

There exist applications, like Twitter and Aupeo, where optimisation by mod-
ifying the TDCH values can provide acceptable results. However, these optimisa-
tions are only successful if a single application or network model is considered.
For other applications, like Angry Birds or Skype, this optimisation approach
does not seem to be successful. A reduction of signalling frequency and power
drain is possible, if the application developers are incentivised to optimise their
applications accordingly. In [26] the authors suggest methods to achieve this
optimisation, for example batch transfer of advertisements for applications like
Angry Birds or decreasing the refresh rate in applications like Skype. However,
at the moment application developers are neither receiving incentives to opti-
mise applications in this way, nor do hardware vendors provide interfaces to
facilitate such optimisation. Such interfaces would allow application developers
to schedule their data transmissions in such a way that both signalling and bat-
tery drain would be reduced. Additionally, these interfaces would need to allow
the application developer to specify whether sending the transmission is urgent.
One example of such urgency would be if the application is being actively used
by the user and requires the feedback of the transmission. If the data is being
sent as a regular update while the application is running in the background it
could be scheduled for later transmission as suggested by [39, 40].

2.2.3 Influence of Network Configuration and
Background Tra�ic on Web QoE

So far we have discussed only power drain as a QoE in�uence factor. For ap-
plications like web browsing, one relevant QoE in�uence factor are page load
times. Therefore, we consider a web QoE model which quanti�es the impact of
page load times on mean opinion scores [41]. Here we distinguish between web
QoE and QoE, as no QoE models are currently existing which consider page load
times as well as power drain. In this section, we study the impact of background
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tra�c as well as network timer settings on the page load time of an image and
the resulting MOS. For this study, we only consider the Three State Model, but
the results can be applied to the Two State Model as well.

We assume a scenario, where a user is running a background application like
Twitter or Skype. Then, while the application is in the background, the user
begins to download an image from a website. Due to the background tra�c, and
depending on the network model and associated timer values, the UE may be
currently either in RRC_Idle, CELL_FACH or CELL_DCH state. We give
the probability of a random observer encountering the system in CELL_FACH
state by pCELL_FACH and the probability of a random observer encountering in
RRC_Idle state by pRRC_Idle. If the device is currently not in CELL_DCH
state, it takes some time to connect. This promotion time depends on the current
state and is according to [32] 2.5 s if the UE is in RRC_Idle state and 1.5 s if
the device is in CELL_FACH state. For this study, we assume that the user
randomly chooses a time to begin downloading an image. The time until the
image is displayed consists of the time to load the page tp, as well as the time to
go online to, where to is the mean time to go online, given as

to = pRRC_Idle · 2.5 s + pCELL_FACH · 1.5 s.

In reality, an additional delay is added due to the latency of the physical display,
however as this happens in a smaller timescale we neglect it in this model. Thus,
the total time t that is required to download the image is given by t = to + tp.

The authors of [41] give a function to calculate the MOS based on the re-
quired page load time as QoE(t) = a · ln t + b, were a and b depend on the
type of content being downloaded. For our scenario, picture download, values
of a = −0.8 and b = 3.77 are suggested. It has to be noted that for di�erent
web sites, the logarithmic function was still observed, but di�erent values for a
and b were obtained as given in [41]. These values depend for example on the
type of web page as well as the size of the content. Nevertheless, the results pre-
sented in this section are therefore generalisable for web browsing to various
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pages. This allows us to give an expected MOS for downloading pictures while a
background application is in�uencing the probability of a device already being
in CELL_DCH state or still having to be promoted to CELL_DCH state.

Using this methodology, we study the in�uence of background tra�c on the
QoE for two background applications with di�erent tra�c characteristics. In
Figure 2.13a we assume that the user is running the Twitter application as a
background process. The application is set to update the user’s status feed every
300 s. In Figure 2.13b the user is running the Skype application as a background
application. This application sends keep alive messages every 20 s. For each ap-
plication, we assume the Three State Model with TDCH settings of 1 s, 4 s, 8 s

and 16 s. We always set TFACH = 2 · TDCH. In both �gures we show the assumed
page load time t, as provided by the network, on the x-axis for values from 0.2 s

to 25 s. We assume 0.1 s as a lower bound, as page load times lower than 0.1 s

seconds are not distinguishable [42] by humans. The calculated MOS values are
given on the y-axis.

The picture downloads with the background tra�c generated by the Twitter
application result in MOS values beginning at 3.15 for TDCH = 1 s, 3.18 for
TDCH = 4 s, 3.21 for TDCH = 8 s, and 3.27 for TDCH = 16 s respectively. With
increasing page load time, the MOS decreases again. This behaviour is due to the
fact that the Twitter application periodically sends tra�c every 300 s. Then, no
further activity occurs until the next refresh occurs. In this time, the UE transi-
tions to RRC_Idle state. This tra�c characteristic causes a high probability of
a user encountering the device in an RRC_Idle state. Additionally, the tra�c
characteristics of the background application show that di�erent TDCH settings
impact the web QoE only marginally, resulting in the lines in the graph being
grouped close together.

In contrast, downloading pictures with the Skype application generating
background tra�c, causes di�erent MOS values. For a page load time t of 0.2 s

the MOS value with TDCH = 1 s is 3.49, with TDCH = 4 s we get 3.99, for
TDCH = 8 s we get a MOS value of 4.44, and �nally for TDCH = 16 s we get
4.99 respectively. We observe, that for increased page load times, the MOS de-
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(b) Background tra�c generated by Skype.

Figure 2.13: Perceived web QoE for loading a page with existing background tra�c.
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creases. Further, due to the high frequency of tra�c sent by the Skype applica-
tion increased MOS values occur when compared to those of the Twitter sce-
nario. Here, every 20 s tra�c is sent. This means that even for relatively low
values of TDCH the user has a high probability of encountering a state where no
promotion delay is required before the actual page load time t can begin.

From these studies we can conclude that, when considering the QoE on mobile
devices, not only the page load time t caused by the network but also additional
delays caused by the state of the device should be considered. As shown on two
examples, this state can be a�ected by other applications which are running in
the background and generate tra�c.

2.3 A Performance Model for 3G RRC States

The algorithm introduced in Section 2.2 can be used to infer the signalling fre-
quency, power drain, and QoE of existing or prototyped applications. However,
in order to study the general impact of tra�c in a comprehensive way, methods
to derive said metrics from analytical tra�c distributions are of interest.

In Section 2.3.1 we introduce a model allowing us to analyse both theoretical
and empirical tra�c models. Then, in Section 2.3.2 we use this model to study
the impact of tra�c characteristic on metrics, i.e. signalling intensity and power
drain.

2.3.1 Analytical Model

This section introduces a performance model for quantifying power drain
against signalling load. The model allows researchers and application develop-
ers to evaluate analytical and empirical tra�c distributions, deriving metrics for
signalling and power drain in order to predict the impact of yet unimplemented
applications or planned network con�gurations.

After presenting the system description, we derive the state distribution and
the average frequency of state transitions for a Two State Model, e.g. for propri-
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etary fast dormancy implementations of smart-phone vendors [27]. Afterwards,
we extend the model to include CELL_FACH for regular 3G networks. Finally,
we de�ne comprehensive metrics for signalling load and power drain.

Mobile RAN System Description

We consider a UE which sends and receives a sequence of data packets via a 3G
UMTS network. As discussed in Section 2.1.1, the arrival process of the packet
transmissions determines the RRC states of the UE. However, the direction of
packets, i.e. whether they originate from the UE or the NodeB, has no impact
on the RRC states, as the states solely depend on tra�c activity. Due to the high
impact of RRC states on tra�c patterns, we do not consider packet sizes in this
model. In real UMTS networks very small packets might be treated di�erently
for RRC states, but we neglect this both for simplicity reasons and as the impact
of packet sizes is highly network operator speci�c [29]. Furthermore, RRC state
transitions are complex procedures depending on implementation details of the
UE, the speci�c UMTS release, and the con�gurations by the network operator.
In order to keep our model simple, but realistic, we reduce the set of standardised
RRC states and the state transition triggers in the following ways.

In a �rst step we consider the Two State Model: RRC_Idle and CELL_DCH
as shown in Figure 2.3b. The UE switches to CELL_DCH to transmit or re-
ceive data and after an inactivity period of duration TDCH, it switches back to
RRC_Idle. The motivation for the two states RRC scenario is twofold. First,
it serves illustration purposes. We derive the model step-by-step in this simple
scenario to explain the ideas behind the equations. Then, the ideas can be eas-
ily transferred to the more complex Three State Model. Second, the scenario is
of practical relevance since proprietary implementations of the fast dormancy
concept can be modelled as the Two State Model, as discussed in Section 2.1.1.
Furthermore, this model is very similar to the one found in LTE systems. In
LTE, only a distinction between connected and disconnected states can be found,
which maps to the RRC_Idle and CELL_DCH states discussed in this model.

In our model we aggregate both packets sent and received by the UE in the
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in the Two State Model.

packet arrival process, which is assumed to be a renewal process, i.e. a process
with independent and identically distributed (iid) inter-arrival times, described
by the random variableA as shown in Figure 2.14. Thus, the probability that the
time between two consecutive packets is at most t is P (A ≤ t) = A(t). This
assumption is validated in Section 2.3.2 using the application measurements ob-
tained in Section 2.2.2.

The packet arrivals determine the RRC state of the UE and the corresponding
transitions. Therefore, the packet arrival process can be seen as a modulating
process, c.f. [43, 44], while the state and the signalling process represent modu-
lated, i.e., resulting processes.

Two State Model

First, we derive the connection state distribution of the Two State Model and
obtain the average frequency of state transitions given a speci�ed packet arrival
process.

Connection State Distribution First, we are interested in the state dis-
tribution P (S = s), i.e., the fraction of time the UE spends in state s ∈
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{RRC_Idle,CELL_DCH} for a given inter-packet time A. For this purpose,
we de�ne an observation interval TObs, depicted in Figure 2.14, which is assumed
to be orders of magnitude larger than the average packet inter-arrival timeE[A].
In addition, we take the position of an outside observer who observes the state
S at a random point in time t∗, uniformly distributed within the observation in-
terval. Then the state distribution P (S = s) is the probability that the observer
encounters the UE in state S at the time t∗.

We calculate this distribution as

P (S = s) =

∫ ∞
0

q(τ) · P (S = s|A = τ)dτ, (2.1)

where q(τ) is the probability density that t∗ falls into an interval of length τ
and P (S = s)|A = τ) is the probability that the UE is in state S under the
condition that t∗ is within an interval of length τ .

First, we derive q(τ). This probability density has to be proportional to a(τ)

and to τ , where a(τ) is the probability density function of the random variable
A. Therefore, we have that q(τ) = a(τ) ·τ ·c0 with the proportionality constant
c0. Due to

∫∞
0
q(τ)dτ = 1, we have c0 = 1/E[A] , which leads to

q(τ) =
a(τ) · τ
E[A]

.

Next, we derive the conditional probability P (S = s|A = τ) that t∗ falls
within a period with state S under the condition that the inter-packet time is
A = τ . We use the fact that t∗ is uniformly distributed within τ and calculate
the probability P (S = RRC_Idle) by considering the relevant cases:

P (S = RRC_Idle|A = τ) =

0, if TObs ≤ TDCH

τ−TDCH
τ

, otherwise.
(2.2)
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Similarly, we obtain P (S = CELL_DCH) as:

P (S = CELL_DCH|A = τ) =

1, if τ ≤ TDCH

TDCH
τ
, otherwise.

(2.3)

Average Frequency of State Transitions Next, we estimate the average fre-
quency of state transitions resulting from a given packet arrival process. For
that purpose, we consider again the observation interval TObs and focus on
the state transitions from RRC_Idle to CELL_DCH since every switch from
CELL_DCH to RRC_Idle results in a switch vice-versa. The expected num-
ber of observed packets during TObs is E[nP] = TObs/E[A]. Furthermore, the
probability that the time between two consecutive packets exceeds the timer
TDCH is

P (A > TDCH) = 1− P (A ≤ TDCH) = 1−A(TDCH). (2.4)

The number of state transitions nRRC_Idle→CELL_DCH during TObs directly cor-
responds to the number of inter-packet times exceeding TDCH since an active
connection is torn down after an inactivity period of TDCH. Thus, the expected
number is

E[nRRC_Idle→CELL_DCH] = E[nP] · P (A > TDCH)

=
TObs

E[A]
· (1−A(TDCH)).

Hence, the expected frequency of state transitions is

E[nRRC_Idle→CELL_DCH] =
1−A(TDCH)

E[A]
.

The same holds also for the state transitions from CELL_DCH to RRC_Idle
and hence E[fCELL_DCH→RRC_Idle] = E[fCELL_DCH→RRC_Idle] holds.
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Three State Model

In this section we consider three states: RRC_Idle, CELL_DCH, and
CELL_FACH. Again, we assume that the UE switches from RRC_Idle to
CELL_DCH whenever it transmits or receives data. After an inactivity of TDCH

the UE switches to CELL_FACH, and after an additional inactivity of TFACH, it
switches to RRC_Idle, as depicted in Figure 2.3a. This scenario usually oc-
curs when the network controls the RRC state of the UE without proprietary
connection tear-down mechanisms implemented on the UE. In today’s network
some operator transition the UE to a state with a paging channel URA_PCH in-
stead of the RRC_Idle, but the resource consumptions in both states are very
similar and we therefore omit the URA_PCH state for the sake of simplicity.

Connection State Distribution The state distribution P (S = s) for the
three states s ∈ {RRC_Idle,CELL_FACH,CELL_DCH} can be derived in
the same way as for the scenario with two states. Therefore, we present only
the conditional probabilities, which di�er from the Two State Model, and use
Equation 2.1 for the calculation of the distribution. First, we consider S =

RRC_Idle:

P (S = RRC_Idle|A = τ) =

0, if τ ≤ TDCH + TFACH

τ−(TDCH+TFACH)
τ

, otherwise.

For the case of S = CELL_FACH, we have:

P (S = CELL_FACH|A = τ) =


0, if τ ≤ TDCH

τ−TDCH
τ

, if TDCH < τ ≤ TDCH + TFACH

TFACH
τ

if τ > TDCH + TFACH.

The probability for the CELL_DCH state P (S = CELL_DCH|A = τ) does
not di�er from the Two State Model, i.e. Equation 2.3.
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Average Frequency of State Transitions In contrast to the Two State
Model, we have to consider a larger number of state transitions. These
are the transitions from RRC_Idle to CELL_DCH, from CELL_DCH to
CELL_FACH, from CELL_FACH to CELL_DCH, and from CELL_FACH to
RRC_Idle. Other transitions do not occur. We �rst calculate the frequency of
state transitions fromCELL_DCH toCELL_FACH. This transition happens ev-
ery time the inter-packet time A exceeds the timer TDCH. Therefore, the deriva-
tion is the same as presented above:

E[fCELL_DCH→CELL_FACH] =
1−A(TDCH)

E[A]
,

E[fCELL_FACH→RRC_Idle] =
1−A(TDCH + TFACH)

E[A]
.

Furthermore, all state transitions from CELL_FACH to RRC_Idle cor-
respond to a switch from RRC_Idle to CELL_DCH and therefore
E[fRRC_Idle→CELL_DCH] = E[fCELL_FACH→RRC_Idle]. Finally, we calculate
E[fCELL_FACH→CELL_DCH]. These state transitions occur, if TDCH < A ≤ TDCH +

TFACH. Therefore, we have

E[fCELL_FACH→CELL_DCH] =
A(TDCH + TFACH)−A(TDCH)

E[A]
.

Other state transitions do not occur in our scenario, as shown in Figure 2.3a).

Modelling Signalling Intensity and Power Drain of the UE

We assume that every state transition involves signalling tra�c. In order to
quantify signalling load on an abstract level, we de�ne the Signalling intensity
(SI) of an application, i.e. of a given distribution for A, as the average number
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of state transitions required for the transmission of a single data packet.

SI =
E[fST ] · TObs

E[nP]
= E[fST ] · E[A] (2.5)

where E[fST ] is the sum of all state transitions. Consequently, SI ∈]0, 2] for
the Two State Model since every packet can at most cause two state transitions,
in the Three State Model SI ∈]0, 3] holds. This metric is intended to quantify
the relation between transmitted data packets and the involved RRC state tran-
sitions, which all incur mobile network signalling. The metric can be extended
to capture more details, e.g. the number and type of signalling messages ex-
changed for a speci�c state transition, as discussed in Section 2.2.1. Since we
will use this metric for a more qualitative analysis of source tra�c produced
by smart-phone applications, we stick to the de�nition above allowing for an
illustrative understanding of the numerical results.

Next, we model the PD of the UE due to the UMTS transmission unit. We
assume three power levels PDS , one for every state s and calculate the average
power drain PD based on the state distribution, which in turn depends on the
packet arrival process A. We obtain

PD =
∑
s∈S

PDs · P (S = s) (2.6)

with S = {RRC_Idle,CELL_FACH,CELL_DCH} for the Three State
Model or S = {RRC_Idle,CELL_DCH} if the Two State Model is con-
sidered. This is a user-centric metric and gives insights into how e�cient the
transmission process uses the battery.

2.3.2 Impact of Analytic Tra�ic Characteristics

First, we validate our performance model by comparing the analytical results
with simulations based on measured packet traces of two real smartphone ap-
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plications. Then, we investigate the impact of tra�c patterns on signalling load
and power drain and derive high-level implications of the model.

Validation of Analytic Model

In order to assess the applicability of our performance model, we �rst have
to check whether real-world application traces can be modelled as a renewal
process, which was our main assumption for the model. We use the Lewis-
Robinson-Test [45], which is a hypothesis test with null hypothesis H0 that the
tested process is a renewal process. To this end, we use exemplary measure-
ments, obtained with the testbed introduced in Section 2.2.1, for two di�erent
types of applications: Twitter and K9-Mail. According to this test, the null hy-
pothesis cannot be rejected for both of our packet traces at a signi�cance level
of 95 %. Although this assumption may not be true for all applications, our re-
sults show that at least the considered applications can be modelled as a renewal
process.

Next, we compare our analytical performance results with RRC protocol sim-
ulations using measured application and Transmission Control Protocol (TCP)
traces which are described in more detail in Section 2.2.2. In order to produce
analytical results that correspond to the real applications, we extract the empiri-
cal distributions of the inter-packet timeA from the traces for both applications
and use these distributions as input for Equation 2.3.1.

In Figure 2.15 we compare the accuracy of the results obtained by the pre-
sented method to the values obtained from simulations for the two measured
applications and both considered metrics. We observe that the accuracy for both
power drain PD and SI is very high. In Figure 2.15a the results for both the
Mail and Twitter application obtained by the model completely align with the
signalling intensity obtained by the simulation. The comparison of analytical
results for the power drain to the simulation in Figure 2.15b leads to the same
conclusions as for the signalling intensity.
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Figure 2.15: Comparison of the performance model with a 3G simulation for the
Three State Scenario. Lines overlap due to a high goodness of �t.
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Impact of Tra�ic Pa�erns on Signalling Intensity

First, we focus on the signalling intensity SI of tra�c patterns and check the
impact of the average inter-packet time E[A] and the timer con�guration. The
signalling intensity SI , i.e., the average number of state transitions required for
the transmission of a single packet, is an abstract measure for the signalling load
produced by a speci�c tra�c pattern.

Impact of the Average Inter-Packet Time E[A] Some applications, for
example those downloading or streaming of videos, send and receive large
amounts of data within short time frames. In contrast, other applications, e.g.
social network clients send and receive only small amounts of data every few
minutes over the time span of some hours or days.

In this section we study the impact of average inter-packet times E[A] and
the burstiness of the tra�c pattern, i.e., the coe�cient of variation

cA =

√
Var[A]

E[A]

on the signalling load. For that purpose, we use the simple Two State Model,
set the timer TDCH = 10 s, consider only the �rst and the second moment of
the inter-packet time A, and assume that A follows a log-normal distribution,
where both moments can be varied independently.

In Figure 2.16, we vary the average inter-packet time E[A] in six orders of
magnitude and investigate the resulting signalling intensity SI for di�erent co-
e�cients of variation cA. We observe that cA has no impact onSI for very small
inter-packet times E[A] < 1× 10−1 s. Here, the UE stays in state CELL_DCH
for the complete time since no inter-packet times A > TDCH occur. In addi-
tion, the impact of cA is small for very large values of E[A] > 1× 103 s. In
this case, the UE switches to state CELL_DCH and back to state RRC_Idle
for the transmission of every packet. Therefore, the signalling intensity SI ap-
proaches the value 2. For values in between these two extremes, the coe�cient
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Figure 2.16: Signalling intensity SI for di�erent tra�c patterns considering the Two
State Model with TDCH = 10 s for di�erent tra�c patterns.

of variation cA has a considerable impact on the signalling intensity SI . More
periodic tra�c, i.e. smaller values of cA, results in an increase of SI from 0 to 2
very sharp at the value E[A] = TDCH, while this increase is smoother for larger
values of cA. This is due to the fact that for nearly periodic tra�c it is crucial
whether the timer value TDCH is smaller or larger than E[A]. For larger values
of cA this dependency is weaker.

Impact of the Coe�icient of Variation of the Inter-Packet Time cA Next,
we focus on the impact of the timer value TDCH with respect to the burstiness
of the tra�c. We use the same setting as before, but �x the average inter-packet
time E[A] = 4 s. While there are di�erences in E[A] amongst users in real
world settings, measurement studies have revealed that across all users 95 % of
the packets are received or transmitted within 4.5 s of the previous packet [46].
Therefore, the order of magnitude of E[A] = 4 s is of practical relevance.
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Figure 2.17: Signalling intensity SI for the Two State Model w.r.t. di�erent timeout
values TDCH and coe�cient of variations cA.

The signalling intensity SI is shown in Figure 2.17 with respect to the timer
value TDCH and the burstiness cA of the tra�c pattern. Obviously, larger timers
lead to less frequent state transitions and therefore to less signalling load. In
addition we observe that the impact of the timer is crucial for nearly peri-
odic tra�c. If the average inter-packet time for nearly periodic tra�c is larger
than the timer, then every packet transmission involves a state transitions from
RRC_Idle to CELL_DCH and a transition back. In contrast, no transitions
are required if the average inter-packet time is shorter than the timer. With in-
creasing values of cA the impact of the timer is reduced. This means that for
bursty tra�c patterns the timer value is of less importance with respect to the
generated signalling load.
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Figure 2.18: Power drain PD for the Two State Model w.r.t. di�erent timeout values
TDCH and coe�cient of variations cA.

Impact of Tra�ic Pa�erns on Power Drain of the UE

In this section we study the impact of the tra�c patterns on the power drainPD
of the UE. This metric quanti�es how resource-e�cient speci�c tra�c patterns
and timer con�gurations are for the battery of the UE.

For the power drain in the di�erent RRC states, we use the same radio network
power drain used in Section 2.2.1. We investigate the impact of the average inter-
packet time, the impact of the timer con�guration and validate our model with
simulations. In Section 2.3.2 we have seen that no state transitions occur for
very small and very large average inter-packet times E[A]. This was due to the
fact that for very small values the UE is continuously in state RRC_Idle and
for large values it switches to state CELL_DCH for every packet. Thus, tra�c
patterns with very small and very large inter-packet times E[A] have also no
impact on the power drain of the UE regardless of the burstyness represented
by the coe�cient of variation cA.
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To study the impact of the timer con�guration TDCH, we use the same set-
ting as for the signalling load: log-normal distribution of inter-packet time A,
E[A] = 4 s in the Two State Model. The numerical values shown in Figure 2.18
indicate that longer timeouts lead to a higher power drain PD. This is reason-
able since the UE stays longer in the power intensive CELL_DCH state in these
cases. However, we observe that the burstiness of the tra�c pattern has also a
considerable impact on the power drain PD. For example, for TDCH = 15 s, the
power drain is only 400 mW for very bursty tra�c with cA = 10, while it is
almost 800 mW for less bursty tra�c with a cA = 1. The reason is that bursty
tra�c patterns send a lot of tra�c during short periods when the UE is in state
CELL_DCH anyway. During the following o�-periods that UE can save power
in RRC_Idle state. Hence, we conclude that longer timeouts and smaller co-
e�cients of variation cA = 1, i.e. more periodic and less bursty tra�c, result in
a higher power drain of the UE.

