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Abstract—With the introduction of 4™ generation mobile
networks, applications such as high-quality video streaming to
the end user becomes possible. However, the expected demand
for such services outpaces the capacity increase of the networks.
Since there is mostly a capacity bottleneck in the air interface
between a base station and user equipment, one of the main
challenges for radio resource management is therefore to enforce
precise quality guarantees for users with high expectations on
service quality.

We consider, in this paper, an OFDMA access network with
YouTube users, and address the challenge of improving the
quality of experience (QoE) of a dedicated user by utilizing
the buffered playtime of a YouTube video for scheduling. The
advantage of this approach is that scheduling is done according
to the instantaneous throughput requirement of the end user
application, and not by the network by maintaining average
quality-of-service (QoS) parameters. The paper describes the
concept and provides a simulative evaluation of the approach
in an LTE network to demonstrate the benefits.

Index Terms—cellular networks, application-aware network-
ing, scheduling, quality of experience (QoE)

I. INTRODUCTION

4th generation (4G) mobile networks based on 3GPP
LTE [1] or Mobile WiMAX promise high data rates for mobile
use. With some networks already operational and many more
in the process of deployment, the available bandwidth enables
consumers to use high-quality Internet services which until
recently required a high-speed fixed access.

According to traffic and services forecasts such as in [2],
mobile video traffic in 2015 will exceed 60% of all generated
traffic which will increase 26-fold compared to 2010. A large
part of this traffic is generated by smart phones and tablets,
a trend which will also increase in the future. In the same
time frame, mobile capacity is expected to grow around 10-
fold with the deployment of LTE-Advanced and small cell
networks.
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The challenges for mobile operators are therefore twofold:
on the one hand, customers have high expectations on the
delivered quality of experience (QoE) of the services, which
will be to a large extend based in the Internet and not
under the control of the operator. On the other hand, the
mobile capacity cannot be increased at the same pace as
the demand grows. This development implies that for the
providing high QoE to the customers, novel solutions based
on traffic differentiation according to the application or service
requirements are needed.

In literature, most work on QoE-aware scheduling focuses
on utility-based scheduling schemes which map instantaneous
quality-of-service (QoS) metrics such as throughput or delay
to a corresponding QoE utility such as a mean opinion score
(MOS). Using this method in [3] a differentiation between
voice, streaming, and best-effort traffic is achieved, however,
without using actual QoE models for the different traffic
types. Other examples of this approach are [4] and [5], which
formulate the QoE scheduling problem as an optimization
problem for different traffic classes, the latter explicitly for
3.5G HSDPA access networks. In [6], a similar approach is
proposed for web traffic by mapping the current user data rate
to a web-MOS value.

The utility-based scheduling approach delivers good results
for services with relatively static QoS requirements, e.g. for
constant bit rate voice or video streaming, or for very elastic
traffic such as background traffic. However, applications such
as YouTube have a time-varying demand on bandwidth due to
codec and user behavior. It would be therefore necessary to
adapt the QoS mapping in the scheduler on the instantaneous
requirements on the client side in order to guarantee good
QoE. This is partially acknowledged in [7], where two utility
curves for progressive video download are introduced, one for
the streaming and one for the waiting case (i.e. if the user
pauses the video).

The contribution of this paper addresses the challenge men-
tioned above by enabling QoE-aware scheduling of YouTube
progressive video download and web browsing. For fine-
granular resource allocation according to the current require-
ments of the application, the scheduler incorporates client-



based feedback in the scheduling decisions at the base station.
An evaluation is performed with an LTE system level simulator
which implements a detailed model of YouTube and TCP, as
well as the LTE protocol stack and wireless channel models.

The remainder of the paper is structured as follows. Sec-
tion II describes the problem and presents background infor-
mation about YouTube video streaming and application-aware
traffic management. We describe the simulation methodology
and the simulation scenario in Section III. The evaluation is
done in Section IV. In Section V we summarize our findings
and conclude the paper.

II. UTILIZING APPLICATION INFORMATION

The current mobile communication paradigm is to differ-
entiate on service level for provisioning of QoS to the end
user. For this purpose, different QoS classes are standardized
which are then mapped to different applications according to
their approximate requirements.

In 3GPP LTE, bearers are used to forward the data between
user equipment and the Internet gateway. Each bearer is set up
with a bearer QoS profile that specifies guaranteed parameters
on network level. With the classification into different QoS
classes, groups of network flows with similar needs are prior-
itized equally and packet scheduling of different groups is done
according to the QoS definitions. However, at present, almost
every mobile network exclusively establishes only default
bearers without guaranteed transmission resources, since it is
not clear how to map IP traffic to QoS classes. Furthermore,
due to heterogeneous applications or different end user devices
the quality requirements of applications are varying depending
on multiple diverse parameters such as screen size of the
device, the used coding technique, or the previous usage
history of the user.