Tradeo�: Energy Consumption vs. Signalling Load

In Figure 2.19, we show the e�ect of network parameter optimisation using the
timer TDCH on tra�c patterns with varying coe�cient of variation.

We see that optimisations may decrease signalling by large amounts while
only having very little impact on power drain for one speci�c kind of tra�c.
The same timer setting could increase the power drain for another kind of tra�c
while only o�ering little bene�t with regard to the generated signalling inten-
sity.

2.4 Lessons Learned

In this chapter we studied the impact of smartphone application tra�c on mo-
bile communication networks. We considered three stakeholders interacting in
the mobile network. The mobile network operator is interested in preventing so
called signalling storms, where network components performance is degraded
due to high signalling load caused by applications generating network tra�c
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Figure 2.19: Trade-o� between PD and SI for the Two State Model.

from users’ UEs. The hardware vendor is interested in satisfying customers by
providing a long battery lifetime for the UE, i.e. reducing power drain. The ap-
plication developer is interested in increasing QoE for the applications user. Each
of the stakeholders can in�uence the mobile network, by manipulating the pa-
rameters under its control. The network operator can manipulate RRC timers,
increasing the time a smartphone stays connected to the network if no data
is sent or received, decreasing the number of connections being established or
severed and thus the signalling load in the network. The hardware vendor can
implement proprietary RRC protocol extensions, skipping power intensive con-
nection states in order to reduce power drain. The application developer can
shorten update intervals, in order to provide more up to date events and in-
crease QoE. However, each of the parameters under the control of the individual
stakeholders in�uence the KPIs of the other stakeholders.

This chapter provides a two-pronged approach to analysing the impact of
changes by individual stakeholders on the overall network.
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First, we provided an algorithm to derive RRC state transitions from tra�c
measurements of already deployed or prototyped applications. While propri-
etary mechanisms exist to directly measure RRC state transitions, due to the
high price they are usually out of reach for application developers, preventing
them from evaluating the impact of their applications on the network. Based on
this algorithm we analyse four popular smartphone applications, and �nd that
while it is possible to �nd a viable tradeo� between signalling load and power
drain for single applications, no such tradeo� exists if multiple applications op-
erating in the network at the same time are considered. For example, for the
considered Twitter application, increasing the network timer TDCH from 10 s to
11 s would result in a decrease of signalling by 40 %, while only resulting in an
increase of power drain of 6 %. However, if the Aupeo application is running in
the same network optimised for the Twitter application, this change results in
no reduction of signalling load and an increased power drain of 5 %.

Furthermore, we show that network timer optimisation, a practice where net-
work operators manipulate RRC timers in order to reduce signalling load, incen-
tivises users to enable proprietary fast dormancy algorithms, resulting in a net
increase of signalling load. For example, if a network operator increases theTDCH

network timer from 4 s to 8 s, in order to reduce the signalling frequency caused
by the Angry Birds application by 67 %, this results in an increased power drain
at the user’s UE of 341 %. If the user enables the fast dormancy option of the
UE, the power drain is decreased by 27 %; however, this increases the signalling
frequency above the original value before the recon�guration of the network
operator.

Second, we propose an analytical model to derive the KPIs from analytical
or empirical tra�c distributions, in order to evaluate the impact of applications
that do not yet exist or classes of applications de�ned by a common tra�c char-
acteristics. Our results show that di�erent access patterns have a considerable
impact on the required resources of the mobile phone and the network. We
identi�ed bursty tra�c patterns as particularly resource-e�cient with respect
to power drain and signalling load. In contrast, nearly periodic tra�c is likely to
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cause signalling overload due to frequent connection re-establishments, espe-
cially when the connection timeout is slightly below the inter-packet time. This
can be observed on the example of a TDCH timer of 10 s. Here, the coe�cient of
variation has no impact on the signalling load for very small inter-packet times
E[A] < 1× 10−1 s or very large inter-packet times E[A] > 1× 103 s. For
example, for a mean inter-arrival time of E[A] = 11.5 seconds, an increase of
coe�cient of variation from 0.5 to 5.0 can decrease the signalling load by 53 %.

Concluding from this chapter, we see that in mobile networks many di�erent
players, metrics, and tradeo�s exist. We highlighted one example of such a trade-
o�, i.e. signalling load vs. power drain and discussed the in�uence of the current
optimisation parameters, the network timers, on another. However, many addi-
tional tradeo�s exist. For example, the mobile operator has to balance the use of
radio resources with the number of generated signalling frequencies. Further-
more, application providers seek to improve the user experience which usually
result in a higher frequency of network polls, creating additional signalling traf-
�c. The high number of tradeo�s and involved actors in this optimisation prob-
lem indicate that the current optimisation technique used by operators is no
longer su�cient.

Approaches like Economic Tra�c Management [47] or Design for Tussle [48]
could be applied to �nd an acceptable tradeo� for all parties. In Economic Traf-
�c Management all participating entities share information in order to enable
collaboration. This collaboration allows for a joint optimisation of the tradeo�.
Design for Tussle aims to resolve tussles at run time, instead instead of design
time. This prevents the case that one actor has full control over the optimisation
problem, which would likely result in the actor choosing a tradeo� only in its
favour, ignoring all other participants. One example of an actor providing infor-
mation for another in order to optimise the total system would be a UE vendor
providing interfaces for application developers to use when sending data. These
interfaces would schedule data to be transmitted in such a way that signalling
load and power drain would be reduced, if the application’s requirements allow
for it. Until such interfaces exist, application developers could take the e�ect
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of the tra�c their applications produce both on the UE and the network into
account, for example using the algorithms proposed in this chapter.
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Networks

While the previous chapter focussed on the network and the impact of appli-
cation tra�c on hardware vendors, network operators and users, this chapter
shifts focus on the application behaviour themselves. The Internet supports a
multitude of di�erent applications, including video streaming services, online
gaming, �le storage services, cloud o�ce solutions, etcetera. In contrast to ap-
plications of earlier generations, todays’ services are not standardised or un-
der control by network operators but rather the result of free enterprise and
entrepreneurship. The interaction of such applications with the network and
other players, e.g. cloud providers, are usually not considered by the application
developers. Deploying such applications can impact other stakeholders, e.g. Sig-
nalling Storms interfering with the operation of mobile networks as discussed in
Section 2.2. As this is of no consequence to application developers, they have no
incentive to investigate the impact of their applications on other stakeholders.

In this chapter, we study the impact of two of the most prominent application
types: Video Streaming and File Synchronisation, chosen due to their impact on
global tra�c and frequency of use. While in the last chapter we were able to
rely on standard documents to model the systems under study, this option is no
longer available when considering modern applications. Thus, we perform mea-
surements or take studies of other researchers into account in order to obtain
knowledge of both the systems under study as well as the related stakeholders.

Similar to Chapter 2, we identify a set of involved stakeholders and their
respective key performance indicators and derive corresponding metrics, as
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Figure 3.1: Interactions between considered stakeholders in the application scenar-
ios.

shown in Figure 3.1. First, we consider the application provider. In the case of
the Video Streaming scenario, this role is the part of the video provider. We con-
sider the video provider to be interested in two performance indicators: a) user
satisfaction, realised by a QoE metric, b) cost reduction in compute and network
infrastructure. In the case of the File Synchronisation scenario, we consider the
application operator to be interested in user satisfaction, again realised as a QoE
metric, the mean time to synchronisation. Second, we consider the network op-
erator. As in the last chapter, they are interested in reducing load on the network
infrastructure, in order to prevent cases similar to Signalling Storms. We mea-
sure this key performance indicator by considering the number of connections
to the mobile network required to complete the synchronisation operation. Sim-
ilarly to Chapter 2, we assume that the user is interested in both a high QoE as
well long battery life for the used device, sometimes also considered a QoE met-
ric [37], represented by the energy consumption metric.

The contribution of this chapter is threefold:

a) We provide models for video transmission mechanisms and perform a
performance evaluation and tradeo� analysis considering metrics rele-
vant to network operators, users, and video providers.
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b) We provide a QoE model for video streaming allowing for the analysis of
heterogeneous user pro�les and use this model in order to evaluate the
impact of user preference on video streaming scenarios.

c) We propose a model for cloud �le synchronisation and evaluate a set of
scheduling mechanisms regarding impact of considered metrics for all
stakeholders.

The content from this chapter has been published in [9, 11, 14]. In Section 3.1
we discuss the current state of the art regarding video transmission mecha-
nisms and QoE studies. Then, in Section 3.2 we discuss tradeo�s between di�er-
ent video transmission mechanisms, regarding the considered metrics. In Sec-
tion 3.3 we study the impact of user pro�les on the QoE experienced during
video streaming. In Section 3.4 we consider the impact of di�erent �le synchro-
nisation scheduling algorithms on the relevant stakeholders. Finally, we discuss
lessons learned in Section 3.5.

3.1 Background and Related Work

This section �rst introduces the current state of the art of video transmission
mechanisms in the network in Section 3.1.1. Then, we shift focus to the user in
Section 3.1.2. We discuss related work regarding QoE for video playback includ-
ing QoE modeling approaches, user pro�les, and QoE management mechanisms.

3.1.1 Video Streaming Mechanisms

In order to transfer video content from the content providers to the users over
the Internet, multiple solutions exist [49]. The most basic approach, Download,
obtains the complete video at once, playing back any available content as re-
quired. Due to the nature of Live video transmissions it is only possible to send
the currently available content. Furthermore, introducing delay into the live-
stream should be avoided as it reduces the timeliness of the video. There exist
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di�erent approaches for Streaming video content to a user. In server-based solu-
tions, the streaming server controls the transmission of content. One example of
such a server based approach is the Real-Time Streaming Protocol (RTSP) which
was widely discussed as a standardised solution for mobile video streaming [50].

In the more recent past, client-based approaches were discussed. Here the
client side controls the download and playback of content. The authors of [51]
study the QoE of HTTP Adaptive Streaming (HAS) approaches in LTE net-
works. They highlight the di�erences to existing server-side approaches and
suggest the study of cross-layer optimisation approaches in order to improve
the QoE. One approach to deliver HAS is Dynamic Adaptive Streaming over
HTTP (DASH), which enables video streaming over Hyper Text Transfer Pro-
tocol (HTTP) [52].

The increasing popularity of video streaming has driven intensive research
activities on how to optimise the video delivery to the end user concerning QoE.
In particular, HTTP streaming is deployed by large video service delivery plat-
forms, e.g. YouTube or Net�ix and represents the major video delivery solution,
especially for video-on-demand.

In HTTP video streaming, video data is transmitted to the client via HTTP
and stored in an application bu�er. After the download of a su�cient amount of
data q, which is in the order of a few video seconds, e.g. for YouTube, the video
play out starts at the client. As soon as the video bu�er falls below a certain
threshold p, the video stalls [53]. In the remainder of this work, we refer to this
threshold policy as pq-policy.

3.1.2 Video �ality of Experience for HTTP Adaptive
Streaming

The goal of HAS is to adapt the video to the current network conditions. The
video adaptation may be realised by changing the frame rate, resolution, or
quantisation of the video. Although the adaptation results in lower quality, the
major bene�ts compared to classical HTTP video streaming is the reduction of
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stalling events. The authors of [54] survey QoE for HTTP adaptive streaming
and give an overview of recent developments. Besides improved quality adap-
tation mechanisms [55], other approaches aim for example at optimising the
segmentation of the videos [56].

Subjective studies showed that users prefer initial delays instead of stalling
events [57]. An analytical framework for the dimensioning of appropriate video
bu�ers for TCP streaming shows that the initial bu�ering delay and the size
of the bu�er should be as small as possible, yet large enough to avoid bu�er
under�ows [58]. A concrete approach [59] determines the optimal, i.e. minimal,
initial delay at the client. During this time, the video bu�er is �lled such that no
stalling occurs. Two bu�er size adaptation policies are proposed by [60] which
are evaluated by means of a �uid model in terms of freezing probability.

The authors of [61] evaluate the impact of network dynamics and QoS pro-
vision on users video quality. An analytical framework models the playback
bu�er at the receiver as aGI/GI/1 queue, however no pq-policy is considered.
Further, video quality is considered in terms of the start-up delay or �uency of
video playback. Based on that, adaptive play-out bu�er management schemes
are proposed.

Considering both the video content as well as the available resources by using
a proxy has been suggested to improve the users QoE [62] for HAS. In [63]
the authors suggest the use of a caching strategy, downloading video content
according to a user’s viewing history and network conditions.

So far, no queueing system with pq-policy is applied to analyse QoE for HTTP
video streaming and to dimension video bu�ers accordingly. In queueing theory,
the related threshold policy is denoted asN -policy introduced by [64] with p =

0 and q = N ; the server stops whenever the system becomes empty and resumes
service when the number of waiting customers in the system, i.e. the video bu�er
in our case, reaches a threshold valueN . Section 3.3.1 will show that in contrast
to the transient phase, in the steady state q has no in�uence on the performance.

Various researchers analysed theN -policy. In [65] the stationary joint distri-
bution of queue length and the server’s status for the GI/M/1 is derived. The
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authors of [66] obtain the steady state probability distribution of the number of
customers in a �nite system for theM/GI/1 system withN -policy. A transient
solution of the M/M/1 queue under pq-policy is derived by [67].

Results from queueing theory may be applied to dimensioning the video
bu�er for HTTP streaming in order to optimise QoE. However, the approaches
mentioned above are either considering QoS parameters only or they apply QoE
models based on MOSs of subjects. However, di�erences in how QoE degra-
dations are observed by individual users are not considered. In Section 3.3 we
propose an analytical model which allows to investigate individual user pro�les
based on a parametrised QoE model.

Most user studies on HTTP video streaming quantify and report QoE in terms
of MOS, e.g. [53]. However, there is a diversity in user perception which is elim-
inated by the process of averaging subjective ratings. A relationship between
the MOS and the second moment of the user ratings is formulated as Standard
deviation of Opinion Scores (SOS) hypothesis and a standard deviation for par-
ticular MOS values is observed up to 0.8 for video QoE [68]. Thus, user percep-
tions may �uctuate between good and poor quality under the same conditions.
The authors observe di�erent user types, denoted as hectic, regular, insensitive
depending on their sensitivity to QoE degradations.

Various resource management mechanisms to improve QoE for YouTube
have been proposed in the literature, e.g. in Wi-Fi mesh networks [69] or us-
ing Software-De�ned Networking (SDN) [70]. SDN enhances the interaction
between networks and applications and allows a more dynamic and demand-
based allocation of network resources which is demonstrated for YouTube video
streaming. To overcome resource limitations in the content delivery infrastruc-
ture, [71] proposes client-based local caching, Peer to Peer (P2P)-based distri-
bution, and proxy caching which reduces network tra�c signi�cantly and can
therefore avoid QoE degradations.
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3.2 Trade-O�s for Multiple Stakeholders in LTE
Video Transmission

The delivery of video content in a mobile scenario is one of the major use cases
for the LTE mobile communication technology. While the use of LTE a�ords suf-
�cient bandwidth to enable video playback in high de�nition, it also introduces
new challenges for all stakeholders. Similarly to the applications discussed in
Chapter 2, signalling tra�c induced by the video transmission may pose a chal-
lenge for mobile network operators, and power drain remains an open issue
for hardware vendors. Additionally, mobile playback can cause new problems
for video providers. Users watching video on the go may be prone to higher
rates of interrupted video playback, either due to insu�cient network coverage
or social interactions. If the video transmission mechanism has transmitted too
much video content in advance, this transmitted data is “wasted”, from the per-
spective of the video provider, as this consumes both network and computation
resources but results in no bene�t for the customer.

In Section 3.2.1 we present models for both video playback and the mobile net-
work. Then, in Section 3.2.2 we perform a simulative study using the proposed
model in order to evaluate the performance of the studied video transmission
mechanisms.

3.2.1 Model of LTE Video Transmission

In this section, we present modeling assumptions used in the remainder of this
section. Then, we propose a system model for both video transmission mecha-
nisms and the considered LTE network. Finally, we introduce performance met-
rics for each of the considered stakeholders.

Transmission Model Assumptions

Maintaining a high QoE for their viewers is an important goal for operators
of video platforms. The authors of [72] �nd that the QoE is mainly in�uenced
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Figure 3.2: In�uence of number of stalling events and stalling length on QoE [72].

by the number of stalling events and the stalling event duration. As shown in
Figure 3.2, the QoE model, where 5 is the highest possible MOS and 1 the low-
est, rapidly decreases if the number or duration of stalling events increases. The
provided QoE model between stalling and QoE shows that stalling signi�cantly
worsens QoE. Thus, an operator has to avoid stalling at any cost. As a conse-
quence, we only consider scenarios where no stalling occur, i.e. the delivery
bandwidth is larger than the minimum video bit rate to ensure a smooth video
play-out. Furthermore, in Section 3.3 we will study the impact of available net-
work load and user preference on QoE.

Furthermore, we assume that all videos are played back with a constant bit
rate bR. Thus, each second of the video, independently of its content, requires
the same number of bits.

We consider video transmission between a server and a user equipped with
an LTE enabled smartphone. The available bandwidth of a UE depends on many
factors, e.g. location, number of users in the cell, activity of other users, and
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line of sight. To simplify the evaluation scenarios we assume that a constant
maximum bandwidth bW is provided to the user. We assume that the bottleneck
of the connection is the air interface, thus the full available bandwidth bW is
used for the video download, which prevents stalling.

Although the assumptions of constant bit rate and bandwidth do not hold in a
real environment, the purpose of considering such assumptions is twofold. First,
they are useful in order to analyse the performance of the discussed mechanisms
in optimal conditions without any other e�ects that could disturb the results
and, second, they can serve as a baseline for comparison with �tted random
variables for both bandwidth and bit rate.

Considered Video Tra�ic Model

In our study we focus on four transmission mechanisms which are currently in
use. Figure 3.3b shows the consumed bandwidth bd(t) and the available seconds
of video for playback tu(t) for a video for all considered transmission mecha-
nisms at all points of time t. Furthermore, for the remainder of this chapter, we
refer to the amount of video in seconds already played back at a point in time t
as tp(t).

a) Download The Download mechanism can be used if a user wants to
watch a pre-encoded video. Thus, the complete video is ready to be trans-
mitted as soon as the user starts the transmission. The required time of
the download is only bounded by the bandwidth available in the network.

b) Live Video watched during Live transmissions is encoded as it is
recorded. Thus, the bandwidth used to transmit the video is always lim-
ited to the video bit rate bR.

c) Provisioning In [73] the authors show the in�uence of the video de-
mand, i.e. the ratio of available bandwidth and required video bandwidth,
on the stalling frequency. In order to reduce stalling, the bandwidth used
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to download the video should be provisioned so that the available band-
width exceeds the video bandwidth by a high enough factor. In the Pro-
visioning mechanism, the download bandwidth is chosen so no stalling
occurs. In order to reduce stalling and improve the QoE of a video, the
available bandwidth should be at least 120 % of the video bit rate bR [74].

d) Streaming For the Streaming mechanism the complete video is en-
coded in advance, allowing for the full bandwidth of the UE being used
for download. The video is downloaded with full bandwidth for a pre-
bu�ering time σ in order to guarantee a stalling-free start of the playback.
After σ s the download stops and the playback begins. The download is
only resumed if the available seconds of video for playback are below
a stop threshold θ. The download continues until the bu�er contains a
threshold size Θ, resulting in a total bu�er length of θ + Θ s. This is re-
peated until the download is completed.

A video provider will also consider its bandwidth to be a resource to be con-
served. However, when comparing the bandwidth available in LTE with that of
a wired network, we can assume the air interface to be the bottleneck. Further-
more, not considering bandwidth as an optimisation target of the video provider
simpli�es the study as it removes one additional metric.

LTE Network Model for Video Transmission

In order to quantify the energy consumption during wireless transmission, we
model the LTE RRC behaviour de�ned in [28]. To reduce the energy consump-
tion, the concept of Discontinuous Reception (DRX) has been introduced in [75].
The authors of [76] provide measurements of important RRC and DRX param-
eters which are used in the following model and are reproduced in Table 3.1.

The RRC protocol for LTE consists of two states, as shown in Figure 3.4. In
RRC_Idle state, the UE is in DRX mode. Here, the UE monitors the Physical
Downlink Control Channel (PDCCH) forT Idle

ON in each DRX interval of duration
T Idle
DRX . The time of a promotion to the RRC_Connected state is given by
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Full name Symbol Measured value
RRC_Connected On duration timer TON 1 ms
DRX inactivity timer TI 100 ms
Short DRX duration timer TS 20 ms
Long DRX duration timer TL 40 ms
RRC_Connected timeout TIdle 11.576 s
RRC_Idle On duration timer T Idle

ON 43 ms
RRC_Idle DRX duration timer T Idle

DRX 1.28 s
Promotion delay DP 260 ms

Table 3.1: Considered RRC and DRX parameters [76].

RRC_Idle

RRC_Connected

DRX

Long DRXContinuous 
reception

Short DRX

TIdle

TS TI

DataTimer

Figure 3.4: Considered LTE RRC model.
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the promotion delay DP and occurs as soon as a packet is sent or received. If
a packet is sent or received while in RRC_Connected, including the initial
packet which triggered the promotion toRRC_Connected, the timers TI and
TIdle are started. Until the TI timer expires, the UE is in Continuous Reception
(CRX) mode. After the TIdle timer expires, the UE demotes to RRC_Idle.
Upon expiration of the TI timer, the UE enters Short DRX. Here, the TS timer
is started and the UE monitors PDCCH for TON. If a packet is sent or received
while in Short DRX, CRX begins and the TS timer is disabled. Once the TS

timer expires, Long DRX is entered and TL is started, again the UE monitors
PDCCH for TON. This is repeated until a packet is sent or received and the CRX
state is entered or until the TIdle timer expires and RRC_Idle is entered.

We give the download bandwidth at any time t as bd(t), as shown in Fig-
ure 3.3a. Furthermore, we denote the length of the video already downloaded at
any time t as

td(t) =
1

bR

∫ t

τ=0

bd(τ)dτ. (3.1)

Evaluation Metrics for Smartphone Energy Consumption, Wasted
Tra�ic, and Connection Count

Each of the stakeholders is interested in di�erent KPIs, from which we derive
a set of metrics considered during the performance evaluation of the network
and video playback model.

Energy Consumption We calculate the power drain of the UE due to wire-
less transmission at any given moment using the UE’s current state and the
bandwidth in use and aggregate it to the UE’s energy consumption during the
duration of the video playback. We only consider the energy consumption due
to wireless transmission, as it is an o�set to the energy consumption caused by
the playback of the video. The video playback itself is una�ected by the choice
of transmission mechanism. Thus, the selected transmission mechanism only
in�uences the energy consumption of the wireless transmission. In [76], the au-
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Description Power drain
RRC_Idle (base) 11.4 mW
DRX during RRC_Idle 594.3 mW
Promotion 1210.7 mW
RRC_Connected (base) 1060.0 mW
DRX during Short DRX 1680.2 mW
DRX during Long DRX 1680.1 mW
α 51.97 mW Mbit−1

β 1288.04 mW

Table 3.2: Power consumption per system state [76].

thors provided measurements for the energy consumption of each state, repro-
duced in Table 3.2, if the UE is receiving no data. Furthermore, an approximation
of the power drain at time t if a download occurs is given as

P (t) = α · bd(t) + β.

In order to compute the overall energy consumptionE during the transmission
and playback of the video, we aggregate the power consumed in each state in
which the UE is not receiving and the power consumed during receiving while
considering the used bandwidth at each moment.

Wasted Tra�ic If a user stops watching a video currently being downloaded
before its end, this leads to wasted tra�c as the data has been already pre-
bu�ered at the UE. This metric impacts the video provider, but is in�uenced
by the user aborting the video. This decision can not be in�uenced by the video
provider, thus a user model has to be assumed by the video provider in order to
provide a performance analysis of the di�erent video delivery mechanisms.

Considering that transmitting data to a smartphone consumes both compute
as well as network resources, a transmission mechanism should attempt to re-
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Figure 3.5: Considered user model abort distributions.

duce the amount of video which has been transmitted but is not yet watched at
any time t as

tu(t) = td(t)− tp(t).

If the user stops the playback according to a random variableAwith Probability
Density Function (PDF) a, we can give the wasted tra�cW as the expected value
of tu under A.

W = E [tu] =

∫ ∞
t=0

a(t)tu(t)dt. (3.2)

High values ofW indicate that server and network resources are used for tra�c
which is not watched by the user.

We consider three types of user behaviour, shown in Figure 3.5, each mod-
elled by a random variable describing the abort time, i.e. the time when the user
stops watching a video. First we consider a uniform distributed user abort model,
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where the user can abort the video at any time. Due to the uniform distribution
of the abort time and the length of the video, i.e. 1600 s, the mean time of stop
occurs at 800 s.

Second, we consider a type of user who watches a part of the video before de-
ciding if the video is stopped. After the main part of the video has been watched,
the user is again more likely to abort. To model this kind of behaviour we use
a truncated normal distribution over the playtime of the video, assuming a sym-
metry of the abort density at the half-way point of the video. We use the same
mean and specify a standard deviation of 400 s.

Finally, we assume that the user is more likely to abort the video at the be-
ginning. We model this user behaviour using a truncated log-normal distribution
with the same mean and a standard deviation of 0.8 s for the normal distribution
at the basis of the log-normal distribution.

Note that the wasted tra�c W is in�uenced by the user abort model, due to
the fact that wasted tra�c only occurs if a user aborts a video. Even though
this may only a�ect a subset of all watched videos, it still consumes unneces-
sary resources and should be considered by the video provider. However, the
download of videos always consumes energy and the largest amount of energy
is consumed if the user does not abort the video. Thus, we optimise for the worst
case energy consumption. Any other optimisation target would o�er incentives
to users to abort watching the video early, resulting in additional wasted tra�c
for the provider.

Connection Count A large portion of signalling messages caused by data
transmission are generated if the UE switches between connected and discon-
nected state [28]. Thus, counting the number of connections C triggered pro-
vides an easy way to quantify the generated signalling during the video trans-
mission.
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3.2.2 Evaluation of Energy Consumption, Wasted Tra�ic,
and Connection Count

In this section we study the metrics introduced in Section 3.2.1 on the di�erent
transmission mechanisms.

First, we study the impact of the considered transmission mechanisms on the
energy consumption and the wasted tra�c. Then, we consider the impact of
the connection count for the Streaming mechanisms and varying values of the
parameters stop threshold θ and threshold size Θ in more detail.

We consider a video of l = 1600 s length which is viewed on a UE with LTE
access. The median of available downlink throughput in current LTE networks
is bW = 12.74 Mbit s−1 [76]. A wide set of video bit rates between 1 Mbit s−1

and 50 Mbit s−1 is in use1. In order to prevent stalling, we consider bit rates
between 1 Mbit s−1 to 10 Mbit s−1, staying below the available network band-
width. For the Streaming mechanism, a stop threshold of θ = 4 s and a threshold
size of Θ = 32 s were selected. Furthermore, we specify a pre-bu�ering duration
of σ = 5 s.

We conduct our study using deterministic discrete event simulation which
uses no random variables. The wasted tra�c is obtained analytically using the
abort behaviour model. Thus, all results are exact under the previously stated
assumptions.

Energy Consumption

First, we study the in�uence of both video bit rate bR as well as the selected
download mechanism on energy consumption in Figure 3.6.

We consider the Download mechanism and observe that it consumes the least
amount of energy. Here the video is downloaded with full bandwidth, as seen
in Figure 3.3, resulting in a very short energy intensive download phase and a
longer energy playback phase which consumes less energy. For the Live mecha-

1https://support.google.com/youtube/answer/1722171?hl=en, Accessed:
November, 21st 2015
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Figure 3.6: In�uence of bit rate bR and selected download mechanism on energy
consumption E.

nism we observe the opposite, i.e. the highest energy consumption for all band-
widths. If this mechanism is used, the used bandwidth equals the video bit rate
bR. Thus, the download requires the same amount of time as the playback, re-
sulting in the highest possible energy consumptionE. The Provisioning method
uses a higher bandwidth, thus reducing the overall download time. This reduced
download time decreases the energy consumptionE when compared to the Live
mechanism, even though the bandwidth used for downloading is increased to
120 %. For the Streaming mechanism we observe an energy consumption E

slightly higher than the Download mechanism. As the bit rate bR of the video
increases, the energy consumption E increases as well. This is due to the fact
that higher video bit rates bR require larger downloads. For video bit rates bR
approaching the available bandwidth the Streaming mechanism degenerates to
the Live mechanism, as no pre-bu�ering is possible. We conclude that the Down-
load and Streaming mechanisms outperform Live and Provisioning with regard
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Figure 3.7: In�uence of bit rate bR, download mechanism and user model on the
mean wasted tra�cW . Download, Live, and Provisioning mechanisms
result in equal connection counts.

to energy consumption.

Wasted Tra�ic

Next, we consider the wasted tra�c W as a metric of the transmission mecha-
nism quality. If a user completely watches a video, no tra�c is wasted, as all data
downloaded is used during playback. Thus, we consider only the cases where a
user stops the playback before the video is �nished.

In Figure 3.7 we study the mean wasted tra�c W for di�erent video bit
rates bR. We consider the di�erent transmission mechanisms introduced in Sec-
tion 3.3 as well as the previously introduced user models. We observe that the
choice of user model has no signi�cant impact on the mean wasted tra�cW . For
the Download mechanism, the amount of mean wasted tra�c W increases up
to a video bit rate bR of 6 Mbit s−1, then the mean wasted tra�c W decreases
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as only video data which has been pre-bu�ered can be lost if the user aborts the
video. As we assume an available bandwidth of 12.74 Mbit s−1, the bandwidth
available for pre-bu�ering decreases as the bit rate bR increases, resulting in
lower amounts of mean wasted tra�c W for high video bit rates bR. For the
Live mechanism, we see that the wasted tra�c for all user models is very low,
but wasted tra�c exists. This is due to the tra�c already sent by the server while
the UE is still waiting for promotion from RRC_Idle to RRC_Connected,
i.e. a short pre-bu�ering phase exists. As the bandwidth increases with the video
bit rate bR, the mean wasted tra�c W increases as well. Next, we consider the
Provisioning approach and see an increase of mean wasted tra�c W as the
video bit rate bR increases, due to the fact that the bandwidth used for con-
tinuous download is a factor of the video bit rate bR. A higher video bit rate
bR results in the download of the video being completed earlier, which leads
to more mean wasted tra�c W . Similar results can be seen for the Streaming
mechanism, which results in more mean wasted tra�cW than the Live mecha-
nism, but signi�cantly less tra�c than the Provisioning mechanism. This is due
to the fact that if the user aborts, at least the amount of video given by the stop
threshold θ and at most the complete bu�er, given by the stop threshold and the
threshold size are lost. We have observed that the choice of user model results
in no qualitative changes in mean wasted tra�c W . As described in the last
paragraph, the Download and Streaming mechanisms provide best results with
regard to energy consumption. However with regard to wasted tra�c, the Live
and Streaming mechanisms are most suited. Thus, the Streaming mechanism
seems to be a good compromise. The network operator can select a tradeo� be-
tween energy consumption and mean wasted tra�c W as discussed in the next
section. From now on, we only consider the uniformly distributed user model.

Connection Count

The Internet Service Provider (ISP) is interested in reducing the number of con-
nections occurring during video transmission. Thus, we quantify the impact of
the selected video transmission mechanism on the connection count C , which
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Figure 3.8: In�uence of bit rate bR and selected download mechanism on the con-
nection count C .

directly correlates with the occurring signalling.
In Figure 3.8 we study the impact of the di�erent transmission mechanisms

on the number of connections per transmission and thus the amount of gen-
erated signalling. We observe that for the transmission mechanisms download,
live, provisioning the connection count C is constantly one, independent of the
selected bit rate bR. This is due to the fact that in these transmission mechanisms
the video is transmitted in one chunk. For streaming, the connection count C
decreases as the video bit rate bR increases. Here, a connection occurs each time
the bu�er is re�lled. For larger bit rates bR, re�lling the bu�er requires a longer
transmission. As the maximum time of video transmission is upper bounded
by the video length, longer bu�ering phases result in a smaller total amount of
bu�ering phases and thus in a smaller connection count C per video transmis-
sion.

Next, we consider the impact of the stop threshold θ and bu�er size Θ on the
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connection count C caused by the Streaming mechanism. In Figure 3.9 we ob-
serve that while the bu�er size has a signi�cant impact on the connection count
C during a video transmission, the lower bu�er threshold has almost no impact.
For bu�er sizes of 4 s to 8 s, no new connections are started, i.e. no signalling
occurs. This is due to the fact that the connection timeout in UE is con�gured as
11.576 s, as discussed in Section 3.2.1. Thus, for this low bu�er sizes the UE does
not disconnect from the network. Furthermore, we observe that as the bu�er size
increases, the number connection countC decreases. Re�lling larger bu�ers re-
quires, similar to larger bit rates bR, longer transmission times. Thus, due to the
total upper bound on the transmission time, less download phases can occur
during the transmission.

3.2.3 Tradeo� Considerations for Participating
Stakeholders

As shown in Section 3.2.2, the di�erent video transmission mechanisms in�u-
ence the performance of all considered metrics . In this section, we discuss the
relationship of the metrics to each other.

First, we provide a high-level overview over available tradeo�s when select-
ing one of the introduced transmission mechanisms. Then, we study speci�c
tradeo�s for the Streaming mechanisms regarding the considered metrics in
more detail.

Impact of Selected Transmission Mechanism

Based on the observations regarding the metrics energy consumption, wasted
tra�c and signalling, we quantify the impact of the di�erent transmission mech-
anisms on the relevant stakeholders in Table 3.3. From the user’s perspective,
the download mechanism results in the least energy consumption E. However,
the streaming mechanism provides similar results, especially for larger bit rates
bR. For the video provider, the smallest amount of wasted tra�c is generated by
using the live mechanism. Again, the streaming mechanism provides a close sec-
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Metric / Download Live Provisioning StreamingStakeholder
Energy / ++ – - +User
Wasted tra�c / – ++ - +Video provider
Signalling / ++ ++ ++ Parameter
ISP dependant

Table 3.3: Impact of transmission mechanisms on metrics and stakeholder.

ond place. Finally, from the perspective of the ISP, the mechanisms download,
live, and provisioning result in the least amount of signalling. The streaming
mechanism can be con�gured in such a way that only relatively small amounts
of signalling is generated.

Influence of Bu�er Threshold Selection

In this section, we discuss the in�uence of the lower bu�er threshold θ and
the bu�er size Θ on the energy consumption E, the wasted tra�c W and the
connection count C for a uniformly distributed user model as discussed in Fig-
ure 3.2.2. Considered stop thresholds are in the range of 4 s and 32 s. Lower stop
threshold values result in stalling, as the bu�er runs empty while the UE is still
waiting for the promotion delay to be completed and su�cient amount of data
to be downloaded to continue playback. For sake of readability, we show video
bit rates bR for values of 2 Mbit s−1, 6 Mbit s−1 and 10 Mbit s−1 and show the
Pareto-frontier, i.e. the set of all parameter combinations where no other pa-
rameter combination yields better results for both metrics, of evaluated param-
eters as a connected line. If only one parameter combination is Pareto-optimal
is marked using an arrow.

First, we consider the tradeo� between energy consumption E and wasted
tra�c in Figure 3.10. We �nd that, independent of video bit rate bR, the values
found on the Pareto-frontier can be obtained for the smallest considered bu�er
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Figure 3.10: Evaluation of the streaming mechanism for varying video bit rates bR
regarding energy consumption E and mean wasted tra�cW .

threshold. Increasing the bu�er size decreases the energy consumptionE at the
cost of a higher mean wasted tra�c W . Choosing a small lower bu�er thresh-
old θ decreases the minimum amount of mean wasted tra�cW if the user stops
watching a video. Selecting a higher bu�er size Θ increases the mean wasted
tra�c W , as more video can be downloaded and thus wasted if a user stops
watching the video. Increasing the bu�er size Θ decreases the energy consump-
tion E, as a longer bu�er size allows for the video to be downloaded in fewer
bursts and each of them is followed by the TIdle timeout where the UE is still
in the most energy intensive RRC_Connected state. For this tradeo�, we
recommend to always use the smallest possible stop threshold generating no
stalling. The choice of the bu�er size depends on the preference between en-
ergy consumption E and mean wasted tra�c W , with smaller threshold sizes
requiring more energy and higher threshold sizes causing a higher mean wasted
tra�c W .
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Figure 3.11: Evaluation of the streaming mechanism for varying video bit rates bR
regarding energy consumption E and the connection count C .

In Figure 3.11 we consider both the energy consumptionE and the connection
count C . For all considered bit rates, the largest possible lower bu�er threshold
is Pareto-optimal. A tradeo� between energy consumption E and connection
count C is possible by varying the bu�er size. A small bu�er size yields a larger
energy consumption E and a smaller connection count C while for a larger
bu�er size a smaller energy consumption E and a higher connection count C
can be achieved.

Finally, in Figure 3.12 we study the tradeo� between the connection count
C required per video transmission and the mean wasted tra�c W . We observe
that for a bit rate bR of 2 Mbit s−1 con�gurations exist where only one and two
connections are required to transmit the complete video. Here, the amount of
wasted tra�c can be reduced by 82 % by allowing just one more connection
over the whole transmission interval. For video bit rates bR of 6 Mbit s−1 and
10 Mbit s−1 only one Pareto-optimal value exists where the video is transmitted
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Figure 3.12: Evaluation of the streaming mechanism for varying video bit rates bR
regarding the connection count C and the mean wasted tra�cW .

using a single connection.
We �nd that each of the considered tradeo�s provides Pareto-optimal results

and summarise the relevant parameters qualitatively in Table 3.4.
From these results it becomes clear that it is impossible to �nd Pareto-optimal

results for all three tradeo�s. Thus, new decision making policies are required
to �nd optimal results for all participating stakeholders. One such policy is dis-
cussed in Design for Tussle [48, 77]. Here, the attempts are made to resolve trade-

Tradeo� Parameter Optimal value
Wasted tra�c vs. Energy Lower bu�er Low
Connection count vs. Energy Lower bu�er High
Wasted tra�c vs. Connection count Lower bu�er Low

Table 3.4: Qualitative results of tradeo� analysis.
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o�s and con�icts at run-time instead of design-time. This way, the requirements
of the stakeholders can be adapted to the current situation, e.g. an ISP could re-
quire less stringent signalling bounds if the signalling load is currently low in
the network. Such functionalities could be implemented in the UEs operating
system, which even currently serves as a mediator between the di�erent stake-
holders.

3.3 Dimensioning Video Bu�er for Specific User
Profiles and Behavior

While the previous section implicitly assumed that su�cient bandwidth for
video playback is available in order to provide high QoE to the user, this as-
sumption on QoS does not always hold in the real world, for example due to a
high user count in the LTE cell, or due to di�cult terrain with varying trans-
mission channels.

Traditional QoE management mechanisms [53] consider a mapping function
from QoS to QoE obtained from extensive user studies. This MOS homogenises
di�erent user ratings due to the use of an average, and do not consider the exis-
tence of user groups with distinct preferences. In contrast to the earlier sections
in this work, this sections considers tradeo�s between sub-groups of stakehold-
ers, i.e. di�erent user pro�les.

To this end, we �rst introduce models for video playback in Section 3.3.1.
Then, we extend available QoE models in order to support parametrisation for
user preferences in Section 3.3.2. Finally, we evaluate a set of user scenarios in
Section 3.3.3 using both the playback and the QoE model.

3.3.1 Video Playback Model

This section provides a system model for video playback, in order to study the
stalling behaviour of HTTP video streaming. We consider the playback of a
video consisting of multiple frames, as shown in Figure 3.14. The frames are
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downloaded in-order and arrive at the client with rate λwhile the playback time
is given by the video frame rate µ, resulting in an o�ered load of a = λ

µ
. Here, a

quanti�es the available network bandwidth normalised by the video frame rate.
We assume a stable system, i.e. that a < 1 holds. In order to reduce the number
of stalling events during playback, the video player uses a playback bu�er. Video
playback stops, if less than q frames are currently available for playback and is
only resumed if the bu�er contains p = q + d frames. The normalised bu�er
size d∗, in video seconds, relates the bu�er size d, which is given in frames, to
the video frame rate µ, i.e. d∗ = d

µ
.

Next, we introduce metrics used to evaluate the in�uence of the playback
bu�er parameter selection. The relative amount of time spent in stalling com-
pared to the total duration of the playback process including stalling is given by
the stalling ratio R and the number of stalling events normalised by the video
length N∗. For the case of �nite videos we furthermore consider the stalling
durationLwhich gives the sum of times spent in stalling states during the com-
plete video playback.

M/M/1 �eue with pq-Policy

The state of the video playback is characterised by the tuple (i, j), where i ∈
{0, 1} is the playback state of the client, i.e. the video is not played back if i is
0 and the video is played back if i is 1. Furthermore, j ≥ 0 gives the number
of unplayed frames currently available at the client. Furthermore, we give the
probability of the playback being in state (i, j) as x(i, j).

We obtain the following equilibrium state equations, based on the state dia-
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Figure 3.13: System model for theM/M/1 queue with pq-policy.
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gram given in Figure 3.13.

λx(0, 0) = 0

λx(0, i) = λx(0, i− 1) i ∈ [1, q)

λx(0, q) = λx(0, q − 1) + µx(1, q + 1)

λx(0, i) = λx(0, i− 1) i ∈ (q, p)

(λ+ µ)x(1, q + 1) = µx(1, q + 2)

(λ+ µ)x(1, i) = λx(1, i− 1) + µx(1, i+ 1) i ∈ (q + 1, p)

(λ+ µ)x(1, p) = λ(x(0, p− 1) + x(1, p− 1))

+ µx(1, p+ 1)

(λ+ µ)x(1, i) = λx(1, i− 1) + µx(1, i+ 1) i ∈ (p,+∞)

State probabilities are obtained using macro state equations and recursive re-
duction and follow analogously to [65]:

x(0, i) = 0 i ∈ [0, q)

x(0, i) =
1− a
d

i ∈ [q, p)

x(1, i) =
a(1− ai−q)

d
i ∈ (q, p]

x(1, i) =
aj−p+1(1− ad)

d
i ∈ (p,+∞]

From this, we obtain the stalling ratioR as the probability of being in a stalling
state, i.e.

R =

p−1∑
i=0

x(0, i) = 1− a . (3.3)
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Figure 3.14: Video bu�er status evolving over time with constant video bit rate µ
and network bandwidth for a �nite video of duration T and Z frames.

Mean Value Analysis of Steady State

While the M/M/1− pq model provides results for in�nite length videos, real-
world videos however are of �nite length. This requires the study of additional
metrics, i.e. the number of stalling events during playback N∗. Thus, in this
section we derive a mean value analysis of the proposed video playback model
according to Figure 3.14.

Assuming that the initial download begins at t0 and new frames arrive with
rate λ at the client. The number of frames in the bu�er S exceeds q the �rst time
at t1. At time t2, the threshold of p is reached for the �rst time and playback
begins. While the download of new frames continues with rate λ, frames are
played out with rate µ, resulting in a bu�er change with rate µ − λ. Thus, the
number of bu�ered frames S reaches q at time t3. This process repeats, resulting
in an alternating chain of stalling and playback phases.

In this analysis, we consider the steady state, i.e. especially neglecting the
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time t1 − t0. First, we consider the time required for the bu�er to �ll from q

frames to p frames, i.e. obtaining d frames while no playback is occurring. This
time depicts the average duration L of a single stalling event.

In Figure 3.14 this is given as the time between t1 and t2, and we get

L = t2 − t1 =
p− q
λ

=
d

λ
=
d∗

a
.

The average stalling length L only depends on the actual bu�er size d and the
network bandwidth λ.

Next, we consider the time required for the number of frames S in the bu�er
to decrease from p to q, i.e. the time between t2 and t3,

t3 − t2 =
d

µ− λ ,

which represents the time of uninterrupted playback between each stalling
event.

Combining these two equations we get the time between two stalling event
as

t3 − t1 = (t3 − t2) + (t2 − t1) =
µd

(µ− λ)λ
.

The stalling ratio R follows as

R =
t2 − t1
t3 − t1

= 1− a,

yielding the same result as in Equation 3.3.

Finally, we can obtain the number of of stalling events normalised by video
duration by analysing the busy periods of the system. Here, the mean idle period
is given by L = d

λ
.
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For the mean busy period B we obtain

B

B + L
= 1−R = a ,

which yields

B =
a

1− a
λ

d

and in turn can be used to obtain the normalised number of stalling events

N∗ =
1

B
=
µ− λ
d

=
1− a
d∗

.

This equation can also be derived by considering N∗ = 1
t3−t2

. While N∗

relates the number of stalling events to the video duration, the stalling frequency
F denotes the number of stalling events per unit time. It holds F = 1

t3−t1
=

aN∗ which can be obtained as F = x(0, p−1)λ to weight the state probability
of player state change x(0, p− 1) with the network arrival rate λ. From an end
user’s point of view, the metric N∗ is of higher importance.

Beside the network bandwidth λ and the video bit rate µ, the metric N∗ of
stalling events depends only on the video bu�er size d = p− q, but not on the
concrete values of p and q in the steady state.

Mean Value Analysis of Finite Videos and User Aborts

As we will see later in Section 3.3.3, the steady state analysis is su�cient to
dimension the bu�er. However, in practice, playback is �nite, as either the video
is of �nite length T , or due to the fact that a user aborts playback after a number
of T seconds. This behaviour is shown in Figure 3.14.

We do not consider the time until the initial playback, i.e. the time between t0
and t2 as stalling, since it has a much lower impact on the perceived quality than
stalling [78] and it only depends on the network bandwidth λ and thus is not
subject to optimisation. First, we consider the case where the user plays back
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the complete video. Given the network bandwidth λ and a video of Z Frames,
the required download time for the complete video is tZ = Z

λ
. Within tZ there

are N phases of stalling and playback and each phase is of duration t3 − t1, i.e.

N =

⌊
tZ − t1 + t0
t3 − t1

⌋
.

Next, we consider the case where the user aborts playback of the video after
T seconds of video have been watched. Here, the number of stalling phases is
given as

N = bT/(t3 − t2)c ,

rounding down as we do not consider the initial delay before playback as
stalling. Again, we can obtain the number of stalling events normalized by video
length as N∗ = N

T
.