To quantify the delivered application quality at the end
user, the ITU defines QoE. QoE is the overall acceptabil-
ity of an application or service as perceived by the end-
user [8]. Compared to QoS, in addition, other parameters than
only network parameters are considered. This includes any
subjective and objective parameters such as video content,
encoding parameters, usage scenario, network performance,
and application state.

For incorporating QoE in the resource management, a
common way is currently to determine in a first step the most
influential parameters through separate studies [9], [10]. The
parameters may depend on the application or even on user
preferences. In the second step, if a QoS network parameter
is found that significantly influences the QoE, a QoS-based
forwarding like in traditional scheduling frameworks is done
according to this parameter. Therefore, a predefined QoS-QoE
mapping function is commonly used.

However, a QoS-based scheduling alone is often not suffi-
cient to provide an acceptable QoE. This is the case, especially,
for applications with time-dynamic bandwidth requirements.
Due to encoding, download patterns, or user behavior, for
example, an application has no fixed demand on bandwidth.
Instead, bandwidth is required depending on application state.

YouTube uses progressive HTTP video streaming which
means that the video data is buffered at the client side.
The buffering is done according to a two-phased download
pattern [11], [12]. At the beginning, the buffer is filled with
a certain amount of data (initial block) and afterwards, the
buffer is refilled by a periodic rate. The transmission of the
initial block is done best-effort-like. The periodic refill is
controlled by the YouTube server with a rate that depends
on the total video rate. Therefore, YouTube requires a time-
dynamic scheduling according to the buffering phase to ensure
a smooth running YouTube video and thus, a high YouTube
QoE.

Hence, a simple mapping of a QoS parameter such as
throughput to YouTube is difficult since it depends on the
application state. We propose in the following a specific
scheduling scheme which is based on application parameters
instead of QoS network parameters.

A. YouTube Video Streaming

YouTube uses progressive HTTP video streaming. The
default compression format of the video content is
H.264/MPEG-4 Advanced Video Coding (AVC). The encoded
data is transmitted over the HTTP protocol to the clients and
stored in a buffer in the application. The YouTube client pre-
buffers a certain amount of data until the playback starts.
Afterwards, a periodic refilling of the buffer is done during
playback. The two phased download is controlled by the
YouTube content servers and adapted for every video accord-
ing to the total video rate [11], [12]. A buffering period without
playback, which is in the following called stalling, occurs
if and only if the buffer is empty. In contrast, bad network
conditions or large delays can be sustained if sufficient video
playtime is buffered.

B. Smart Scheduling: Application-aware Traffic Management

Several studies quantify the impact of user and network
parameters on YouTube QoE [13], [14]. The most influencing
parameters are the duration of the buffering period and the rate
of buffering events. Consequently, in this paper the buffered
playtime of the YouTube video player is utilized to optimize
the user perceived quality. Instead of using a network QoS
parameter for scheduling, client-based feedback is used to
directly forward the buffer level of each YouTube video to the
scheduler at the base station. This directly addresses the ap-
plication and implicitly takes into account application-specific
mechanisms such as buffering strategy, video resolution, or
even user interaction.

The scheduling is done as follows. As illustrated in Fig. 1(a),
as soon as the buffered playtime of one YouTube client falls
below a threshold of « seconds, a signaling event is generated
by the client. Additionally, if the buffered playtime exceeds
a second threshold of 8 seconds, again a signaling event is
generated. We assume that a logical feedback channel exists
between the YouTube client application and the scheduling
entity in the base station. A user who watches a YouTube video
triggers a feedback event if the playback buffer is exceeding or
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Fig. 1. Flow diagram of the scheduler.

falling below one of these thresholds. In the scheduler, a flow
is tagged as being in a critical state if feedback is received
indicating that the buffered playtime is below the threshold c.
A flow is tagged as normal if feedback is received indicating
that the threshold (5 is exceeded.

In Fig. 1(b) the scheduling at the base station is depicted. If
the scheduler receives a packet, it checks whether the packet
belongs to a flow in a critical state or not. If the packet does not
belong to a YouTube video, the state of the flow is considered
as normal. If the state of the flow is critical, then the client is
prioritized by the scheduler. The scheduler prefers this packet
over other users and allocates it to the transmission frame. In
all other cases, the packet is passed to the resource allocator as
in the normal case which means that the scheduling is done
according to a certain fairness metric, which may consider
channel quality or service-level QoS parameters.