3.3.2 YouTube QoE Model

This section introduces QoE models for YouTube video playback. First, we ex-
tend the QoE mapping function introduced in [53] in order to support user pref-
erences regarding sensitivity to stalling duration and number of stalling events.
Then, we provide a parametrised mapping function allowing for user prefer-
ences regarding initial delay. Finally, we combine the proposed mapping func-
tions.

Stalling QoE Model

The QoE of HTTP streaming depends mainly on the actual number of stalling
events N for a video of duration T and the average length L of a single stalling
event. A QoE model combining both key in�uence factors into a single equa-
tion f(L,N) is provided in [53] and found to follow the IQX hypothesis [79]
describing an exponential relationship between the in�uence factors and QoE.
In particular, the model function returns MOS on a 5-point absolute category
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rating scale with 1 indicating the lowest QoE and 5 the highest QoE:

f(L,N) = 3.5e−(0.15L+0.19)N + 1.50. (3.4)

Due to well known rating scale e�ects, the model in Equation 3.4 has a lower
bound of 1.50, as users avoid the extremities of the scale called saturation e�ect,
see e.g. [80]. In contrast, if the video is not stalling, no degradation is observed
and users rate the impact of stalling as ’imperceptible’, i.e. a value of 5.

It has to be noted that the model function in Equation 3.4 is based on sub-
jective user studies with videos of duration up to T = 30 s. For other video
durations, the normalised number N∗ = N

T
of stalling events has to be con-

sidered which requires to adapt the parameters α = 0.15 and β = 0.19 in
Equation 3.4, respectively.

As the goal of our investigation is the analysis of the impact of di�erent user
pro�les, we parametrise the function in Equation 3.4 with parameters α and
β and conduct a parameter study on their impact. For the sake of simplicity,
we normalise the QoE value to be in the range [0; 1] and use the normalised
number of stalling events N∗. As a result, we arrive at Equation 3.5 below as
a parametrised QoE model Q1 to quantify the impact of stalling on QoE for
di�erent user pro�les expressed by α and β. Thereby, the parameter α adjusts
the sensitivity of the user to the stalling duration L · N∗, while β quanti�es
the sensitivity of the user to the actual number of stalling events, i.e. the video
interruptions. Therefore, we will also use the term duration parameter and in-
terruption parameter for α and β, respectively.

The model functionQ1 in Equation 3.5 has the same form as Equation 3.4 and
follows the IQX hypothesis, but allows to investigate di�erent user pro�les:

Q1(L,N∗) = e−(αL+β)N∗
. (3.5)

For example, some users may su�er stronger from interruptions which is then
adjusted by a higher value of β. Thus, a user pro�le can be expressed in terms
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of di�erent values of the duration parameter α and the interruption parameter
β

Initial Delay QoE Model

Another impairment on HTTP streaming QoE are initial delays before the video
play-out can start for the �rst time. The impact of initial delays T0 is modelled
by the function given in Equation 3.6, model parameters are obtained from sub-
jective tests [57], yielding

g(T0) = −0.963 · log10(T0 + 5.381) + 5. (3.6)

The results in [57] show that the impact of the initial delay is independent of
the video duration which was either 30 s or 60 s in the user tests. Further, it was
observed that users have a clear preference of initial delays instead of stalling
and that service interruptions have to be avoided in any case, even at costs of
increased initial delays for �lling up the video bu�ers.

For the sake of simplicity, we normalise the function in Equation 3.6 to obtain
the QoE model Q2 for initial delays T0, so that Q2 returns values in [0; 1] and
that Q2(0) = 1 holds, by adding the term γlog10 (c).

The user pro�le is parametrised with the parameter γ determining the impact
of initial delays on the user QoE. The constant c = 5.381 is taken from Equa-
tion 3.6 de�ning the shape of the curve. Since the logarithm is not bounded, only
positive values are considered to ensure Q2(T0) ∈ [0; 1]:

Q2(T0) = −γlog10 (T0 + c) + γlog10 (c) + 1.

Combined QoE Model

For dimensioning the video bu�ers, we are interested in a QoE model which
considers both the impairments due to stalling and due to initial delays of the
video play-out. However, to the best of our knowledge no combined model ex-
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ists so far which has been validated by proper subjective user studies. Therefore,
we suggest the following model Q. Since the impact of stalling events clearly
dominates the user perception [57, 72], we consider the following rationale for
the combined QoE model. A user facing an initial delay T0 experiences a QoE
value of Q2(T0). If additional stalling events occur, this will lower the QoE fur-
ther. Thus, Q2(T0) is the upper bound of QoE. For N∗ stalling events with an
average length L, the QoE will be further decreased by Q1(L,N∗).

An additive QoE model for non-adaptive HTTP streaming which is referred
to as bu�er-related perceptual indicator is recommended in [81]. This model
follows the same rationale above, start from the maximum QoE value which
is 1 = Q(0, 0, 0), subtract the degradation from stalling 1 − Q1(L,N∗) and
1−Q2(T0) stemming from initial delay.

Then, we arrive at the following additive QoE model Q used in the following
analysis:

Q(T0, L,N
∗) = 1− (1−Q1(L,N∗))− (1−Q2(T0))

= Q1(L,N∗) +Q2(T0)− 1. (3.7)

3.3.3 QoE Study for Typical User Scenarios

Based on the playback model introduced in Section 3.3.1 and the parametrised
QoE user model proposed in Section 3.3.2, this section studies three typical user
scenarios. We discuss optimal choices for bu�er size depending on user prefer-
ences and highlight the impact of bu�er choices neglecting the user preference.

Watch Later Scenario

In the Watch Later scenario, a user requests a video, but the user does not expect
that the video play-out starts immediately. This may be the case, for example,
when the user wants to watch an HD at a later time and expects low network
bandwidth later. During that initial delay, the user may opt do something else,
e.g. opening another web page in a parallel tab in the browser. Thus, QoE is not
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a�ected by initial delays and we only need to consider Q1 in Equation 3.5.
In the steady state, we have L = d

λ
and N∗ = µ−λ

d
and we obtain the

following QoE relation:

Q1(L,N∗) = e(µ−λ)(α
λ

+ β
d∗ ) = e−α

1−a
a
−β 1−a

d∗ . (3.8)

Since the QoE function in Equation 3.8 is strictly monotonically increasing in
the normalised bu�er size d∗, the optimum is achieved for

Q+ = lim
d∗→∞

Q1(L,N∗) = e−α
1−a
a .

Thus, the QoE value only depends on the parameter α, i.e. the total stalling
duration, in the limit. To see for which bu�er size we are close to the optimum,
we consider the relative di�erence Ω =

Q+−Q1(L,N∗)

Q+
when it is less than

Ω = 5 %. This is true for any d∗ > −β 1−a
log(1−Ω)

.
For β ∈ {0.05, 0.2}, a small bu�er size of d∗ > 4 s is already su�cient to

be close to the optimum Q+ for any o�ered network condition a. For users ex-
tremely sensitive to stalling, e.g. for β = 0.8, bu�er sizes up to 15 s are required.
However, a bu�er of 4 s is su�cient for a relative di�erence to the optimum of
20 %. In general, the larger the bu�er size the better the obtained QoE is in this
scenario. In practice, a bu�er size of 4 s is a good choice.

Default Video Streaming Scenario

In the case of normal streaming, the user wants to watch a video immediately
for a long period of time. In contrast to theWatch Later scenario, the initial delay
impacts the QoE in the Watch Now scenario according to Equation 3.7.

Figure 3.15 shows QoE depending on the bu�er size d∗ for the Watch Now
scenario and di�erent user pro�les in a network situation a = 0.5 leading to a
stalling ratio R = 0.5.

QoE optima exist for �nite bu�er size, if the impact of the initial delay is taken
into consideration. We notice that for users more sensible to stalling duration,
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i.e. higher values of α, experience higher QoE, but this has no signi�cant im-
pact on the optimal bu�er size. In contrast, for users sensitive to the number
of stalling events, i.e. for higher values of β, we observe di�erent optima for
the bu�er size. Therefore, we can neglect the interruption parameter α when
optimising the bu�er size with regard to the QoE. A bu�er size less than 0.5 s

results in a severe loss of QoE for all users. A bu�er size of 2 s to 4 s o�ers a
good QoE for the average user and any sensitive user. Increasing the bu�er size
further decreases the QoE slightly.

Video Browsing Scenario

In the case of the Video Browsing scenario, the user watches a video for a short
period of time. This includes cases such as, viewing a short video completely,
viewing a short part of a long video or skipping ahead in a video frequently,
thus watching multiple short parts of a video. In this scenario, a steady state
can not be assumed due to the short watching duration. Since we know from
the previous section that α and β have only a marginal impact on the optimal
QoE, we consider only the default parameters α = 0.15 and β = 0.2 in the
following. However, for Video Browsing, the impact of the initial delay may be
more important for the user. Therefore, we consider two di�erent types of delay
sensitive users with γ = 0.2 as well as a more delay sensitive user with γ = 0.8.

In Figure 3.16, the impact of the bu�er size on the QoE is depicted for the
case that the video is aborted after the �rst 10 s using a logarithmic x-axis. We
consider two di�erent network scenarios with an o�ered load of a = 0.8 and
a = 0.95. Multiple local QoE maxima exist independently of γ, which appear
when the number of stalling events change. For di�erent values of β these max-
ima occur at the same bu�er size. Therefore, we can ignore β in this scenario.
The local minima exist at the bu�er size for which the last stalling event has
the smallest possible length. The results for the steady state are also included
and we observe that the steady state provides a lower bound for the �nite bu�er
results.

Thus, the steady state can be used to perform worst case bu�er dimensioning.
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Figure 3.16: Dimensioning of bu�ers for Video Browsing users with varying QoE
sensitivity to initial delays. Users abort the video after 10 s.

For very low o�ered loads a, e.g. a = 0.1 which is not shown due to scale,
the QoE is very low for both the steady state and the �nite case. Thus, Video
Streaming and especially Video Browsing is not desirable in this case. However,
for larger bu�er sizes, the di�erence between the local maxima and the steady
state increases. Nevertheless, in those cases, the initial delay exceeds tens of
seconds. So this scenario can not be described as realistic Video Browsing.

In general, if the exact viewing length of a video was known, e.g. short videos
will be watched completely, the bu�er size could be set so that the QoE lies at
a local maximum which is independent of γ. However, this method can result
in a severe loss of QoE, depending on γ if the user aborts earlier, as the actual
QoE loss signi�cantly depends on γ. In practice, a bu�er size of 1 s and 2 s is
recommended for Video Browsing. If the bu�er size is set too large, γ determines
again the actual QoE loss. For larger bu�er sizes, the sensitivity γ to initial delays
strongly in�uence the QoE.
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3.4 Cloud File Synchronisation Services

While the previous sections studied video playback, this is far from the only
application deployed in today’s networks. Another prominent type are �le syn-
chronisation services. They are o�ered by a multitude of providers, e.g. Google
Drive, and Microsoft OneDrive, and the current leader in the �eld Dropbox. A
general study of the QoE in�uence factors of �le storage services is undertaken
in [82]. Here, the authors provide a model allowing for the evaluation of cloud
service providers according to a variety of metrics, including bandwidth, latency,
and response time. Due to its popularity, this section focuses on Dropbox.

In [83] the authors study the main impact factors on QoE of Dropbox users.
They �nd that the main impact factor for user QoE is the waiting time for �le
synchronisation. Thus, this is the main factor the cloud storage operator will
dimension the service for, in order to ensure a high user satisfaction. However,
the operator of the �le synchronisation service is not the only stakeholder in
this scenario. As in earlier sections, the signalling tra�c imposed by application
tra�c is of concern to network providers. Furthermore, the services users are, as
discussed in Chapter 2, interested in reducing the power drain due to network
connectivity in order to increase their devices battery life.

In Section 3.4.1 we �rst propose a model in order to evaluate the Dropbox ser-
vice, de�ne relevant metrics for each stakeholder as well as di�erent scheduling
algorithms used to trigger �le synchronisation. Then, in Section 3.4.2 we per-
form network measurements using the PlanetLab [25] research network to be
used as input for our model. Finally, in Section 3.4.3 we evaluate our model us-
ing a non-stationary discrete event simulation for all considered metrics and
scheduling algorithms.

3.4.1 System Model for File Synchronisation using
Dropbox

This section �rst provides a general overview over the Dropbox service architec-
ture and introduces the considered use case. Then, we propose the cloud storage
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Figure 3.17: Dropbox �le storage and retrieval process.

model and metrics used in this analysis. Finally, we discuss a set of scheduling
mechanisms used to start the �le synchronisation process.

The authors of [84] provide a �rst study of the Dropbox architecture, which
is schematically depicted in Figure 3.17 and used as a basis for the model under
study in the remainder of this section.

The Dropbox infrastructure consists of two main components: a) a storage
cloud based on Amazon’s Elastic Compute Cloud and Simple Storage Service,
and b) control servers directly maintained by Dropbox Inc. The control servers
store meta information about the current state of the �les in the Dropbox folders
and trigger synchronisation processes on the clients.

A �le synchronisation can basically be described in �ve steps. As soon as the
new �le is added to the Dropbox folder of the uploading client, a preprocessing
step is triggered and the meta information for the �le are generated, respectively
updated. This information is then synchronised with the control servers (1) and
the �le itself is uploaded to the storage cloud (2). After the �le has completely
been transferred to the storage cloud, all connected clients are noti�ed about
the update (3) and start downloading the new �le (4).
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Use Case: Photo Uploading

In this section we consider the synchronisation of images from a digital camera
to a mobile UE via a cloud storage provider. Real world examples of this scenario
are, e.g., taking photos of a live event and transferring them to a picture agency,
or shooting private holiday images.

The user took a �nite set of pictures with a wearable device like Google Glass
or a smart camera, e.g. a Nikon Coolpix S800c or SAMSUNG CL80. The camera
is then connected via a Personal Area Network (PAN) with a mobile UE, for
example a laptop with a data card or a smartphone, to store the images on the
mobile device. The UE uses broadband wireless Internet access technology and
runs software provided by the cloud storage provider in order to synchronise
the images with the cloud storage. Finally, the scenario includes a remote client,
which is connected using a wire line connection and downloads the images from
the cloud.

For the evaluation we consider a speci�c realisation of the use case described
above. For the role of the cloud storage provider we consider Dropbox, Blue-
tooth is used as the technology for establishing the PAN, and LTE is used as the
wireless broadband access technology.

In the considered scenario the interests of two stakeholders are impacted.
The �rst stakeholder, the end user, has two contradicting requirements on the
system. On the one hand, the images should be synchronised as fast as possible.
This requires a fast and permanent Internet connection of the UE, which in turn
is very power intensive. On the other hand, the power drain of the mobile device
should be minimised to enable a long battery life time. The second stakeholder,
the mobile network provider, wants to minimise the signalisation overhead in
the network [23, 27] caused by short time connections. Here, an optimisation
problem arises to �nd a practical solution for all three requirements. In order
to analyse this problem, we use a simulation model of the �le synchronisation
process, which is described in the following.
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Cloud Storage Model and Performance Metrics

The proposed simulation model is schematically depicted in Figure 3.18 and
based on the �ndings of [84] described in Section 3.1.

We assume that the user has taken pictures of varying �le size distributed
with SI . These pictures are transferred from the camera to the mobile device
using the PAN with a constant bandwidth BP . Due to the limited bandwidth
BP of the PAN device, the inter-arrival times of images at the Dropbox shared
folder of the mobile device can be calculated by tI = SI

BP
.

As soon as the image is fully copied to the Dropbox folder, the generation
of the meta data introduces a preprocessing delay, which we refer to as client
preparation timeC . To evaluate di�erent strategies optimising the overall wait-
ing time, power drain, and signalisation tra�c we include a scheduling compo-
nent. This component implements di�erent algorithms, which trigger sending
the images currently held available in the scheduling component to the compo-
nent responsible for transmission.

Next, we consider the LTE UE used for image upload. Due to the speci�cation
of the LTE standard [28], the upload component can, at any point in time, ei-
ther be connected to the mobile network or disconnected. If the UE is currently
disconnected, and a new image for upload arrives, the connection process is
triggered and completed after a startup delay σ = 0.26 s. Once the UE is con-
nected, arriving images are transmitted in order. The transmission, i.e. service
time, of an image depends on the size of the image currently being uploaded
as well as the upload bandwidth BU . As only one image is transferred at once,
waiting images are stored in a queue of in�nite size. If the UE is idle for more
than τ = 11.576 s, the device disconnects from the network.

After the image has been successfully uploaded to the storage servers, a server
side preprocessing phase starts, before the �le transfer to the downloading client
starts. This server side preprocessing again introduces an additional delay, the
server preparation time S, in the synchronisation process. Finally, the image is
downloaded by the wire line client. Again, the duration is calculated based on
the size of the image and the available download bandwidth BD .
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Figure 3.18: Considered synchronisation process model.

107



3 Application Behaviour in Mobile Networks

Next, we discuss the metrics used to evaluate the performance of the schedul-
ing algorithms under consideration. First, we consider the mean synchronisa-
tion time Σ, i.e., the time between the generation of images and the completion
of the download. This metric accounts for the desire of end users to synchronise
images in a short amount of time. Secondly, we study the relative amount of time
the UE is disconnected ∆. As the UE consumes more power in the connected
state, the user is generally interested in scheduling mechanisms which ensure
that the device is only connected if required [37]. This measure also enables
a more general evaluation than the actually consumed power, as the concrete
power drain di�ers signi�cantly for each device. Finally, we evaluate the number
of transitions K between the connected and disconnected states. As discussed
in Section 2, frequent state transitions stress the network due to increased sig-
nalling. Thus, scheduling algorithms with a small number of transitions would
be favoured by network operators.

Considered Scheduling Algorithms

We use di�erent scheduling strategies in our model to control the uploading of
the �les from the mobile client. These mechanisms in turn a�ect the synchroni-
sation time, the power drain, and the generated signalling tra�c.

The most basic strategy of handing the upload is to immediately send new
�les, as soon as the meta data is generated. We refer to this as the Immediate
strategy and will use this as base line for all comparisons in the evaluations.
The other two strategies considered are based on a temporal, respectively a size
threshold. Using the Interval scheduling, the client checks periodically, accord-
ing to an interval Ti, if new �les have been marked for synchronisation. If new
�les are present, they are synchronised to Dropbox. Files which could not be
sent within the current interval will automatically be added to the �le batch for
the next interval. The last scheduling mechanisms uses a threshold Ts based on
the overall Size of the images not yet synchronised. If the threshold is crossed,
an upload is triggered.
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3.4.2 Measurement of Dropbox Performance Metrics

The model presented in Section 3.4.1 requires several input parameters which
are obtained from measurements and described in this section. First, we give an
overview over the measurement setup implemented in the distributed testbed
PlanetLab [25]. Then, we present measurement results as well as �tted distribu-
tions for both up and download bandwidth as well as for the time used by the
cloud service to prepare data prior to the download. Finally, we derive an image
�le size distribution by analysing a large set of digital photos.

Bandwidth and Preparation Times

We obtain a PlanetLab slice containing all momentarily available nodes in Febru-
ary 2014 and discard every node not responding to ping or ssh within a 20 s

interval. On the remaining 87 nodes we install our measurement setup. This
includes two instances of the Dropbox client on each host, linking them to a
specially created Dropbox account and two di�erent directories. Furthermore,
we disable the LAN-Synchronisation feature for both clients. After ensuring that
both shared directories are empty, we create a �le with randomly generated con-
tent of 10 Mbit size, unique per node. Files are unique in order to compensate
for caching algorithms by Dropbox, as the client calculates a checksum of the �le
prior to uploading and only uploads the �le if no duplicate �le is already stored
in the account, in order to conserve bandwidth. Further, the randomly generated
content ensures that no signi�cant compression results can be achieved before
uploading, resulting in comparable results for the time required to upload the
�les. After the �le is created, we start tcpdump and symlink the �le to the
�rst directory shared via Dropbox while taking note of the initial timestamp of
the symlink. As the complete �le has �nished downloading and appears in the
second Dropbox directory, we note the current �nal timestamp and stop tcp-
dump. Finally, we retrieve the tra�c dump and the recorded timestamps and
reset the measurement setup.

This process is repeated 8 times for all available PlanetLab nodes. Based on the
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Figure 3.19: Setup used to peform measurement.

two recorded timestamps as well as the tra�c dump, we calculate the required
values for the model as shown in Figure 3.19. The time between the initial times-
tamp and the �rst packet sent to the Amazon S3 storage server is considered the
client preparation time C .

The upload time tu is given by the time between the �rst and the last packet
uploaded to the storage server and is used to calculate the mean upload band-
width BU = 10 Mbit/tu. The server preparation time S is given by the time
between the last packet uploaded and the �rst packet downloaded from the stor-
age server. Finally, we calculate the mean download bandwidth BD similar to
the upload bandwidth by considering the time between the �rst downstream
packet from the storage server and the completion of the �le download.

In Figure 3.20 we show the mean upload and download bandwidth obtained
from our measurements, as well as �tted distributions. For the �t we consid-
ered a set of di�erent possible distributions, including exponential, log-normal,
gamma, Pareto, and Weibull. We found that none of the considered distribu-
tions provided an adequate �t due to the slope at the 7 % quantile for the up-
load, respectively 25 % quantile for the download bandwidth. To adapt for this
behaviour, we consider a 2-hyper log-normal distribution [85] with partitions
at 0.07 or 0.25. After splitting, the random variables are �tted to log-normal
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Figure 3.20: Measurement and corresponding �t for upload bandwidth BU and
download bandwidth BD .

random variables using fitdistrplus2 for the R language. The resulting
parameters for the upload bandwidth BU and download bandwidth BD can be
found in Table 3.5, where µ1 and σ1 are the location and scale parameters for
the lower part of the compound distribution and µ2 and σ2 are the location and
scale of the upper part of the compound distribution.

Next, we consider the client and server preparation times. As our intent is
to evaluate the performance of di�erent scheduling mechanisms for the upload
phase, we require only the amount of time C used for computing hashes of the
�les considered for upload without considering the time used by the scheduling
mechanism. To obtain an approximation, we use the minimum of all observed
upload preparation phases C = 1.32 s. For the server preparation time S we
obtain a �t, �nding that a Log-normal distribution provides the best result of

2https://cran.r-project.org/web/packages/fitdistrplus, Accessed:
November, 21st 2015
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Random variable Split µ1 σ1 µ2 σ2

BU 0.07 13.44 0.49 16.10 0.37
BD 0.23 14.63 0.51 15.81 0.21
S – 1.35 0.41 – –
SI 0.35 14.17 0.54 15.24 0.33

Table 3.5: Distribution parameters for considered random variables.
.
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Figure 3.21: Measurement and �t of server preparation time S.
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Figure 3.22: Image �le size distribution SI and corresponding �t.

the considered distributions, as shown in Figure 3.21. The parameters of the
resulting distribution are given in Table 3.5.

Image File Sizes

In order to obtain a representative random variable for the size of image �les,
we evaluate a set of 1375 pictures of varying image quality taken by di�erent
cameras. We record the �le-size and evaluate the quality of �ts using di�erent
random variables as shown in Figure 3.22. We �nd that similar to the upload and
download bandwidth, a 2-Hyper Log-normal distribution provides best results
and present the distribution parameters in Table 3.5.
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3.4.3 Evaluation of Considered Scheduling Algorithms

In order to evaluate the proposed model we use the OMNeT++3 simulation
framework. To analyse the impact of the di�erent algorithms we study the met-
rics introduced in Section 3.4.1. We evaluate the waiting time Σ until a �le is
retrieved at the downloading client, the relative time the mobile client stays dis-
connected ∆ during the synchronisation process, and the number of connection
K during the synchronisation process to estimate the signalling overhead. For
the Interval scheduling algorithm, we vary the interval length Ti from 1 s to
512 s in powers of two. The threshold Ts for the Size algorithm is analysed for
values from 1 MB to 512 MB in the same manner. The Immediate algorithm is
not parametrised.

In the simulated scenario, we assume a user synchronising n = 1000 �les
from the camera to the downloading client. For each parameter set we perform
100 repetitions.

Waiting Time

First, we analyse the mean waiting time Σ required to transfer a picture from the
camera to the wire-lined download client for the di�erent scheduling algorithms
and di�erent parameter sets. The mean waiting times Σ and the corresponding
95 % con�dence intervals are shown in Figure 3.23. For most of the derived
mean values, the con�dence intervals are not visible due to their small size.

Figure 3.23a shows the results for the Interval algorithm, Figure 3.23b shows
the results for the Size mechanisms. In Figure 3.23a the x-axis shows the length
of the interval Ti in s between sending newly added �les, in Figure 3.23b the
axis shows the required cumulated size in MB of new �les before an upload is
triggered. The y-axis in both �gures shows the mean waiting time Σ in s. The
result of the Immediate algorithm is added in both �gures as a reference. Note
that, the mean waiting time Σ for this algorithms is independent of the parame-
ters used for the other two algorithms, as �les are always uploaded immediately

3http://www.omnetpp.org/, Accessed: November, 21st 2015

114

http://www.omnetpp.org/


3.4 Cloud File Synchronisation Services

0

250

500

750

1000

1 2 4 8 16 32 64 128 256 512

Interval length Ti (s)

M
ea

n 
w

ai
ti

ng
 t

im
e 
Σ

 (s
)

Mechanism Immediate Intervall

(a) Algorithm Interval, di�erent interval lengths Ti

0

250

500

750

1000

1 2 4 8 16 32 64 128 256 512

Size threshold Ts (MB)

M
ea

n 
w

ai
ti

ng
 t

im
e 
Σ

 (s
)

Mechanism Immediate Size

(b) Algorithm Size, di�erent threshold sizes Ts

Figure 3.23: Comparison of algorithms with regard to waiting time Σ.
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after they have been copied to the Dropbox folder.
Figure 3.23a shows that the mean waiting time Σ depends on the interval

length Ti of the Interval algorithm. For interval lengths Ti smaller than 8 s, the
waiting times do not di�er signi�cantly from the mean waiting times Σ obtained
by the Immediate algorithm. This can be explained by the average �le size of
3.5 MB of the images and the assumed average Bluetooth transmission rate of
0.5 Mbit s−1, which results in an average inter arrival time of 7 s. For interval
lengths Ti less than 7 s, there is almost always an image in the upload queue
so that the algorithm performs similar to the Immediate strategy. For interval
lengths Ti larger than 7 s, the average waiting time increases for the Interval
algorithm. Here, the �les are already preprocessed and accumulate in the up-
loading queue until the next batch upload starts resulting in an increased mean
waiting time Σ. For very large values of the interval lengths Ti, the mean wait-
ing time Σ is dominated by the interval length Ti. This means that the mobile
client’s mean waiting time Σ before starting the upload is much longer that the
upload duration of the images. Thus, the mean waiting time Σ converges to the
interval length Ti for extreme values.

Figure 3.23b depicts the mean waiting time Σ for the Size algorithms for dif-
ferent �le size thresholdsTs. We observe that for values smaller than the average
image �le size of 3.5 MB, the Size algorithms performs similar to the Immediate
algorithms. In this case the Size algorithms also triggers an upload for almost
each �le and shows the same behaviour as the Immediate algorithm. For size
thresholds Ts smaller than 16 MB, the performance of the Size algorithms is
only slightly worse than the reference mechanism. Here, only a few �les are
required to trigger the upload process and the additional delay introduced by
waiting is negligible. For larger size thresholds Ts, the mean waiting time Σ

increases signi�cantly.

Relative Disconnection Time

Besides a fast synchronisation, the users also demand a long battery life time
of the mobile device. Besides the display, the radio interface used to establish
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Internet connection is one of the main power consumers. In order to analyse the
power savings of the di�erent algorithms, we evaluate the relative disconnected
time ∆ during the synchronisation process. Therefore, we consider the time
between the sending of the �rst and the last image of the mobile client and
calculate the percentage during which no Internet connection is established.
The mean relative disconnected times including the 95 % con�dence intervals
are depicted in Figure 3.24.

Figure 3.24a depicts the relative disconnected time ∆ on the y-axis, on the
x-axis the interval length Ti in s for the Interval algorithm. Figure 3.24b also
depicts the relative disconnected time ∆ on the y-axis, on the x-axis the size
threshold Ts in MB for the Size algorithm. Both �gures include the Immediate
algorithm as a reference.

We �rst study Figure 3.24a. Similar to Figure 3.23a, we observe no signi�cant
di�erences between the Interval and Immediate algorithm for interval lengths
Ti smaller than 8 s, as both algorithms show the same behaviour here. For val-
ues larger than 8 s, the Interval algorithm starts sending �les in batches and no
longer on a per �le base. However, still no clear e�ect is visible, as the inter-
sending interval and the mean image inter-arrival time of �les are still smaller
than the disconnection timeout of 11 s. This results in an almost permanent In-
ternet connection similar to the Immediate algorithm. For interval lengths Ti
above 16 s, the Interval algorithm starts saving connection time and the relative
disconnected time ∆ increases, resulting in additional power savings.

Figure 3.24b shows the relative disconnected time ∆ for variable thresholds
for the Size algorithm. We see again that the Size and Immediate algorithms
do not di�er for size thresholds Ts smaller than 4 MB, similar to the results in
Figure 3.23b. Afterwards, we observe an increase in saved relative connection
time ∆ for larger thresholds Ts, due to the fact that here �les are sent in batches
and the mobile client disconnects between the sending intervals, again enabling
power saving potential for the mobile network client.
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Figure 3.24: Comparison of algorithms with regard to relative disconnected time∆.
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Connection Count

After considering the requirements of the end-user, we have a closer look at the
requirements of the mobile network operators. The network operator is mainly
interested in minimising the signalling overhead introduced by connection es-
tablishment. Therefore, a minimisation of the number of connections K during
the synchronisation process is desired. Figure 3.25 depicts the average number
of connectionsK established during the synchronisation process, including the
95% con�dence intervals. The number of connections is shown on the y-axis, the
x-axis in Figure 3.25a shows the interval lengths Ti of the Interval algorithms,
the x-axis in Figure 3.25b shows the Size algorithm size threshold Ts.

We observe a similar behaviour as in the previous evaluations, the average
number of connection K for the Interval and the Immediate algorithms is the
same in Figure 3.25a, if the interval lengths Ti are smaller then 4 s. With in-
creasing interval lengths Ti the connection count K also increases and reaches
a maximum for an interval length of 32 s.

In order to explain this behaviour we make the following considerations. The
maximum amount of data sx which can be send from the camera to the mobile
client during an intervals Ti of length x s is given by

sx = x ·BP = x · 1/2 MB.

The average time tx to upload sx can now be calculated as

tx = sx/E [BU ] = x 0.5/8.0 s = x 1/16 s.

For interval lengths Ti between 8 s and 32 s, tx results in 0.5 s, 1 s, and 2 s re-
spectively. Considering the disconnection timeout of 11 s, we can see that a dis-
connect is likely for interval lengths Ti of 16 s and 32 s. In order to explain the
increased number of connectionsK for an interval length Ti of 8 s, we also have
to consider the average image �le size of 3.5 MB. Within 8 s, a maximum of
sx = 4 MB can be transferred from the camera to the mobile client. Therefore,
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Figure 3.25: Comparison of algorithms with regard to connection countK .
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it is likely that it takes two interval lengths Ti, respectively 16 s, to transfer the
image. This explains the similar behaviour of the Interval algorithm for interval
lengths Ti between 8 s and 16 s with regard to the connection count K .

For interval lengths Ti larger then 32 s, the connection count K decreases
again. To explain this e�ect, we have to consider the maximum number of �le
batches transferred during the synchronisation process. If every �le is trans-
ferred individually 1000 connections would be required, if all �les are trans-
ferred in one single batch, only one connection would be established during the
synchronisation process. Depending on the chosen interval lengths Ti, the av-
erage size of the batches varies, as larger intervals result in larger batches. The
overall number of batches is limited, as we only consider a �nite amount of 1000

images. Consequently, the maximum possible number of connections K is lim-
ited, too. However, this comes only into e�ect if large batches are used during
the synchronisation process.

In Figure 3.25b we can observe similar behaviours of the Size algorithm as
for the Interval algorithm in Figure 3.25a. For small thresholds, the Size and
the Immediate algorithm result in the same number of connections K . With
increasing sending thresholds, the number of disconnects and re-connections
increases, as it takes longer to accumulate the required amount of new data at
the mobile client. The maximum average connection count K is reached when
using a 16 MB threshold, which corresponds to sx for an inter-sending inter-
val of 32 s. For larger thresholds, the maximum number of batches is the lim-
iting factor for the connection count. This can especially be observed for very
large thresholds. Considering a size threshold Ts of 128 MB, we can assume
that almost every batch is transferred in an individual connection, as it takes
128 MB/BP = 248 s to transfer the required data from the camera to the mo-
bile client, but only 128 MB/E [BU ] = 16 s on average to upload the data from
the mobile client to the cloud. Consequently, the transferred �le size can be es-
timated as the product of the size threshold Ts and number of connections, i.e.
128 MB · 25 = 3.2 GB, which approximately matches the product of number
of considered �les and the average �le size.
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Figure 3.26: Comparison of algorithms with regard to normalized synchronization
threshold Tn and connection countK .

Mechanism Comparison

The previous analyses imply that the results of the Interval and Size algorithm
are interchangeable if the parameters are set appropriately. In order to test this
hypothesis, we normalise the size threshold parameter Ts with the PAN band-
width to calculate the e�ective average interval length caused by this threshold.
The mean connection countK for both algorithms depending on the normalised
synchronisation threshold Tn are depicted in Figure 3.26.

We observe that the mean connection count K of both algorithms are in-
terchangeable most of the time, as the interval length Ti and the size thresh-
old Ts can be converted into each other. However, the results for a normalised
synchronisation threshold Tn of 16 s vary signi�cantly. If we consider the In-
terval algorithm, the average amount of data transferred from the camera to
the mobile client is 16 s · BP = 8 MB, which is uploaded in approximately
8 MB/E[U ] = 1 s. For the Size algorithm, the amount of data transferred
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from the camera to the mobile client has to accumulate to 8 MB in order to
result in a normalized synchronisation threshold Tn of 16 s. Consequently, the
mean upload time is also 1 s. In conjunction with a disconnection timeout of
τ = 11.576 s it is likely that the connection is closed after the upload in both
cases.

However, even if the mean upload times in both cases are equal, the variance
of the upload time distributions vary. The Size algorithm assures that always
the same amount of data is uploaded, therefore the variance of the upload time
distribution is only in�uenced by the variance of the upload bandwidth. In the
case of the Interval algorithm, the amount of uploaded data varies, due to the
di�erent image sizes. Therefore, the variance of the upload time distribution in
this case is dependent on the variance of the upload bandwidth and the variance
of the image size. This increased variance leads in some cases to longer upload
times avoiding a disconnect between two upload batches. However, this e�ect
only comes into account if the sum of the upload time and the disconnection
timeout is close to the inter-send interval.

The comparison of both algorithms indicate that similar results are repro-
ducible with both of them. However, the time based algorithm allows a better
control of the number of disconnects during the synchronisation process, as
the inter-send interval can be adapted to the disconnection timeout. In order
to adapt the size based algorithms accordingly, additional knowledge of the �le
arrival process is required to estimate the interval length Ti. In the following,
we only consider the Interval algorithm as it is easier to con�gure and also more
intuitive for the end-user than the Size algorithm.

Tradeo� Analysis for Considered Stakeholders

After analysing the di�erent objectives of the stakeholders individually, we now
consider the tradeo� between these contradicting optimisation goals, the mean
waiting time for the �le synchronisation Σ, the mean relative disconnected time
∆, and the mean connection count K .

Figure 3.27 depicts the mean waiting time for the �le synchronisation on the
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Figure 3.27: Trade-o� analysis of identi�ed stakeholder objectives.

y-axis and the mean relative disconnected time on the x-axis. Each point in the
�gure corresponds to one parameter setting for the Interval, the size of the point
depicts the mean connection countK for this parameter setting. For each stake-
holder objective we have di�erent optimisation goals. While the user wants to
minimise the mean waiting time Σ of the �le synchronisation, the user also
is interested in maximising the mean relative disconnected time ∆ in order to
save power. The network provider wants to minimise the signalling overhead,
thus the mean connection countK should also be minimised. Therefore, an op-
timal parameter set would be located on the right bottom of the �gure, small
mean waiting time and high relative disconnected time ∆, and depicted by a
small point indicating a small mean connection count K . However, the �gure
indicates that an increase in mean relative disconnected ∆ time also results in
an increased mean waiting time Σ. We see that allowing for a small increase
in waiting time Σ of less than a minute can result in twice the time spent in
disconnected state, i.e. additional power savings. This change in metrics can be
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facilitated by increasing the inter-send interval length from 32 s to 128 s for
the Interval algorithm. An additional bene�t of this change is a decrease of the
connection count ∆ of more than 50 %, resulting in a signi�cantly reduced sig-
nalling load in the network.

3.5 Lessons Learned

This chapter studied Internet Video Streaming and File Synchronisation as two
prominent examples of modern network applications. During the operation and
use of these applications, a number of stakeholders interact, each with di�er-
ent preferences and demands on what quali�es as optimal performance of the
application. The application provider controls the application and directly in�u-
ences the performance of the application for all other stakeholders. In case of the
Video Streaming scenario, we consider the application provider to be interested
in increasing the QoE for the application user while also maintaining a low util-
isation of network and compute resources, as they would incur additional costs.
In the File Synchronisation scenario the application operator is interested in the
�le synchronisation occurring as soon as possible, as this has been identi�ed as
a main impact factor of the users QoE. The user is interested in a high QoE as
well as increasing the battery life of the UE. As in the last chapter, the network
operator is interested to quantify and decrease the impact of application tra�c
on its network infrastructure.

The application operator has direct control over the application and is thus
able to manipulate application behaviour in order to improve the respective key
performance indicators. For the speci�c applications we consider adoption of
the video transmission mechanisms and parameters for the video streaming sce-
nario as well as diverse �le upload scheduling mechanisms and parameters for
the �le synchronisation scenario. While users in these scenarios have no direct
possibility to in�uence their key performance indicator, the video streaming sce-
nario considers users to be heterogeneous, i.e. consisting of di�erent subsets of
users with di�erent QoE requirements which have to be considered. Further-
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more, we consider network operator to be passive, as Chapter 2 showed that
it is not bene�cial for them to optimise their network parameters for speci�c
applications.

While studying both the Video Streaming and the File Synchronisation sce-
nario, we �nd three major outcomes.

First, we study the impact of di�erent video transmission mechanisms and
parameter settings on energy consumption, number of connections established
to the mobile network and tra�c wastefully transmitted in case the user aborts
video playback before completion. To this end, we provide both a network model
for LTE mobile networks as well as playback models for the respective video
transmission mechanisms. Then, we evaluate the models regarding the iden-
ti�ed metrics for a range of relevant parameters. We �nd that live streaming
the same content consumes at worst 711 % more energy than the download
mechanism for the lowest possible bit rate. For the highest viable bit rate the
ratio decreases, however the live streaming still consumes 117 % more energy
than the download mechanism. In contrast, we observe that when considering
the wasted tra�c relative to the total content size, the download mechanism
causes, even for the best case user scenario, 12 300 % of the data wasted by
the live streaming scenario. The streaming mechanism results in only �ve times
the wasted tra�c of the amount lost during live streaming, while only consum-
ing between 39.9 % and 89.3 % of the energy of the live mechanism. Overall,
we �nd that the streaming mechanism provides good results for all considered
metrics and can be customised by adapting the streaming bu�er size to the ap-
plication operators needs.

Next, we consider the impact of both the bu�er size of the streaming mech-
anism and the available network load on di�erent scenarios: Video Streaming
or Video Browsing. We �nd that bu�er sizes smaller than 0.5 s provide unac-
ceptable QoE for all considered users regardless of sensitivity to stalling. Bu�er
sizes between 2 s and 4 s however are acceptable to most users regardless of
sensitivity. When considering the Video Browsing scenario, we �nd that even if
the length of the watched video is known QoE depends on the sensitivity of the
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user to initial stalling, however we are able to determine local QoE optima for
all considered values of sensitivity.

Finally, when considering the �le synchronisation scenario, we �nd that of the
three considered scheduling mechanisms, both the interval and the size based
algorithms, provide best results. If the application provider allows parameter se-
lection for a given scheduling mechanism to be performed by the user, in order
to increase QoE, the interval mechanism provides more intuitive con�guration.
This would for example allow the user to increase the inter-send interval from
32 s to 128 s which can double the time spent in disconnected state, saving en-
ergy and also reduce the connection count by 50 %, putting less strain on the
network.

Based on the results obtained in this chapter, we observe that additionally to
the tradeo�s in the network, highlighted in the last chapter, similar tradeo�s
also exist in the application layer. Including the application providers as stake-
holders and considering their key performance indicators requires new models
but also allows us to better understand the impact of mechanisms implemented
in applications. Key performance indicators of application providers sometimes
overlap with those relevant to users, as application providers try to improve the
experience of users in order to reduce churn.

Highlighted by both, the Video Streaming scenario and the File Synchronisa-
tion scenario, is the fact that oversimplifying the user population as one homo-
geneous group can decrease the overall QoE. While general QoE management
mechanisms intent to optimise the MOS, this only increases the mean QoE,
which may cause suboptimal results if the population of users present with a
large variance in opinion scores. Thus, we suggest to either identify and clus-
ter similar user groups or expose tradeo�s, within reason, to the user. This ap-
proach could be seen as extending the Economic Tra�c Management approach
to the user.
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Management Schemes in Clouds

In this chapter we consider stakeholder tradeo�s in cloud scenarios. Tradition-
ally, a cloud is a set of compute and network resources, which can be elasti-
cally rented by customers. With the recent rise of crowdsourcing platforms,
also described as human-cloud, it has become useful to refer to this type of
cloud as machine cloud, in order to better di�erentiate these two types of cloud.
The human-cloud is based on the sample principles as the machine cloud, e.g.
elasticity and reliability and enabled crowdsourcing employers to o�er tasks to
workers available on demand. In this chapter we consider multiple scenarios:
First, we study the role of a cloud operator providing virtual resources to cus-
tomers. Then, we consider decisions faced by a user of a cloud who is deploying
virtualised network functions in a cloud. Finally, we investigate resource di-
mensioning in human-clouds. Regardless of the speci�c scenario, the number of
resources available impact the KPIs of all participating stakeholders, and is thus
subject to optimisation.

We �rst provide an overview of the involved stakeholders and KPIs in Fig-
ure 4.1. If we study the operation of a machine cloud, both the cloud operator
and the cloud user need to be considered. The cloud operator is interested in
increasing revenue, i.e. attracting a high number of customers, and decrease �-
nancial expenditure, e.g. by reducing consumed energy. The customer of a cloud
operator is interested in good Service Level Agreements (SLAs), for example a
low delay before processing of a job can begin. In the second scenario, the net-
work function operator taking the role of a customer in the previous scenario,
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Figure 4.1: Stakeholders investigated in the cloud scenarios.

is interested in provisioning a minimal number of resources from the cloud op-
erator, in order to reduce cost, while in turn providing a su�cient SLA to its
customers. The users of the virtualised network functions demand a su�cient
availability of the provided service. Finally, in case of the human-cloud scenario,
the cloud operator has to satisfy two stakeholders with con�icting interests. On
the one hand, employers are interested in a fast completion of the o�ered tasks.
On the other hand, workers are interested in obtaining a high income. These
goals are clearly con�icting, as fast completion can be obtained by providing a
high number of available workers. However, income per workers increases if the
tasks are distributed between fewer workers. Thus, the human-cloud operator
has to balance the interests of the two stakeholders.

The contribution of this chapter is threefold

a) We provide a model for energy-e�cient data centre operation and discuss
sensible parameter con�gurations for the di�erent stakeholders.
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b) We study algorithms for resource provisioning on the example of a vir-
tualised network function and evaluate their performance with respect
to the demands of the stakeholders.

c) We model a crowdsourcing platform and provide guidelines for platform
operators regarding resource acquisition.

The content of this chapter is published in [6, 10, 16]. In Section 4.1 we pro-
vide an overview of related work relevant to this chapter. Then, in Section 4.2
we discuss the tradeo�s faced by a cloud operator. We focus on the customer of
a cloud operator in Section 4.3 and discuss challenges when provisioning virtu-
alised network functions. Strategies for resource provisioning of a human-cloud
are considered in Section 4.4. Finally, we provide lessons learned from our stud-
ies in Section 4.5.

4.1 Background and Related Work

This section provides related work relevant to this chapter. First, we discuss
studies regarding energy e�ciency in data centres in Section 4.2,. Then, we fo-
cus on research on mobile network tra�c characteristics, to be used in Sec-
tion 4.3. Finally, we focus on crowdsourcing research and provide background
information for Section 4.4.

4.1.1 Energy-E�iciency in Data Centres

Several papers have been published, proposing new architectures for data cen-
tres which provide more resilience or are more cost e�ective[86–88].

Bolla et al. [89] provide an overview over approaches to reduce energy con-
sumption caused by network infrastructure, o�ering a complementary view to
the methods suggested in this chapter.

Heller et al. [90] published a paper considering the tradeo� between energy
e�ciency and resilience. They use the fat-tree architecture similar to [86, 87]
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which is based on commercial of-the-shelf network equipment. During normal
network operation, the additional switches used for backup paths are switched
o� and only turned on in case of high load or network failures. The proposed
mechanism is implemented in a testbed where OpenFlow is used for the switch
management. However, they only turn o� the switches and not the servers,
which only consume between 5 % to 10 % of the overall energy consumption.

Kliazovich et al. [91] developed a simulation environment for computing the
energy consumption of di�erent data centre architectures. In addition to show-
ing the share of network and server energy consumption, they present how
much energy can be saved while using dynamic voltage and frequency scaling
or dynamic power management.

One of the �rst paper presenting a dynamic resource management according
to the o�ered load is presented by Chase et al. [92]. They propose an architecture
where server clusters are dynamically resized in accordance to the negotiated
SLAs.

A more detailed approach is presented by Chen et al. [93]. Three solutions
are proposed to reduce the power consumption of servers in a data centre. For
the �rst solution, the workload behaviour of the near future is predicted while
the second solution is a reactive solution, using periodic feedback of system
execution. The third proposed solution is a hybrid solution using a combination
of prediction and periodic feedback.

The goal of the authors in [94–96] is to run a minimum number of servers in a
data centre to maximise the revenue of the service provider. The considered data
centre hosts a web page application. While in [94] the authors do not consider
user impatience and the fact that servers consume energy without producing
revenue during wake up, [96] takes both into account. In [95], the authors in-
troduced a policy for dynamically adapting the number of running servers. The
goal of the paper was to �nd the best tradeo� between consumed power and
service quality.

In [97] the authors present a model for server farms using exponential inter-
arrival, service and setup times. They consider di�erent policies for powering
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down servers for �nite and in�nite servers.

4.1.2 Mobile Network Tra�ic Characteristics

The authors of [98] which include a co-author of [10], the basis for Section 4.3,
provide a detailed evaluation of mobile network traces taken from a large Euro-
pean mobile network operator.