The proposed scheduling does not follow a proactive ap-
proach to optimize the QoE. As a consequence, it should run
additionally to some traditional scheduling algorithms that do
not take into account application layer parameters but consider
channel quality or service-level QoS parameters. Only if a QoE
degradation is imminent, in spite of the normal scheduling,
this approach will prioritize a flow in order to avoid QoE
degradation.

The advantage of this approach is that the scheduling is done
according to the state of the end user application to provide
an acceptable quality, and not by the network by maintaining
certain QoS levels for the application

III. SIMULATION METHODOLOGY AND SCENARIO

For evaluation of the proposed scheduling scheme, one
YouTube video was chosen and investigated with two sched-
ulers, namely the round robin scheduler and the buffered
playtime scheduler which takes the buffered playtime of a
YouTube video into account. The round robin scheduler was
selected because of the low implementation effort rather than
a proportional fair scheduler or a max-rate based algorithm.
Furthermore, a consideration of throughput and fairness in the
scheduler, as it is done for instance in the proportional fair
algorithm, is not relevant for the statement of the paper.

We simulate 20s of the YouTube video with detailed
application and physical layer models. Additionally, TCP with
flow and error control is simulated. The video was randomly

selected!. It is a popular movie trailer with very low data rate
at the beginning and medium alternating rate thereafter. The
whole duration of the video is 92.7s and the average video
rate is 463 kbit/s. In Fig. 2 the video encoding is shown for
the relevant simulation time. The low bit rate at the beginning
of the video is due to a static video title in the first 5s.

One single mobile cell is simulated with a discrete-time
event-based simulation based on the LTE Downlink Link
Level Simulator of the University of Vienna®. The link level
simulator is based on LTE release 8 [15] with PHY and
MAC and functions as specified in [16], [17]. The simulator
is free for academic usage and can be used for research in
the area of LTE signal processing [18] or as a foundation
for system level simulations [19]. The simulator implements
the complete signal processing chain for the traffic channel.
Signaling and control channels are simulated as error-free. For
the abstraction of the physical layer to event based simulation
of upper layers, we use results evaluated as BLER (Block
Error Rate) and throughput per user as available bandwidth
for the upper layer. BLER is transformed to a packet error
rate. Simulation of upper layers utilize pre-calculated values
of packet error rates and throughput for the requested number
of users and the available resource blocks. Due to the fact
that the user throughput depends on the allocation in the
resource grid of LTE, we do not use the average throughput per
user calculated from cell throughput, but simulate a detailed
resource allocation and obtain an exact user throughput.

The simulation scenario is as follows. Up to 11 users in a
single cell are simulated. They randomly move around within
the cell with a speed of 1 m/s. The channel model includes path
loss, shadow fading, and multipath fading. Shadow fading is
generated with zero-mean according to the Gaussian distri-
bution with o standard deviation of 2 dB. The shadow fading
decorrelation distance is assumed to be 50 m. Multipath fading
is simulated according to the ITU Pedestrian B profile. Each
user may watch a YouTube video, download a file, or browse
the Internet.

At application layer, the YouTube Flash Player and a
YouTube download server is simulated for YouTube users. It
processes HTTP data to display the YouTube video. In particu-
lar, it calculates the current buffered video playtime in seconds.
The player may stall if the playtime buffer is empty. The
play-out delay after stalling is set to 5s which is the current
value of the YouTube video player. The YouTube download
server behaviour follows [11] with refinements according to
own measurements. The download speed is controlled by the
server in two phases. The first phase is the initial pre-buffering.
The second phase is a periodic buffer refill, see Fig. 5(c).
The periodic phase depends on two parameters, the block size
which is set to b = 64 kB, and the inter-block arrival time
which depends on the average total data rate of the YouTube

Thttp://www.youtube.com/watch?v=Q1D5g0Gz0SY, last accessed 01/12
Zhttp://www.nt.tuwien.ac.at/about-us/staff/josep-colom-ikuno/
Ite-simulators/
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Fig. 3.