Having access to core network datasets, the authors of [99, 100] both take the
approach of looking at high-level user tra�c characteristics, focusing on tem-
poral and spatial variations of user tra�c volume and investigating the in�u-
ence of di�erent devices on this metric. Additional user �ow and session tra�c
metrics are being studied in [101] with the conclusion that, in comparison to
wired tra�c, short �ows are occurring more frequently. In 2006, a core network
measurement study of various user tra�c related patterns was conducted, pro-
viding an initial insight into Packet Data Protocol (PDP) context activity and
durations [102].

In [103], mobile network traces are used to simulate a malicious signalling
storm by transmitting low-volume user plane tra�c with specially crafted inter-
departure times, causing constant signalling. The authors of [104] investigate
in�uence of core network elements on one-way delays in mobile networks.

4.1.3 Modeling Crowdsourcing Platforms

The term crowdsourcing is a neologism combining the terms ‘crowd’ and ‘out-
sourcing’. It was �rst introduced by Je� Howe in 2006 [105] and describes
a new form of work organisation with a smaller granularity than traditional
forms [106]. In contrast to traditional forms of work organisation, work is di-
vided in individual tasks that can be completed independent of each other. These
tasks are not directly assigned to an employee but published on a crowdsourc-
ing platform in form of an open call. Users publishing tasks on crowdsourcing
platforms are referred to as employers, users accepting and accomplishing tasks
as workers. Workers can freely choose which task to work on, other than in tra-
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ditional forms of work organisation. In commercial applications, workers are
usually paid for successfully completed tasks and do not receive hourly wages.
Crowdsourcing platforms act as mediators in this environment, i.e., provide in-
frastructure for posting tasks and submitting task results and negotiate in case
of disagreements between workers and employers.

The crowdsourcing approach is used for a large variety of non-pro�t, aca-
demic, and commercial applications, including information gathering during
crisis [107], analysis of astronomic images [108], and by numerous large scale
labour providers, e.g., Amazon Mechanical Turk (MTurk)1, Microworkers2, and
Innocentive3. Depending on the speci�c use case, the features of the crowd-
sourcing platform, the workers, and employers di�er. Therefore, we focus in this
work on commercial micro-tasking platforms for the development and evalua-
tion of our model.

Commercial micro-tasking platforms like MTurk or Microworkers are spe-
cialised labour providers for very �ne granular tasks that can be easily com-
pleted by a human within a few seconds to a few minutes, but cannot be solved
using automatic approaches. These tasks include, e.g., image tagging, text cre-
ation, or subjective ratings. As the tasks are highly repetitive, they are often
submitted by the employers in form of campaigns, representing batches of sim-
ilar tasks.

Several e�orts have already been made to describe certain aspects of micro-
tasking platforms in analytic models. Faradani et al. [109] modelled the ar-
rival process of workers using a non-homogeneous Poisson process in order
to derive optimal pricing strategies for the employers. The model is based on
a crawled dataset from MTurk including about 130,000 campaigns with in total
over 4,000,000 tasks. Wang et al. [110] analysed the completion time of crowd-
sourcing campaigns using a survival analysis based on a crawled dataset from
MTurk consisting of more than 160,000 campaigns and approximately 6,700,000

1http://www.mturk.com, Accessed: November, 21st 2015
2http://www.microworkers.com, Accessed: November, 21st 2015
3http://www.innocentive.com, Accessed: November, 21st 2015
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tasks over a period of 15 months. They were able to show the impact of time-
independent factors, e.g., the payment or the type of the task, on the completion
time. In order to optimise the costs and the completion times of single jobs, Bern-
stein et al. [111] use aM/M/c queueing model to describe a crowdsourcing re-
tainer approach. Here, workers are paid for staying online to wait for potentially
upcoming tasks. The model was validated in a proof-of-concept experiment with
500 users on MTurk.

4.2 Data Centres

Data centres are used to host most of the applications running in the Internet,
including those discussed earlier in this work. Servers are operated by the data
centre operator and rented out to customers as part of a Platform as a Service
(PaaS) or Infrastructure as a Service (IaaS) scheme. In order to increase revenue
the data centre operator is interested in decreasing server power drain, one of
the major matters of expense for data centres [112], while satisfying SLAs with
their customers.

This section studies this scenario and provides a model intended for data cen-
tre operators to manage this tradeo�. In Section 4.2.1 we provide a mathematical
formulation for the considered scenario. Then, in Section 4.2.2 we model this
scenario using methods from queueing theory and derive metrics which can be
used to evaluate the di�erent approaches and con�gurations of data centres. In
Section 4.2.3 we present di�erent methods for solving the previously introduced
queueing model. Finally, in Section 4.2.4 we study the performance implications
of the model and discuss the tradeo� between power drain and su�ered waiting
time.

4.2.1 Considered Data Centre Architectures

A widely used data centre architecture is the three-tier architecture shown in
Figure 4.2. The upper two layers of the architecture are responsible for distribut-

135



4 Resource Dimensioning and Management Schemes in Clouds

Core
layer

Aggregation
 layer

Edge
layer

Figure 4.2: Considered standard three-tier data centre architecture.

ing the tra�c and consist of layer 3 switches where each switch has a backup
switch. In this section, we focus on the edge layer and especially on a single Per-
formance Optimised Data centre (POD). A POD consists of a number of servers
connected over top of rack switches to an aggregation switch.

We assume that new jobs entering the system arrive with exponentially dis-
tributed inter-arrival time. When a job arrives at the POD, it is forwarded to an
idle server. If no idle server is available, the job is queued. Once a server �nishes
processing its current job, it picks another one from the queue.

Our goal is to evaluate how much power is consumed in a data centre and
how much can be saved when servers, currently not processing any job, are
switched o�. Therefore, we developed two di�erent data centre models. The
�rst model, the traditional data centre, consists of two-state servers only which
are either busy or idle, as shown in Figure 4.3a For the second model, a more
energy-e�cient data centre, a subset of the servers may additionally be switched
on and o� on demand, shown in Figure 4.3b as recommended in [113].

Traditional Data Centre

For the traditional data centre model, each of the n servers is either on and
processing a job or on and idle as depicted in Figure 4.3a. If a busy server �nishes
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Figure 4.3: Assumed power state transition on a per server level.
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Figure 4.4: Considered system model for an energy-e�cient data centre.

processing a job and the queue is empty, the server becomes idle. Once a new
job is assigned to a yet idle server, the server becomes busy. According to our
measurements of a server with an Intel twelve core processor 2.67 GHz and
32 GB RAM, a server currently processing a job consumes ebusy = 240 W. An
idle server still consumes eidle = 170 W.

Energy-E�icient Data Centre

For the second model, we di�erentiate between two types of servers: n base-line
servers which are always on and m reserved servers to be enabled on demand.
If they are enabled, their power drain is similar to that of the default data centre
model. If they are disabled, each server consumes eo� = 0 W. The n servers
which are always enabled consume the same power as in the default data centre
model. If the system queue has a length exceeding θ2 where θ2 ∈ (0,m) holds,
the m reserved servers are enabled and stay enabled until the total number of
jobs in the system drops to θ1 for θ1 ∈ (0, n). The transition between power
levels for each of the reserved servers is depicted in Figure 4.3b.

The energy-e�cient data centre operation model with the parameters θ1 and
θ2 is depicted in Figure 4.4 and described in detail in the next section.
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4.2.2 Model for Energy-E�icient Data Centres

In this section, we �rst discuss the default data centre model, where a server
can either be idle or busy, processing a job. Afterwards, the energy-e�cient
data centre model with three states, i.e. idle, busy, or o�, is de�ned.

Traditional Data Centre

We consider new jobs arriving at a POD with exponential iid inter-arrival times
with rate λ. Each server accepts only one job at a time and processes it with an
exponentially distributed service time with mean 1

µ
. Then, the system can be

modelled using a simple M/M/n delay system. Here, the random variable X
gives the number of jobs in the system andx(i) is the stationary state probability
that i jobs are currently in the system.

We obtain the mean power drain of such a system based on the measured
values presented in Section 4.2.1. If less than i < n jobs are currently in the
system, then i servers are busy each consuming ebusy W and n − i servers are
idle, where each consumes eidle W. If i ≥ n jobs are in the system all servers are
busy and consume n · ebusy W in total.

For stationary state probabilities x(i), we obtain the mean power drain as

Emax =

n∑
i=0

x(i)(iebusy + (n− i)eidle) + nebusy

+∞∑
i=n+1

x(i). (4.1)

Furthermore, we can provide a lower bound for the power drain of the sys-
tem by assuming that a server is turned o� if it is not processing a job, thus
consuming eo�. By substituting eo� for eidle in Equation 4.1 we obtain

Emin =
n∑
i=0

x(i)(iebusy + (n− i)eo�) + nebusy

+∞∑
i=n+1

x(i).
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Energy E�icient Data Centre

We extend the queuing system to model the energy-e�cient data centre model
introduced in Section 4.2.1, by adapting the state space of the model. We now
model the system state as a tuple (i, j) where i is gives the number of jobs in
the system and j is 1 if the reserved servers are active and 0 if they are not.
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Figure 4.5:M/M/(n+m)(θ1,θ2) system with macro states Si1, Si2, and S3 for the
calculation of x(i, {0, 1}) in the energy-e�cient data centre.
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The state diagram for this queueing model is given in Figure 4.5. The system
activates the reserved servers if more than θ2 jobs are in the queue, i.e. more
than n + θ2 jobs are in the system. The reserved servers are deactivated if the
number of jobs in the system drops below θ1.

Again, X is the random variable describing the number of jobs in the system
if the reserved servers are activated or deactivated, and x(i, j) is the stationary
probability that i jobs are in the system, and the reserved servers are activated,
for j = 1, or deactivated, for j = 0.

Based on the state space and transitions, we formulate macro state equations,
de�ned as the sum of all local balance equations of the states contained in the
macro state. They provide, when solved, the state probabilities required for fur-
ther analysis.

First, we consider the macro state equations for state Si1, c.f. Figure 4.5, which
contains all system states where up to i−1 jobs are in the system and no reserved
servers are activated. Depending on i, we obtain the following equations

iµx(i, 0) = λx(i− 1, 0) 0 < i < θ1, (4.2)

iµx(i, 0) + θ1µx(θ1, 1) = λx(i− 1, 0) θ1 ≤ i ≤ n, (4.3)

nµx(i, 0) + θ1µx(θ1, 1) = λx(i− 1, 0) n ≤ i ≤ n+ θ2. (4.4)

Next, we examine the system state if the reserved servers are activated. The
macro state Si2 contains all system states with activated reserved servers and at
least i+ 1 jobs in the system.

We get

iµx(i, 1) = λx(i− 1, 1)

+λx(n+ θ2, 0) θ1 < i ≤ n+ θ2 + 1, (4.5)

iµx(i, 1) = λx(i− 1, 1) n+ θ2 + 1 < i ≤ n+m, (4.6)

(n+m)µx(i, 1) = λx(i− 1, 1) n+m < i. (4.7)
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The third macro state S3 contains all system states where only the base-line
servers are activated and its equation states

λx(n+ θ2, 0) = θ1µx(θ1, 1). (4.8)

Finally, the normalisation condition holds:

1 =

n+θ2∑
i=0

x(i, 0) +

+∞∑
i=θ1

x(i, 1). (4.9)

Based on the state probabilities we can derive the required performance met-
rics for our analysis.

The carried tra�c and utilisation is given by

a =
λ

µ
and ρ =

λ

µ(n+m)
.

Furthermore, we obtain the mean queue length

Ω =

n+θ2∑
i=n

(i− n)x(i, 0) +

+∞∑
i=n+m

(i− (n+m))x(i, 1).

By applying macro state Equation 4.7 we obtain for all i > n+m

x(i, 1) = ρx(i− 1, 1) = x(n+m, 1)ρi−(n+m), (4.10)
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Using this result and the �rst derivative of the geometric series we get

Ω =

n+θ2∑
i=n

(i− n)x(i, 0) + x(n+m, 1)

+∞∑
i=0

iρi

=

n+θ2∑
i=n

(i− n)x(i, 0) + x(n+m, 1)
ρ

(1− ρ)2
.

Now, we can give the mean waiting time for all jobs in the system as

E[W ] =
Ω

λ
.

Finally, we obtain the mean power drain similarly to Equation 4.1 as

E =

n∑
i=0

x(i, 0)(iebusy + (n− i)eidle +meo�)

+

n+θ2∑
i=n+1

x(i, 0)(nebusy +meo�)

+

n+m∑
i=θ1

x(i, 1)(iebusy + (n+m− i)eidle)

+ x(i > n+m)(n+m)ebusy.

4.2.3 Analysis of Proposed Data Centre Models

Using the macro state equations discussed in Section 4.2.2, there are multiple
ways to obtain the state probabilities. This section examines the di�erent ap-
proaches.
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System of Linear Equations

First, it is possible to directly solve the system of linear equations implied by
the micro or macro states. Solvers for linear equation systems scale cubic in
the dimension of the matrix, which in this case is bounded by the system size.
Especially for a large numbers of server, this prevents an exhaustive search of
the parameter space.

Closed-form Solutions

Thus, we obtain closed form solutions for the state probabilities. These equa-
tions can be derived by recursively applying the macro state equations.

All equations feature a factor x(0, 0) which in turn can be calculated using the
normalisation property given in Equation 4.9. Due to the length of the individ-
ual formulas, the following shorthand is introduced: For each state probability
x(i, j) depending on the factor x(0, 0) we de�ne x̄(i, j) = x(i, j) · x(0, 0)−1,
i.e. we cancel the factor.

For 0 < i < θ1, we get

x(i, 0) = x(0, 0) · a
i

i!
.

As a further shorthand for substitution, we de�ne

si =
i∑

k=0

ak(n− k − 1)!.

Using this de�nition, we get the state probability for θ1 jobs in the system with
activated reserved servers as

x(θ1, 1) = x(0, 0) · a
n+θ2+1(
1 + a

θ1

) · (θ1 − 1)!
(

(1−aθ2 )θ1
1−a + aθ2sn−θ1

)
nθ2n! (n− θ1 + 1)!

.
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For θ1 ≤ i ≤ n, we get

x(i, 0) = x(0, 0) ·
(
x̄(n, 0)ai−θ1+1

(i− θ1 + 1)!
− x̄(θ1, 1)θ1si−θ1

i!

)
.

And for n < i ≤ n+ θ2, we get

x(i, 0) = x(0, 0) ·
(

x̄(n, 0)ai−θ1+1

ni−n(n− θ1 + 1)!

−x̄(θ1, 1)

(
θ1sn−θ1a

i−n

n!
+
θ1(1− ai−n)

1− a

))
.

Thus, we have all probabilities for system states where only the baseline
servers are active. For the reserved servers, we obtain state probabilities for
θ1 < i ≤ n+ θ2 + 1 as

x(i, 1) = x(0, 0) ·

(
x̄(θ1, 1)

ai−θ1θ1!

i!
+ x̄(n+ θ2, 0)

i−θ1∑
k=1

ak(i− k)!

i!

)
.

For n+ θ2 + 1 < i ≤ n+m, we get

x(i, 1) = x(0, 0) · x̄(n+ θ2 + 1, 1) · a
i−(n+θ2+1)(n+ θ2 + 1)!

i!
,

and �nally for i > n+m

x(i, 1) = x(0, 0) · x̄(n+m, 1)

(
a

n+m

)i−(n+m)

.

As discussed earlier, the probability of an empty system is given by the normal-
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isation condition:

x(0, 0) =

1 +

n+θ2∑
k=1

x̄(k, 0) +

∞∑
k=θ1

x̄(k, 1)

−1

.

While these closed form solutions allow for the derivation of analytical prop-
erties of the model, performing a numerical analysis of a given parameter space
is di�cult due to numerical instability of the equations.

Recursive Algorithm

To avoid these problems, we introduce a recursive algorithm to calculate the
state probabilities based on the macro state equations. To this end, we �rst de�ne
x(0, 0) as a constant K0, and then iteratively compute the state probabilities.
For an earlier application of this concept, see [114]. First, we calculate x(i, 0) for
0 < i < θ1 as a factor of x(0, 0) using Equation 4.2. To obtain the probability
for x(θ1, 0), not only x(θ1 − 1, 0), but x(θ1, 1) is required, which we have not
obtained yet. As this is the case with all x(i, 0) for θ1 ≤ i ≤ n+θ2 we implicitly
introduce a second constant K1 for x(θ1, 1) and calculate all x(i, 0) for θ1 ≤
i ≤ n+ θ2 as a linear combination of x(θ1 − 1, 0) and K1 as follows:

x(i, 0) = x(θ1 − 1, 0)ui +K1vi. (4.11)

For i = θ1, Equation 4.3 requires uθ1 = a
θ1

and vθ1 = 1. Continuing this
pattern by successively applying Equation 4.3 for θ1 < i ≤ n, we get

ui =
a

i
ui−1,

vi =
a

i
vi−1 +

θ1

i
.
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We use Equation 4.4 to continue for n < i ≤ n+ θ2, and get

ui =
a

n
ui−1,

vi =
a

n
vi−1 +

θ1

n
.

Thus, we arrive at a probability for x(n + θ2, 0) depending on x(θ1 − 1, 0),
which we have obtained, and K1 = x(θ1, 1) which we still need to acquire:

x(n+ θ2, 0) = x(θ1 − 1, 0)un+θ2 −K1vn+θ2 .

We apply Equation 4.8 and solve for K1 and obtain

K1 =

a
θ1
un+θ2

a
θ1
vn+θ2 + θ1

x(θ1 − 1, 0),

which allows to calculate the probabilities of x(i, 0) for θ1 ≤ i ≤ n+ θ2 using
Equation 4.11.

We can now obtain the probabilities for states in which the reserved servers
have been activated, beginning with (θ1 + 1, 1) we apply Equation 4.5 for all
θ1 < i ≤ n+ θ2 + 1 and get

x(i, 1) =
a

i
(x(i− 1, 1) + x(n+ θ2, 0))

which we can calculate directly as all probabilities are known in relation toK0.
We continue applying Equation 4.6 and obtain

x(i, 1) =
a

i
(x(i− 1, 1) + x(n+ θ2, 0)) (4.12)

for n+ θ2 + 1 < i ≤ n+m.

Finally, we need to calculate the probability that the system is in states (i, 1)
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for i > n+m where we need to obtain

x(i > n+m, 1) =

+∞∑
i=n+m+1

x(i, 1).

Due to the recursive de�nition of Equation 4.7, we can write

x(i, 1) = ρx(i− 1, 1) = x(n+m, 1)ρi−(n+m)

for ρ = a
n+m

and i > n+m.
Applying this rede�nition to Equation 4.12 we get

x(i > n+m, 1) =

+∞∑
i=n+m+1

x(i, 1)

= x(n+m, 1)

+∞∑
i=1

ρi.

After applying the properties of the geometric series and basic transformations
we get

x(i > n+m, 1) = x(n+m, 1)
2− ρ
1− ρ .

Now that all probabilities are known in relation to K0, we apply Equation 4.9
to obtain the inverse ofK1 and norm our values to obtain the real probabilities.

This approach allows for a fast and numerically stable calculation of the state
probabilities and can be used to compute the required performance metrics for
the complete parameter space.

4.2.4 Evaluation of Energy Saving Potential

Based on the metrics obtained in Section 4.2.2, we can now compare the intro-
duced default data centre and energy-e�cient data centre models.
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An optimal system setting would decrease both waiting time and power drain.
For the discussion of this optimisation problem, we require additional notation
which is introduced �rst. We assume that the job inter-arrival rate λ, the job ser-
vice rate µ, and the total number of servers ntotal are constants and not subject
to the optimisation process. Thus, the complete system can be described by the
number of base-line servers n, the server activation threshold θ2, and the server
deactivation threshold θ1. The number of reserved servers m can be easily de-
rived if the total number of servers ntotal is known. Given these parameters, we
de�ne e(n, θ1, θ2) to be the mean power drain of the system and w(n, θ1, θ2)

be the mean waiting time of all jobs.

A general approach for solving such multi objective optimisation problems is
de�ning a single aggregate objective function, such as:

f(n, θ1, θ2) = αe(n, θ1, θ2) + (1− α)w(n, θ1, θ2), (4.13)

for 0 ≤ α ≤ 1. Then, it is possible to choose an α in such a way that a desirable
tradeo� is made. Thus, the optimisation problem can be de�ned as

min f(n, θ1, θ2) s.t. 1 < n < s, (4.14)

1 < θ1 < n− 1,

1 < θ2 < m− 1,

and trivially solved by evaluating all valid parameter combinations, sorting the
objective function values and choosing the minimum.

This approach has the obvious disadvantage that while a parameter combi-
nation may be optimal according to the chosen objective function, it may very
well not be optimal to the stakeholders in the scenario. For example, it may be
possible that another system con�guration exists with a minimally greater mean
waiting time and a greatly reduced power drain. To be able to decide whether
such a tradeo� exists, a more global view of the problem space is required. How-
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ever, due to the number of possible parameter combinations, it is di�cult to se-
lect appropriate parameters. Thus, we reduce the number of possible parameters
by considering only Pareto-optimal states.

To de�ne Pareto-optimality beyond the intuitive de�nition used earlier, we
need to introduce the product order partial relation. LetX ⊆ Rn be our feature
set. We set x � x∗ for x, x∗ ∈ Rn i�

xi ≤ x∗i ∀1 ≤ i ≤ n (4.15)

holds. Then, x∗ is Pareto-optimal in X if no x ∈ X\ {x∗} exists, such that
x � x∗ holds.

To study the system behaviour we consider an exemplary rack of ntotal = 100

servers, where new jobs arrive with a negative exponential inter-arrival time
with mean 10 ms, yielding λ = 1/10 ms−1. To determine the mean service
time we turn to [115] where it is reported that in average servers are operat-
ing at 10 % to 50 % of their maximum utilisation levels. With this in mind we
assume that the service time for job completion is again negative exponential
with a mean of 400 ms, which implies µ = 1/400 ms−1, resulting in an overall
utilisation of λ

µntotal
= 0.4, well within the described limits.

Based on these parameters, we can compute the mean waiting time and power
drain for the default data centre model. The mean waiting time achieved by the
default data centre model provides a lower bound for the achievable waiting
time for the energy-e�cient data centre model, as all n servers are always ei-
ther idle or busy. For the parameters described above, the default data centre
model achieves a mean waiting time for all jobs of E[W ] = 4.75× 10−14 ms.
Furthermore, the mean power drain of the system, under the assumption that
no servers are disabled, is set at Emax = 100 %, which provides an upper
bound for the energy-e�cient data centre model. However, if we assume that all
servers are immediately switched o� if they are not processing any jobs, we get
Emin = 48.48 %, which is the lower bound for the energy-e�cient data centre
model.

150



4.2 Data Centres

50

60

70

80

90

100

0 5 10 15 20
Mean waiting Time E[W] (ms)

Po
w

er
 d

ra
in

 E
 (k

W
)

Pareto-optimal No Yes

Figure 4.6: Set of Pareto-optimal values for the energy-e�cient data centre.

Using the same parameters we evaluate the systems performance metrics,
the mean power drain e(n, θ1, θ2) relative to Emax, and the mean waiting
time w(n, θ1, θ2) for the energy-e�cient data centre. As mentioned before, the
Pareto-optima of the system are a subset of the R2, with one dimension corre-
sponding to the mean waiting time, the other to the mean power drain.

We plot all Pareto-optima in Figure 4.6, the resulting curve has hyperbolic
properties, going asymptotically to the mean waiting time E[W ] as well as
asymptotically to a parallel of the lower bound of the power drain E. This al-
lows us to select an acceptable increase in mean waiting timeE[W ], for example
one which would still satisfy a service level agreement, and harness the result-
ing energy savings. On the other hand, we can decide on the required energy
savings and infer if the corresponding mean waiting times are acceptable. One
possible parameter choice would allow the reduction of the power drain E by
40 % while only increasing the waiting time by less then one millisecond.