TABLE 1
WEB SESSION PARAMETERS

log-normal: In A/(10 kbytes, 25 kbytes)
€ [100 bytes, 2 Mbytes]

truncated Pareto(scale, shape, max):
Pr(1.1,2,55)

log-normal: In N(8 kbytes, 126 kbytes)
€ [50 bytes, 2 Mbytes]

neg. exponential: Exp(3s)

volume main object

number of embedded objects

volume embedded object

reading time

video, namely
fivr = min(oun, praP? + p3),

with an upper threshold at ay, = 2096, = as the total data
rate, and p; = 400000, po = —1, p3 = —5.71. The initial
buffering period depends on the block size and the inter-block
arrival time [11]:

. 1000

fivs =32-b T

For web browsing users, a simple web server is simulated
that is answering HTTP requests. TCP connection handling
is done according to the Apache web server default con-
figuration. For HTTP/1.1, Apache 2.2 defines a keep-alive
timeout of 5s. No download speed limit or connection limit
is set. For a web session, a web page is defined as a main
object and several embedded objects. Embedded objects are
for example images, JavaScript code, or CSS style sheets.
The data volume of the main object, the size of an embedded
object, and the number of embedded web objects per web page
are generated according to random distributions, see Table I.
The web session client generates a reading time after web page
transfer, see Table I which is the time between two successive
web page downloads.

TCP New Reno with flow control, error detection, con-
gestion control is simulated for each user to include flow
control mechanisms that will influence the packets available
for scheduling.

On the packet level, round robin scheduling and buffered
playtime scheduling is implemented as described in Section II.

(b) Buffered playtime of YouTube video

Round robin scheduler with three download users and one YouTube user

IV. NUMERICAL RESULTS
A. HTTP Downloads and YouTube

This section presents the simulation results of the buffered
playtime scheduler with a YouTube video and HTTP down-
loads. The results are compared to the round robin scheduling
algorithm.

An 3GPP LTE system is simulated with single-input-single-
output (SISO) antenna configuration. The simulated bandwidth
is set to 1.4 MHz to reduce the simulation time. Four users
are active in the cell. One YouTube user and three download
users are simulated. The YouTube user starts at time instance
zero, the downloads start randomly with a delay. The delay
is determined according to an exponential distribution with a
mean of two seconds. The main performance metric here is
the buffered playtime of the YouTube video. The best effort
downloads are responsible for heavy load in the cell which
affects the buffered playtime of the YouTube video.

Fig. 3(a) depicts the throughput of the four users. The
YouTube user is indicated by the red curve. Download users
are shown in blue color. On the x-axis the transmitted data
in Mbps is shown. The y-axis shows the simulation time in
seconds. The throughput is almost equal for all users and will
only be influenced due to the different transmission channel
conditions of the users since they are moving.

Fig. 3(b) shows the resulting buffered playtime of the
YouTube video over the simulation time. The sharp increase
of the buffer at 7s is due to the video encoding since there
is a small period with very low encoding rate from 5 to 6s
of video playtime, see Fig. 3(a). At 13 s the buffer is empty.
The video begins a buffering period, and the user experiences
video stalling.

In Fig. 4 the same scenario is depicted as in the previous one
but with the buffered playtime scheduler which dynamically
prefers the YouTube video in the case of low YouTube buffer.

The first sub figure of Fig. 4 presents the cumulative down-
loaded data of the downloads and the YouTube video player.
Together with Fig. 4(b) the difference between the buffered
playtime scheduler to the round robin scheduler becomes
visible. The YouTube flow is prioritized at the beginning and
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for 1.6s at about 11s due to the scheduling strategy. Almost
no data is transferred at these time periods to the download
users since YouTube is using nearly the whole bandwidth.
Outside these time periods, the data is equally scheduled
among the users as in round robin strategy. Fig. 4(c) shows
the corresponding buffered playtime. The buffer level is always
greater than zero, and no stalling occurs. The thresholds for the
prioritization are visible: if the buffer level is higher than 15,
round robin scheduling is used. Since, in this scenario with
four users, the throughput during the round robin phase is not
sufficient, the buffer level decreases afterwards. If the buffer
level falls below 10s playback time, YouTube is prioritized
again.

With such a basic algorithm, the YouTube QoE can be
improved at some expense of the download time for best-effort
users. For quantifying the YouTube QoE, concrete mapping
functions, depending on the length of stalling and the ratio
of stalling, are proposed in literature. According to [13], one
stalling already results in a QoE degradation from MOS 5
to 3.2 if the stalling length is 3s until the flash player will
restart the video playback. Another buffering period would
further decrease the MOS value from 3.2 to 2.5. Contrary to
YouTube, the QoE of file downloads is more robust. Especially
for long downloads a small delay can be tolerated. In our
case the download time of the downloads increases by 3.8 to
5.3 s per download depending on the channel conditions of the
YouTube user for the two prioritization periods.