Given the set of Pareto-optima, we can investigate the parameter choice that
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Figure 4.7: Impact of parameter selection on mean waiting time E[W ].

leads to these optima. To this end, we plot the system parameters for each op-
timum in Figure 4.7. The optima themselves are sorted according to the mean
waiting time E[W ]. From the �gure we observe see that generally, the server
deactivation threshold is very close to the number of base-line servers, in most
cases n− θ1 = 2, the closest possible distance due to the macro state equation
constraints. Furthermore, the number of base-line servers is decreasing as the
mean waiting timeE[W ] increases. The mean waiting timeE[W ] spectrum can
be partitioned in interleaving sections, during which the number of base-line
servers remain constant. Furthermore, in such a section, the server activation
threshold increases superlinearly.
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4.3 Virtualised Network Functions in 3G Core
Networks

In this section we apply the theoretical methods discussed in Section 4.2 and
apply them to the real-world challenge of virtualised network functions. We
consider the exemplary use case of a virtualised Gateway GPRS Support Node
(GGSN). Here, network operators consider the virtualisation of previously phys-
ical middleboxes, in order to gain elasticity and reduce costs.

In contrast to the last section, we assume a loss model, as connection estab-
lishment requests are not queued in reality but expire if no capacity is available.
Thus, we consider the blocking probability instead of the mean waiting time
as a metric. As a second metric we consider the number of provisioned servers
which need to kept powered on.

This section is structured as follows: In Section 4.3.1 we �rst introduce a model
for a traditional GGSN. Then, we extend it to be applicable for the study of a vir-
tualised GGSN. In Section 4.3.2 we describe the procedures used to obtain and
process input parameters for use in our simulation study. Finally, in Section 4.3.3
we study possible gains by a virtualised GGSN by considering the tradeo� be-
tween the required servers to be active simultaneously and the incurred block-
ing probability.

4.3.1 Models of GGSN Implementations

In this section we provide a model for a traditional GGSN and discuss a model for
a virtual GGSN using Virtualised Network Function (VNF). In VNF [116] static
network middleboxes are replaced by commodity hardware. The tasks solved
by the original middleboxes are then solved by dedicated software.

Traditional GGSN

First, we give a model for a traditional GGSN, i.e. a static network component.
While we consider the GGSN to be one �xed entity, it can in reality consist of
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Figure 4.8: Considered model of a traditional GGSN.

multiple servers. However, due to the fact that the GGSN is purchased from a
vendor as a middlebox, idle servers can be neither deactivated nor reused for
other purposes.

We present an abstract queueing model for the traditional GGSN in Figure 4.8.
New tunnels requests arrive according to a Poisson process with rate λ(t) at the
GGSN. This server will support a maximum tunnel capacity of c. When this ca-
pacity is reached, blocking will occur and newly incoming tunnels requests are
rejected. Traditionally, GGSNs can be expected to be overdimensioned in such
a way that this rarely happens. If the new tunnel is accepted, it will occupy
one of the serving units of the server for the duration µ(t) of the tunnel. As
stated earlier, we can not model the tunnel duration to be markovian, result-
ing in a M/GI/c loss system. In order to give quality of service guarantees the
network operator is interested in the system’s blocking probability pB , which
we consider to be a key metric of our model. Additionally, the previously de-
scribed diurnal patterns can also be modelled by adjusting the arrival and serv-
ing process distributions for each time of day. This alternatively also allows just
to investigate the busy hour and thus the system’s peak load.

GGSN using Network Function Virtualisation

Next, we introduce concepts from VNF, i.e. the idea to replace middleboxes with
commodity hardware as an extended model in Figure 4.9. This allows us to re-
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Figure 4.9: Considered model of a virtualised GGSN.

alise bene�ts from cloud computing, as we are now able to scale out, instead of
up. The assumptions of the Markov arrival process λ(t) and the serving time
distributions µ(t) are carried over. However, instead of one server processing
every tunnel, this model assumes that there are up to smax virtualised servers
si. Each of these is less powerful than the traditional GGSN, having a tunnel
serving capacity of ci � c and a total system capacity of cmax = smax × i.

In its initial state, for e�ciency, all but a small portion of the server instances
are considered to be disabled. Only, when a certain condition is reached, a new
server instance is provisioned. As a simple example, one instance could be kept
in reserve for upcoming requests and an additional would be provisioned as soon
as the reserve is used. Similar rules should apply to the shut-down of servers and
form a hysteresis with the boot condition. For example it would be possible to
keep at least one server in reserve but never more than two.

If these conditions are not carefully selected and are in tune with the ex-
pected boot time of an instance, additional blocking can occur. Despite not hav-
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ing reached its maximum capacity, this system would still reject tunnel requests
during the provisioning phase when no tunnel slots are available. This could be
remedied by a request queue. However, this would introduce additional com-
plexity to the system without providing real bene�t, as mobile devices or appli-
cations will repeat their attempts and would timeout when the request is taking
too long.

To place incoming tunnel state on one of the available servers a load balancer
is required. To ensure that the system in run time can scale down to its actual
needs, the balancer should place tunnels on servers that are the fullest, keeping
the reserve free. It may even migrate tunnel state from almost empty servers
away so that these can be shut down, when the shut-down condition is ful�lled.
Keeping instance close to their capacity should also have no impact on the per-
formance a mobile device associated to a speci�c tunnel experiences.

4.3.2 Mobile Network Tra�ic Characteristics

In order to evaluate our models introduced in Section 4.3.1, we use data gath-
ered from a nation-wide mobile operator. This allows for precise core network
evaluations and the creation statistical �ts for the observed processes. In this
section we �rst describe the dataset used for the evaluation and afterwards, we
derive the random variables required for our models.

Dataset Description

All data was collected by the Measurement and Tra�c Analysis in Wireless Net-
works (METAWIN) monitoring system [117] with measurement probes located
at the Gn interface within the core network, , as shown in Figure 4.10. The Gn
interface is a IP based Wide Area Network (WAN) used to connect GGSN and
Serving GPRS Support Node (SGSN) installations. This access to the mobile core
network provides METAWIN with a broad access to mobile signalling tra�c.

For this investigation we employ GPRS Tunneling Protocol (GTP) protocol
data gathered by METAWIN. This data includes the Radio Access Technology

156



4.3 Virtualised Network Functions in 3G Core Networks

User
Equipment

Radio Access Network Core Network

NodeB Radio
Network

Controller

Serving 
GPRS

 Support
 Node

Gateway 
GPRS

 Support
 Node

Internet

Monitoring 
Point

Gn

Figure 4.10: Overview of the METAWIN monitoring architecture in a 3G mobile
network [117].

(RAT) identi�er as well as the terminal types of the mobile clients, by use of the
Type Allocation Code (TAC) part of the International Mobile Equipment Identity
(IMEI). To meet privacy requirements, METAWIN anonymises all captured data.
The application-level payload is removed and all user identi�ers are hashed with
one-way functions before data storage. Individual UEs in our dataset can be
di�erentiated by the hashed Mobile Station Identi�er (MS-ID), but not traced
back to the actual user.

The used dataset is a week-long trace from the third week of April 2011. It
consists of 2.2 billion aggregated �ows for user tra�c and 410 million GTP Tun-
nel Management transactions. It was tapped at one of the GGSNs of the operator
and contains about half of the total tra�c volume handled by the operator in this
period.

Statistical Evaluation

Using this dataset, we can obtain the distributions required for the models intro-
duced in Section 4.3.1. First, we study the tunnel inter-arrival time in Figure 4.11.
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Figure 4.11: Empirical and exponentially �tted CDFs of the tunnel inter-arrival du-
ration by time of day. CDFs are overlapping as the coe�cient of deter-
mination is close to 1.
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Table 4.1: Parameters for the exponentially distributed inter-arrival times and cor-
responding Pearson correlation coe�cients.

Time of day λ Rarr

0h-5h 10.67 0.99
6h-11h 24.53 0.99
12h-17h 29.25 0.99
18h-23h 23.49 0.98

The arrival of new tunnel requests can be used as a measure for the load
a GGSN experiences, as every incoming tunnel carries several signalling in-
teractions, processing and state with it. Typically, a device will only hold one
tunnel at a time, but this tunnel can be initiated and shut down in rapid suc-
cession, causing the aforementioned issues in the radio network. The arrivals
also show a strong diurnal e�ect, closely resembling patterns present in the ac-
tual user tra�c: We observe a decline of arrivals, i.e. longer inter-arrivals, late
in the night and during the early morning hours with a peak rate in the after-
noon and early evening. To represent this time-of-day dependence in the model,
the measurement was split into the four time slots displayed in the �gure. Each
slot was then �tted with an exponential distribution by way of moment match-
ing. This results in the cumulative negative exponential distribution function
F (x) = 1− e−λx, x ≥ 0 with λ given in Table 4.1 for the four time slots. The
�tted functions match the empirical data, with some deviation present at the left
tail but overall with a positive correlation coe�cient approaching 1.

The second important tunnel property is the duration of the PDP Context
state accompanying a GTP tunnel held at the GGSN. Figure 4.12 shows the tun-
nel durations split up for the time of day, as there is once again a slight diurnal
e�ect present, albeit with shifted peaks. Longer tunnels tend to occur at night,
shorter tunnels during midday. Further properties of the tunnel duration, espe-
cially the correlation with device types and operating systems, are investigated
in detail in [98].
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Figure 4.12: Empirical and �tted CDFs of the tunnel duration by time of day with
�tted rational functions.

Table 4.2: Inverse functions �tted to the empirical duration distribution and corre-
lation coe�cients of the �t.

Time of day Inverse �tted duration function Rdur

0h-5h 0.91− 60.61y − 3498.78y3 − 110.70y+2289.94y3

y−1.00
0.99

6h-11h 1 + 117.48y − 368.64y2 − 1720.13y4

y−1.00
0.99

12h-17h 0.95 + 69.49y + 81146.10y3+1.08×106y5

805−802.01y
0.99

18h-23h 0.91 + 82.05y − 2936.93y4

1.94y−1.95
0.99
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Furthermore, the model requires information on the tunnel durations. How-
ever, none of the basic probability distributions, e.g. exponential, gamma, and
Weibull distributions, �t the tunnel duration well enough. One of the reasons for
this probably being the correlation of the tunnel duration to a large number of
factors, including user behaviour and network-speci�c timers and procedures,
e.g. tunnels are shut down by the network after speci�c events, introducing arte-
facts which make it hard to �t any distribution against. Instead, we �t rational
functions to the empirical CDF using the Eureqa [118] software.

This allows for a much closer �t while still smoothing out some of the arte-
facts. Table 4.2 displays these functions �tted to the inverse CDF, to be directly
used for generating random numbers using the inversion method. Both the CDF
in Figure 4.12 as well as the Pearson correlation coe�cient con�rm the goodness
of the �tted functions.

4.3.3 Comparison of Traditional and Virtualised Approach

We implement the models introduced in Section 4.3.1 using a Discrete Event
Simulation (DES) with the SimPy4 package as foundation. The implementation5

as well as the considered scenarios6 are also publicly available as a reference. To
be in line with the measurement data we consider a simulation time for all simu-
lation scenarios of 7 days, with a transient phase of 60 minutes. Ten replications
of each scenario were performed. All error bars given in this section show the
5 % to 95 % quantiles of all replications.

We use the measurements introduced in Section 4.3.2 in order to dimension a
traditional GGSN as a baseline for all further studies. Based on these results, we
�rst examine the e�ects of network function virtualisation by scaling out instead
of up through a virtual GGSN model. Finally, we arrive at a more realistic version
of the virtual GGSN by taking the start-up and shut-down times into account.

4https://simpy.readthedocs.org/, Accessed: November, 21st 2015
5https://github.com/fmetzger/ggsn-simulation/, Accessed: November, 21st

2015
6https://github.com/cschwartz/ggsn-simulation-studies/, Accessed:

November, 21st 2015
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Traditional GGSN

Employing the inter-arrival times and duration of tunnels, we �rst study the
traditional GGSN model introduced previously. Whilst our measurements pro-
vide us with information on the frequency of new tunnels and the duration they
remain active, we have no reliable information on the number of active tunnels
the GGSN can support. Thus, in a �rst step, we dimension the GGSN in such a
way that a suitable blocking probability pB can be achieved.

In order to obtain a baseline dimensioning, we perform a simulation study,
considering the impact of an increasing o�ered load on the blocking probabil-
ity. We observe that as the number of supported parallel tunnels increases, the
blocking probability decreases. For the normalized inter-arrival no blocking is
occurring if we allow for more than 5000 parallel tunnels. Thus, we consider the
range of 4000 to 5000 parallel tunnels to be of special interest for the remainder
of the study.

Virtual GGSN

To study the feasibility of the virtual GGSN approach discussed in Section 4.3.1,
we compare the performance metrics of the virtual GGSN with that of a tradi-
tional GGSN. To this end, the virtual GGSN is simulated in varying con�gura-
tions. The number of servers and supported tunnels per server is chosen in such
a way that the results can be compared with those obtained from our study of
the traditional GGSN. Due to simulation time constraints, only a representative
subset of scenarios is simulated.

In the virtual GGSN model, servers are activated and deactivated on demand,
while in the traditional GGSN model, the single server is always on. For this
investigation a conservative start-up and shut-down time d of 300 s is chosen.
Generally, deactivating server instances reduces energy consumption, frees up
inactive servers for other use, or reduces cost to be paid to a cloud operator. For
this reason, the number of active servers I is a relevant performance metric in
the virtual GGSN model.
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Table 4.3: Manipulation check for the experimental factors based on one-way
ANOVA.

F (2, 1275) η2
p p Cohen’s Cohen’s

f2 ω̂2

blocking probability pB
maxTunnels n 15601.53 0.993 < 0.001 26.73 0.96
maxInstances Smax 10218.17 0.986 < 0.001 1.06 0.51
startstopDuration d 0.86 0.003 0.482 0.00 0.00
mean tunnel count nA
maxTunnels n 20448.34 0.994 < 0.001 27.71 0.96
maxInstances Smax 13348.25 0.989 < 0.001 1.06 0.51
startstopDuration d 2.87 0.009 0.022 0.00 0.00

For the analysis of the in�uence of di�erent model parameters on the per-
formance metrics, we perform a one-way ANOVA with the results in Table 4.3.
High values for the e�ect size estimators η2

p and Cohen’s f2[119] indicate that
the main in�uence for both blocking probability pB and mean number of tun-
nels nA is the maximum number of tunnels n and virtual GGSN instances Smax,
i.e. the total number of possible concurrent tunnels in the system. Therefore, we
study these parameters �rst.

In Figure 4.13 the CDF of the number of active servers for four di�erent virtual
GGSN con�gurations is displayed. We study the behaviour of a virtual GGSN
with Smax = 30 servers, where each server can support n = 100 or n = 150

tunnels. Then, we compare this with a virtual GGSN with Smax = 50 servers
and again n = 75 or n = 150 tunnels. We observe that increasing the number
of supported tunnels n per server allows a larger percentage of servers to be
shut-down or used for other tasks. This demonstrates the scaling capability of
the virtualised model quite well. Note that both the scenario with 30 servers
Smax and 150 maximum tunnels n per server as well as the scenario with 60

servers Smax and 75 maximum tunnels per server sharing the same maximum
amount of tunnels, i.e. 4500, being right at the centre of the interesting range
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Figure 4.13: Impact of the maximum number of tunnels n and number of servers
Smax on number of active servers in the virtual GGSN model.

of candidates.
Next, we study the blocking probability of the virtual GGSN system in Fig-

ure 4.14 and compare it to the results from the traditional GGSN model with
both systems dimensioned for 4500 tunnels. We observe that, considering the
start-up and shut-down time of 300 s, the blocking probability pB increases by
a factor of 1.46 if the virtual GGSN is comprised of 60 instances Smax dimen-
sioned for 75 concurrent tunnels n , i.e. 1

60
of the original server capacity. In

this case 27 of all 60 servers can be turned o� or used for other purposes at
50 % of the time. We conclude that choosing more powerful servers decreases
the blocking probability but reduces the potential to disable servers.

So far we have considered a conservative start-up and shut-down time of
servers d of 5 minutes, which can potentially occur in non-virtualised available
hardware. In the next section we study the impact of reduced start-up and shut-
down times with modern servers with fast storage, e.g. Solid State Disks (SSDs),
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to the traditional GGSN, 4500 maximum tunnels per server being on
a single server, i.e. 150 on 30, and 75 on 60 servers.
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Figure 4.15: Trade-o� between blocking probability pB and mean resource utili-
sation nA with regard to maximum number of instances Smax, maxi-
mum number of tunnels per server n, and start-up and shut-down time
d.

or containerised applications7.

Impact of Start-up and Shut-down Times

In this section, we �rst consider the impact of di�erent start-up and shut-down
times d on resource utilisation nA and blocking probabilities pB . Afterwards,
the in�uence of varying server start and stop times d on a �xed combination of
maximum tunnels n and servers Smax in the system is examined.

Figure 4.15 shows scenarios with 40 and 100 GGSN instances maxServers
and 1000 to 5000 total concurrent tunnels. For each scenario, we study the im-
pact of selecting a di�erent maximum number of tunnels n per server as well as
start-up and shut-down times d on blocking probability pB and mean resource

7https://www.docker.com/, Accessed: November, 21st 2015
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Figure 4.16: In�uence of start-up and shut-down time d on blocking probability pB
with regard to di�erent numbers of supported tunnels per instance n.

utilisation nA. The �rst observation is that by increasing the number of servers
Smax, i.e. scaling out, the blocking probability pB can be decreased, while main-
taining a relatively low mean resource utilisation nA. In addition to the previous
e�ects, we notice that a higher start-up and shut-down time d causes a slight
increase in blocking probability pB for servers with low tunnel capacity n.

We focus on a speci�c scenario in Figure 4.16, where 5000 total tunnels should
be supported by the system, to study this behaviour in more detail. To achieve
this goal, we consider three types of instances, with the server capacity n vary-
ing between 50 and 500. In each case we change the start-up and shut-down
time d between 20 and 300 s. We observe that lower server capacities n com-
bined with higher start-up and shut-down times d increase the blocking prob-
ability pB . This is due to the server start-up threshold mechanism, used in the
model, not taking the additional capacity gained by activating an additional
server into account. If a low capacity server with a long boot time is activated,
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there is a high probability that the system will quickly expend its capacity again.
Thus, it can be concluded that if smaller instances are to be used, e.g. due

to the fact that they are cheaper than large instances, start-up and shut-down
times should be kept minimal, for example by using containers or SSDs.

4.4 Dimensioning Crowdsourcing Platforms

While the last sections dealt with dimensioning of resources in machine cloud
systems, similar methodologies are applicable to crowdsourcing, or human-
clouds. Here, a crowdsourcing platform operator enables employers to distribute
microtasks to workers. In order to ensure the success of the platform, the op-
erator has to ensure the satisfaction of both the employers, as they provide the
main source of income, as well as the workers, the resource of the platform. This
tradeo� between employer satisfaction, i.e. time required before submitted tasks
are completed, and worker satisfaction, i.e. income, has to be managed by the
platform operator by carefully considering the number of workers employed at
the platform.

To this end, in Section 4.4.1 we �rst provide a mode for crowdsourcing plat-
forms regarding the two identi�ed metrics. Then, we study parameters of a real
world crowdsourcing platform in Section 4.4.2. Finally, in Section 4.4.3 we eval-
uate the provided model using the obtained parameters and discuss the tradeo�
between employer and worker satisfaction from the point of view of the plat-
form operator.

4.4.1 Considered Crowdsourcing Platform Model

In our model, schematically depicted in Figure 4.17, we consider a crowdsourc-
ing platform employing cworkers. The time between two campaigns being sub-
mitted is given by the random variableAC Each campaign consists of a number
of tasks, distributed according to the random variable Θ. We assume that each
task is then completed by one of the c workers in order of arrival. The time
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Campaign inter-arrival time Ac

 Campaign 
size Θ B µ(t)

…

B

B µ(t)

µ(t)

Figure 4.17: Considered crowdsourcing platform model.

required for completion is given by the random variable B.
From this model we derive two metrics in order to evaluate the performance of

the crowdsourcing platform. First, we consider the utilisation ρ for all workers.
This can be interpreted as a measure of earning potential for workers on the
platform and should be maximized in order to keep current workers and attract
new ones. Furthermore, we seek to obtain the mean task pre-processing delay
E[D], i.e., the time occurring before a worker begins to work on a task. This
measure is relevant for the employer and should be minimised. We use the mean
task pre-processing delay E[D] instead of the average completion time of the
campaigns, as the completion time also depends on the task length, which is
under control of the employer and not of the platform operator.

In this section we �rst introduce an analytical model, which will be used to
validate the simulation model discussed thereafter. Finally, a comparative vali-
dation of the analytical and simulative model is performed.

Analytical Consideration

First, in order to provide exact results, we consider the crowdsourcing platform
as a M [Θ]/M/c −∞ model. Here, we assume both the campaign inter-arrival
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timeAC as well as the time to complete a taskB to be exponentially distributed
with mean E[AC ] = 1

λ
and E[B] = 1/µ, due to the large number of employers

submitting tasks and the large number of workers completing them. Further-
more, we model the number of tasks per campaign Θ using a geometric distri-
bution with mean E[Θ] = 1/p.

This model is well studied and state probabilities are provided in [120] or
[121] for the case of a loss system.

Based on these state probabilities, we obtain the mean utilisation ρ per service
unit as

ρ =

κ∑
i=0

min(i, c)x(i) =
λE[Θ]

cµ
.

This metric can be used to quantify the income of a worker, as a higher utilisa-
tion results in a higher income.

Next, we obtain the mean queue length Ω of the system as

Ω =

κ∑
i=c

(i− c)x(i).

Now, we consider the mean task pre-processing delay E[D] and with Little’s
theorem applied to the systems queue, we get

λE[Θ]E[D] = Ω.

We solve for task the pre-processing delay E[D] and obtain

E[D] =
Ω

λE[Θ]
.

Detailed Simulation Model

In order to allow for a larger variety of campaign inter-arrival time distribu-
tions AC , we implement a discrete event simulation using the OMNet++ simu-
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lation framework8. We augment the framework with support for bulk arrivals
and support of empiric distributions taken from measurements described in Sec-
tion 4.4.2. Similarly to the queueing model introduced in this section, we con-
sider campaign inter-arrivals according to a distribution AC and a campaign
size of Θ tasks. Task length is given by a distribution B and tasks are stored
in an unbounded queue before being sent to service to the c available workers.
During simulation, we record the mean utilisation ρ as well as the mean task
pre-processing delay E[D].

Impact of Campaign Arrival Process Type

In this section, we validate the simulative model by comparing the metrics util-
isation ρ and task pre-processing delay E[D] for a representative parameter
set with those obtained from the analytic model. We consider exponential cam-
paign inter-arrival times AC with a campaign rate of 4 h−1 campaigns, and a
campaign size Θ geometrically distributed with a mean of 100 tasks per cam-
paign. For the task length B, we consider a set of suitable values, to accommo-
date for di�erent task types, between 60 s to 300 s per task. In both simulation
and analytical model, we consider between 5 and 50 workers.

Results are shown in Figure 4.18. Simulative and analytical results, respec-
tively, are shown by di�erent line types. However, due to the good �t of the an-
alytic and simulative model, the line showing the simulative results completely
covers the analytic results. For the simulation we give 95 percent con�dence
intervals based on 10 replications. In this, and all following �gures, con�dence
intervals are given as error bars. For each simulation we consider a simula-
tion duration of 1500 h and accommodate for a transient phase of 150 h hours.
We observe that for both the utilisation ρ and mean task pre-processing delays
E[D], the analytical results are well within the con�dence intervals.

8http://www.omnetpp.org/, Accessed: November, 21st 2015
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Figure 4.18: Validation of simulation with analytic model.
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4.4.2 Measurement of Platform Characteristics

In this section we analyse a large dataset from a commercial crowdsourcing
platform to derive to derive realistic model parameters and compare the model
based on these results with the analytic approximation.

Deriving Realistic Model Parameters

Our analysis is based on a large dataset from the commercial micro-tasking
platform Microworkers.com. The dataset contains information about more than
160.000 campaigns submitted to the platform between May 2009 and Jan 2015,
including the number of tasks per campaign as well as the time of the submission
of the campaign.

Inter-arrival Times: First, we study the inter-arrival times of the campaigns.
During the observation period, the platform faced some downtime due to soft-
ware update or changes of the technical infrastructure. During this time, no cam-
paigns could be submitted resulting in relatively large campaign inter-arrival
times. In our model we only consider the regular operation of the platform,
therefore we removed all inter-arrival times larger than 97.5 % quantile of all
observed values, which a�ects about 2.5 % of all values.

Considering the remaining data, we observe a mean campaign inter-arrival
time of 0.241 h with a standard deviation 0.346 h. Figure 4.19 shows the CDF of
considered inter-arrival times, as well as the �tted distribution. For the �tting
we considered several possible distributions but found the gamma distribution

P (Ac = t) ∼ Γ(α, β, t) =
βα

Γ(α)
xα−1e−βt

de�ned by shape α and rate β to be the most suitable. Using fitdistr-
plus9 for the R language we derive the distribution parameters for the cam-

9https://cran.r-project.org/web/packages/fitdistrplus, Accessed:
November, 21st 2015
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Figure 4.19: Observed campaign inter-arrival times Ac and corresponding �t.

paign inter-arrival times AC by moment �tting and result in the estimated pa-
rameters α = 0.484 and β = 2.009.

Campaign Sizes: Next, we consider the campaign sizes, respectively the
number of tasks per campaign. The smallest possible campaign sizes on Mi-
croworkers is 30 tasks, however our dataset contained a few internal test cam-
paigns with a small size.

These test campaigns, as well as outliers larger than the 97.5 % quantile of the
campaign size have been removed from the considered dataset. In total 3.7 %

of the original dataset were �ltered by these conditions, the remaining data
resulted in a mean campaign size of 97.01 tasks and a standard deviation of
103.41. The CDF of the campaign sizes Θ is depicted in Figure 4.20, together
with the corresponding �tted distribution.

Due to the platform restrictions mentioned above, the campaign sizes start
with a minimum value of 30 tasks. We observe that a very high share, i.e. 35 %,
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Figure 4.20: Observed campaign sizes Θ and corresponding �t.

of campaigns has only this minimum size. Further, campaign sizes which are a
multiple of 10 or a multiple of 100 are quite frequent. This is caused by the fact
that most tasks on Microworkers.com are repetitive and the employers choose
the required number of repetitions and thus are more likely to round the number
of repetitions to the nearest multiple of 10 or 100.

In order to obtain a suitable analytic distribution for the empiric values, we
normalise the observed values and use the following piecewise de�ned distri-
bution.

P (S = s) ∼


0 if s < smin

psmin if s = smin

GEOM(s) · 10 + (smin + 1) else

with
GEOM(s) = (1− p)sp.
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The minimum campaign size smin is observed with a �xed probability psmin ,
while all campaign sizes larger than smin follow a shifted and scaled geometric
distribution.

Due to the relatively high frequencies of campaign sizes being multiples of
10 and 100, it is only possible to achieve a good �tting either for the lower or
the higher region of the geometric part. As an overestimation of the campaign
size will give us an upper bound of the platform work load, we decided to put a
stronger emphasis on correct �tting of the larger campaign sizes.

We estimate the p = 0.086 parameter of the geometric distribution using
quantile matching for the 90 percent quantile. The values smin = 30 and
psmin = 0.350 are obtained from the empirical values.

Task Duration: Another relevant model parameter is the length of the tasks
B, i.e., the time a single worker needs to complete one task. Unfortunately, this
information cannot be obtained from our dataset, as tracking of the individual
workers is not possible. Therefore, we assume that the processing times follow
a negative-exponential distribution, i.e.

P (tp = t) ∼ µe−µt.

Even if the exact processing times are not available, each employer has to add an
estimation about the time it takes to complete a task in the campaign description.
In our dataset, 87.8 % of all tasks had an estimated completion time between
120 s to 300 s. Therefore, we consider µ ∈ { 1

300
, 1

240
, . . . , 1

120
} s−1 for the

following evaluations.

Number of Workers: Finally, the last model parameter to estimate is the
number of users c on the crowdsourcing platform. At the time of this analy-
sis, Microworkers.com had over 650.000 registered user accounts. However, this
number is not applicable in the proposed model, for multiple reasons. The pro-
posed model does not consider vacation times, i.e., the workers would have to be
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available 24/7. In reality, many crowdsourcing workers only work occasionally
on the platforms or only for a few tasks. Further, employers can limit the access
of to their campaigns to speci�c subsets of all workers, which is also not con-
sidered in the model. Moreover, Microworkers also limits the number of tasks a
worker can complete in a single campaign. Taking this into account, the num-
ber of workers to be considered in our model has to be much smaller than the
number of workers on the real world platform and consequently we decided to
estimate meaningful values based on the model parameters instead of using the
given number of workers from the dataset.

Comparison of Detailed and Analytical Model

An important question for the later analysis is whether the analytic model from
Section 4.4.1 can be used as an approximation or if a simulative evaluation is
necessary. To this end we compared the later considered metrics utilisation ρ
and task pre-processing delay E[D] for a) a simulation using the empiric dis-
tributions for the task inter-arrival times and campaign sizes, b) a simulation
using the �tted distributions derived earlier in this section, and c) the analytic
model derived in Section 4.4.1. For the analytical model we used the campaign
size distribution derived in this section and λ = 4.14 h−1. The results of the
di�erent models are shown in Figure 4.21.

The utilisation ρ is depicted in Figure 4.21a, the task pre-processing delay
E[D] in Figure 4.21b. In both �gures, the x-axis shows the number of workers
c. The line colour indicates the mean task length, ranging from 120 s to 360 s,
the line style denotes the underlying model. We observe that all models result in
the same utilisation ρ, which is not surprising when considering ρ = E[Ac]E[Θ]

cµ

with the mean inter-arrival time E[Ac]. Here, all parameters are the same for
the three compared models and therefore, no signi�cant di�erences can be seen.

This is di�erent for the task pre-processing delay E[D]. Here, large discrep-
ancies can been observed between the model based on the empiric distributions
and the analytical model. This results show that the M [Θ]/M/c − ∞ model
can also not be used as a worst case estimation, due to the fact that it underes-
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Figure 4.21: Comparison of campaign arrival distributions.
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timates the task pre-processing delay E[D]. In contrast to this, the simulation
model based on the gamma distribution �ts quite accurately the model based on
the empirical values. Therefore, we continue our evaluation with the simulation
model, based on the gamma distributed inter-arrival times and the piecewise de-
�ned distribution for the campaign sizes.

4.4.3 Evaluation of Platform Characteristics on
Considered Metrics

In this section we use the simulative model introduced in Section 4.4.1 and the
measurements obtained from the Microworkers platform in order to analyse
the impact of di�erent parameters on the considered metrics. First, we study
the impact of campaign inter-arrival times. Then, we study tradeo�s between
metrics of interest for the di�erent stakeholders. The results presented in this
section can be used as guidelines for platform operators, in order to ensure that
both stakeholders are su�ciently satis�ed.

Impact of Campaign Inter-arrival Distributions

Campaign inter-arrival timesAC in�uence both the work load of the individual
workers ρ as well as the mean time required before a worker starts working on
a task E[D]. From the perspective of an operator, understanding the in�uence
of di�erent inter-arrival processes is important. As shown in Section 4.4.2, the
gamma distribution can be used to approximate the campaign inter-arrival times
AC as seen on the crowdsourcing platform Microworkers. In this section, we
study the impact of such di�erent processes by utilising the parameter space
a�orded by the gamma distribution and considering the impact on the metrics
utilisation ρ and mean task pre-processing delay E[D].

The characteristics of the gamma distribution change depending on the pa-
rameters shape α and rate β. While both shape and rate in�uence the mean

E[AC ] =
α

β
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and variance
Var[AC ] =

α

β2

of the campaign inter-arrival timesAC , only the shape in�uences the skewness

Skew[AC ] =
2√
α

of the distribution.

For a shape of α = 1 the gamma distribution given by as

P (Ac = t) ∼ βα

Γ(α)
xα−1e−βt

degenerates to an exponential distribution with a PDF given as

ac(t) = βeβt

due to de�nition of the gamma function as Γ(1) := 1.

Increasing of the shape for the same rate changes the form of the distribution
from an exponential type to a distribution which is similar to a normal distribu-
tion. By increasing the rate for the same shape the tightness of the distribution is
modi�ed. For rate parametersα < 1 this results in a distribution with a long tail.
The increase of the rate decreases the breadth of the distribution. Transferred to
the campaign inter-arrival process AC di�erent shape and rate settings can be
used to model di�erent task types and varying the business of the platform. The
range of the inter-arrival times is given by the rate and the shape de�nes the
weighing of the di�erent times. A lower shape means more campaigns arrive in
bursts in combination with longer time periods without any campaign arrival.

Next, we use our simulation model introduced in Section 4.4.1 with the cam-
paign size distribution Θ and task completion times B obtained in Section 4.4.2
for di�erent campaign inter-arrival times to study the impact on the utilisation.
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Figure 4.22: Utilisation ρ for di�erent campaign inter-arrival times AC .

Only stable systems, i.e., crowdsourcing platforms with a utilisation ρ < 1 are
considered in the following.

Independent of the campaign inter-arrival time distributionAC and the num-
ber of workers c, we see in Figure 4.22 that the introduction of more complex
tasks in the platform by means of a higher mean task lengthE[B] increases the
utilisation ρ. The same number of workers c now require more time to process
the same number of tasks. Furthermore, for the same campaign inter-arrival
times AC and mean task lengths E[B], increasing the number of workers c de-
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creases the utilisation ρ, as a higher number of workers has to compete for the
same number of tasks. For di�erent shapesα of the campaign inter-arrival times
AC and the same rate β, with all other parameters �xed, we observe a decrease
of the shape results in an increase in utilisation ρ. A decrease of the shape α
directly decreases the mean campaign inter-arrival time E[AC ] = α

β
and in-

creases the rate 1
E[AC ]

of incoming campaigns, which increases the utilisation
ρ. The same argument can be applied to the rate parameter of the campaign
inter-arrival time distribution AC . An increase of the rate β again in�uences
the mean E[AC ] and the rate of the campaign inter-arrival time AC resulting
in an increased utilisation ρ.

In Figure 4.23 we consider the impact of di�erent campaign inter-arrival time
characteristicsAC on the task pre-processing delayE[D]. For a �xed number of
workers c and campaign inter-arrival distribution AC a larger mean task dura-
tion B also increases the mean task pre-processing delay E[D]. As more tasks
have to enter the queue, tasks which would not have been queued for lower
task length now su�er queueing delay. For a �xed task length B and campaign
inter-arrival distribution AC , we see that increasing the number of workers c
results in a decreased task pre-processing delay E[D]. The waiting probability
decreases due to the higher capacity of the platform, resulting in a lower wait-
ing time per task. Next, we consider the shape of the campaign inter-arrival time
for �xed other parameters. The curves show that increasing the shape decreases
the mean task pre-processing delayE[D]. This is caused by an increasing mean
E[AC ] of the inter-arrival times which results in a decrease of the campaign
arrival rate. Thus, the platform contains fewer tasks for the same number of
workers c and fewer tasks have to wait for completion. The e�ect is more obvi-
ous for higher tra�c intensities.

Finally, we consider the e�ect of an increased rate β while keeping all other
parameters �xed. An increased campaign inter-arrival rate increases the task
pre-processing timeE[D], as the number of campaigns arriving at the platform
is increased. The increase of the rate β decreases the variance of the campaign
inter-arrival times distribution. For greater values of β, the mean campaign
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Figure 4.23: Mean task pre-processing delay E[D] for di�erent campaign inter-
arrival times AC .

183



4 Resource Dimensioning and Management Schemes in Clouds

inter-arrival timeE[AC ] decreases as the campaign inter-arrival rate increases.
Thus, more tasks arriving at the platform and have to be completed with the
same number of workers c.

Based on these observations, we conclude that while both shape and rate in-
�uence the metrics utilisation ρ and mean task pre-processing delay E[D], the
rate parameter β of the gamma distribution has a higher in�uence on the con-
sidered metrics. In order to account for the higher in�uence of the rate on the
considered metrics, we �x the shape parameter α of the gamma distribution to
the value 0.484071 obtained in Section 4.4.2 for the next section and focus on
di�erent rate parameters β.

Tradeo� Considerations for Platform Operators

A crowdsourcing platform operator’s business success depends on the satisfac-
tion of the main stakeholders, i.e., the employers and workers. As discussed in
Section 4.4.1, workers are interested in a high utilisation ρ, due to the fact that
this correlates with their payment. Employers are interested in having their
tasks completed as fast as possible, i.e., in an as small as possible task pre-
processing delaysE[D]. The interests of the stakeholders are opposing as lower
task pre-processing delaysE[D] can be achieved by hiring more workers, which
in turn results in a lower utilisation ρ. Thus, the platform operator is forced to
consider a tradeo� between worker and employer satisfaction, which we con-
sider in this section. The impact of di�erent campaign inter-arrival ratesAC on
worker and employer satisfaction for the speci�c platform can be evaluated by
following the coloured lines in Figure 4.24.

Given a �xed number of workers c, decreases in the campaign inter-arrival
rate β result in lower utilisation ρ and longer mean task pre-processing delays
E[D]. The e�ects on the utilisation ρ and the mean task pre-processing time
E[D] decrease for a larger amount of workers c. This means a platform with
a larger number of workers is more robust against �uctuations in the rate of
incoming campaigns β than a system with a small number of workers c.

Independent of the considered task durationB, we observe that increasing the
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Figure 4.24: Tradeo� analysis between utilisation ρ and mean task pre-processing
delay E[D].

number of workers c, e.g. advertising the platform, decreases both the mean task
pre-processing delayE[D] as well as the utilisation ρ. However, this decrease is
not linear. This means that a small increase of the number of workers c reduces
the utilisation ρ, which is generally not desired. However, this small degradation
of the utilisation ρ results in an over-proportional reduction of the mean task
pre-processing delay E[D]. Thus, it is advisable to slightly overdimension the
number of workers c to optimise the tradeo� between utilisation ρ and mean
task pre-processing delay E[D].

4.5 Lessons Learned

In this chapter we examined tradeo�s between stakeholders in cloud environ-
ments. As in the previously considered scenarios, various stakeholders exist,
each with di�erent and partially con�icting interests. First, we considered the
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operation of a data centre from the point of view of a data centre operator. The
data centre operator is interested in decreasing expenditures, e.g. due to energy
consumption of computing equipment as well as in o�ering a competitive ser-
vice to its customers. The data centre customers are interested in obtaining such
services, usually by selecting them according to metrics speci�ed in a SLA. One
example of a metric considered in a SLA is the delay a scheduled job is experi-
encing.

Second, we consider the role of the data centre customer in more detail. Thus,
we focus on a speci�c virtualised network function deployed in a data centre,
and the customer in the role of a network function operator. The network function
operator is interested in reducing the number of concurrent virtual machines
provisioned, in order to decrease cost. The network function operator in turn
needs to satisfy its customers, the network function users, who rely on the net-
work function operator satisfying availability goals, e.g. the ability to connect
to the Internet using GTP tunnels.

Finally, we consider a human-cloud scenario. Here, the crowdsourcing plat-
form operator attempts to balance the needs of its two stakeholders, the crowd-
sourcing employer against the requirements of the crowdsourcing worker. Crowd-
sourcing employers publish tasks via the crowdsourcing platform to crowd-
sourcing employees and require a fast task completion time. Crowdsourcing
workers are interested in being o�ered as many tasks as possible, in order to
increase their income. Crowdsourcing platform operators can dimension the
number of available crowdsourcing workers in order balance this tradeo�.

We draw three major conclusions from this chapter:
First, we observe that the proposed scheme for operation of the data centre

allows for a reduction of the energy consumption by 40 %. As a tradeo�, the time
before a task can begin processing is increased by less then 1 ms. Furthermore,
we show that for the considered mechanism, server deactivation should occur
as soon as possible, resulting in the greatest energy savings while keeping an
acceptable time until tasks can begin processing.

Second, we study the existence of con�gurations for the virtualised network
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function scenario, so that even for conservative server startup times, e.g. 300 s,
the blocking probability increases only by a factor of 1.46. This con�guration
also allows 45 % of the required instances to be used for other purposes at 50 %

of the time. We also demonstrate that the observed blocking probability can be
reduced by over 90 % by employing techniques to reduce instance startup time,
e.g. SSDs or software containerisation.

Finally, we show that according to our model, crowdsourcing platforms are
robust regarding di�erent shapes of the arrival process, i.e. bursty arrivals com-
pared to periodic arrivals. Furthermore, we show that a relatively small number
of workers is su�cient to sustain the platform during times of worker shortage,
if the workers are put on retainer for the platform.

In the scenarios considered in this section, the platform operator is in control
over parameters in�uencing the KPIs for the participating stakeholders. How-
ever, in all cases the KPIs of the other stakeholders, by means of SLA design,
availability goals, or income, are also a KPI for the platform operator. This is
due to the fact that not only one platform operator exists but multiple platform
operators compete for customers. Research on such multi-operator scenarios
can be performed using the models introduced in this chapter.
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Today’s Internet tra�c is dominated by multiple stakeholders. Applications are
developed and deployed by application providers, run on UEs produced by hard-
ware vendors, and use mobile networks owned by operators. They use resources
rented from cloud operators, may use human labour provided by crowdsourcing
platforms and ultimately attempt to provide a high QoE to end users. However,
the interests and KPIs of stakeholders in today’s Internet do often collide with
each other and sometimes even con�ict.

For example, an application provider might be interested in providing its end
users content as timely as possible using queries to a web service. These queries
can result in numerous connection establishments and tear-downs, depending
on the con�guration used by the mobile network operator, increasing the sig-
nalling load in the mobile network and potentially causing Signalling Storms, i.e.
overload. However, recon�guration of the network by the operator can result
in the UE being connected for a longer time, resulting in decreased battery life
and QoE of the user.

In general, each stakeholder attempts to improve its considered KPIs by ma-
nipulating parameters under its control, e.g. by changing network con�guration,
implementing energy saving mechanisms, or adapting the number of available
servers in a cloud environment. However, these manipulations not only improve
the KPIs of the stakeholders but also impact the KPIs of a set of others. This re-
sults in complex relationships between stakeholders where interests are some-
times adverse and satisfactory results can only be reached by means of a tradeo�
analysis.

In this monograph, we study clashes of interest for a set of scenarios from
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the major areas of the mobile Internet, including the network, the underlying
application, and the cloud domain. We consider di�erent approaches to model
and analyse these con�icts and provide numeric results for best-case scenarios,
which can usually be reached by cooperation between the participating stake-
holders.

We begin with a study on the impact of a network’s con�guration on relevant
KPIs. To this end we investigate the network tra�c caused by mobile applica-
tions. Then, we examine the impact of application design by considering the
impact of transmission mechanisms and scheduling algorithms implemented in
mobile applications on KPIs for the participating stakeholders. Finally, we ad-
dress the cloud by studying the impact of resource allocation and management
schemes implemented in both machine-cloud and human-cloud scenarios.

In the �rst part we consider tradeo�s occurring in the network domain. We
propose an algorithm to derive metrics such as power drain and signalling fre-
quency from application tra�c traces for a given network con�guration. This
algorithm allows application developers to consider the impact of their applica-
tions tra�c on other considered stakeholders, i.e. on both the mobile network
as well as the battery life of the UE. Then, we present an analytic model which
allows the derivation of the considered metrics from arbitrary, theoretical tra�c
distributions. Using these methods we study exemplary application and perform
a two-moment parameter study on synthetic tra�c in order to identify problem-
atic tra�c patterns. We �nd that periodic tra�c has a negative impact on both
signalling frequency and power drain. We show that given the existence of pro-
prietary fast dormancy algorithms, network timer optimisation performed by
network operators can degrade performance for all participating stakeholders.
Furthermore, it can result in equilibria with worse system performance for all
participants compared to the case when no optimisation by the operator is per-
formed. We suggest that hardware vendors implement operating system level
mechanisms for applications to be noti�ed on connection state changes in or-
der to schedule transmissions and for network operators to provide interfaces
to query network con�guration.
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In the second part we focus on the application domain by considering two
speci�c applications: video streaming and cloud �le synchronisation. We study
di�erent types of video transmission mechanisms and con�gurations regard-
ing considered KPIs. While the con�gurable Streaming mechanism allows for
suitable tradeo�s between all stakeholder pairs, we �nd that none of the con-
sidered transmissions mechanisms allows for suitable tradeo�s for all participat-
ing stakeholders. We suggest to use the Design for Tussle [77] in order to allow
stakeholders to �nd suitable tradeo�s at run time. In order to study tradeo�s be-
tween end user groups with di�erent viewing preferences, we study video QoE
models in streaming scenarios and provide a model to evaluate consequences of
parameter choice of the Streaming algorithm on user satisfaction. We show that
by accounting for di�erent user scenarios, i.e. browsing videos and watching
videos, video QoE can be improved. Finally, we consider cloud �le synchronisa-
tion services. Based on large scale measurements using the PlanetLab platform,
we provide bandwidth and processing time distributions as well as a simulation
framework to be used to evaluate di�erent synchronisation scheduling algo-
rithms. This simulation framework allows application developers to gauge the
impact of their algorithm design decisions on other stakeholders, such as the
network operator or the end user. We use the framework in order to evaluate
di�erent algorithms and �nd that both the Interval and the Size algorithms, al-
low for a good tradeo� between the considered stakeholders.

Having studied the application and network domains, we now focus on the
cloud in the third part. We provide a queueing model as well as a power sav-
ing mechanism for data centres allowing operators to select a tradeo� between
power savings they can achieve and SLAs they will be able to o�er to their cus-
tomers. We then consider the role of a cloud customer renting resources in a
data centre in order to provide VNF services to mobile network operators. We
propose and evaluate a resource provisioning mechanism allowing the VNF op-
erator to balance the required resources with the SLAs which it can o�er to its
stakeholders. We especially consider the impact of new technologies, e.g. con-
tainerisation and SSDs on performance during provisioning. Finally, we apply
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our methodology to human-cloud scenarios and discuss dimensioning strategies
for crowdsourcing platform operators, enabling them to provide a tradeo� be-
tween the interests of their stakeholders, the crowdsourcing platform employer
and the crowdsourcing platform worker.

This monograph studies the impact of con�icts of interests between stake-
holders in communication networks, where either of the stakeholders has the
possibility to impact KPIs of other stakeholders or where stakeholders may
choose between a set of competitors based on speci�c KPIs requirements. Meth-
ods and models introduced in this monograph can form the basis for further
studies of other stakeholder interests which then can be analysed in a compara-
ble way. Based on the results and proposed techniques multi-tier optimisation
frameworks can be studied, investigating the clash of larger stakeholder groups
over multiple scenarios.
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