B. Web Browsing Sessions and YouTube

In this section, web browsing users are simulated together
with one YouTube user. A web session of a web user is
defined as described in the simulation section, see Table I.
The number of web users is increased until YouTube QoE is
affected. On the one hand, the results show a similar benefit
for YouTube users if the buffered playtime scheduler is used.
On the other hand, due to the knowledge of the exact buffer
level of YouTube, the impact on the web users can be kept
to a minimum and adapted with the buffer thresholds used in
the buffered playtime scheduler. Two examples for different
buffer thresholds are given.

Fig. 5(a)-(c) shows results for one web user and one
YouTube user. Fig. 5(a) shows in red color the throughput
of the user who is watching the YouTube video and in blue
color the web user throughput. The web user is watching three
web pages at 7s, and 10s. The web traffic is influencing the
YouTube throughput: the YouTube throughput is decreasing
while the web traffic is increasing during the reading time of
the web user. Fig. 5(b) shows the corresponding accumulated
data during the simulation time of the YouTube video only.
The two download phases can be seen. At the beginning,
YouTube is doing an initial buffering. Afterwards, there is a
periodic buffer refill which is also reflected by the throughput
in Fig. 5(a). With one web user the YouTube video time buffer
remains stable over the whole simulation time which can be
seen in Fig. 5(c). After the initial buffering, here, the buffer
is kept at about 27s.

Now, Fig. 5(d) shows the situation with 10 web users and
round robin scheduler. The blue curve shows the throughput
of all web users. The red curve shows the throughput of the
YouTube user. The YouTube throughput decreases to about
300 kbit/s - 500 kbit/s due to the round robin scheduling which
treats all TCP flows of the users equally. Fig. 5(e) shows that
the YouTube player is not even able to complete the initial best
effort buffering phase. With 10 users, the buffered playtime in
Fig. 5(f) remains below 5s and stalls again at 13s.

While the instant buffer level is important for scheduling,
there are also some other important points if YouTube is
scheduled. One is the maximum reachable buffer level. In
Fig. 6(a) the cumulative distribution function of the buffer level
of the YouTube video for one, 7 and 10 web users in parallel
is plotted. It shows the disadvantage of static buffer refilling of
YouTube without client feedback. The buffer is refilled with a
constant rate independent of the throughput in the initial phase.
Thus, with 7 or 10 web users in parallel, the lower throughput
during initial buffering influences the maximum buffer level
significantly. If, during the initial phase the throughput is
not sufficient, during the periodic phase the buffer can only
increase marginally since the periodic refill depends on the
average video rate of the video, see Section III. This leads
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to the fact that the transmission time of the initial download
block of the YouTube video stream should be kept short,
which in turn, means that a high throughput in initial phase
should be guaranteed for a YouTube video. Consequently, also
the probability of having the maximum buffer level decreases
with the number of web users in parallel. This can be again
explained by the fact that for YouTube, the probability to get
a high throughput during initial buffering decrease due to the
load of the web users. With a high throughput, YouTube is able
to fill up the buffer to a higher amount of buffered playtime
and thus at the periodic refill phase higher fluctuations can
be tolerated in a) the network throughput and, even more
important, b) within the video data due to the adaptive video
encoding.

We now show the buffer progress with a buffered play-
time scheduler which signals the current buffer level to the
scheduler. Fig. 6(b) contains three curves showing the buffer
level over time for different scheduler settings. The curves are
evaluated for 7 web users in parallel to the YouTube video.
The round robin scheduler is included for comparison. For the
top blue curve the scheduler is set to the same parameters as
in the download scenario with buffered playtime scheduler.
If the video time buffer is below 10s the YouTube flow is
strictly prioritized. At a threshold of 15s round robin strategy
is used until it falls below the critical 10s. In this scenario the
buffer is not significantly decreasing after achieving the 15s

(e) Cumulative data of YouTube video

(f) Buffered playtime of YouTube video

Web browsing with one YouTube video

of buffered playtime. A smooth video playback is possible
without stalling since the initial prioritization is enough for
initially filling the buffer. The initial buffer level is able to
compensate the variable encoding of the video for the whole
simulation time. Note, this is video specific and depends on the
encoding of the video. If the setting of the buffered playtime
scheduler is changed to «a 10 s round robin threshold,
and f = 9s critical threshold, Fig. 6 shows that due to
the variable encoding the critical threshold is reached very
often at the beginning. Consequently, a prioritization of the
YouTube flow is done until the 10s buffered playtime is
reached again. The second scheduler setting has the advantage
that the transmissions of web users are delayed for a shorter
time period. However, the rate of delaying the web users is
higher in comparison to a higher difference between round
robin threshold and critical buffer threshold. The impact on
the web users is discussed in the next subsection.

C. Impact on Web Browsing Users of the Buffered Playtime
Scheduler

Fig. 6(c) shows the web page transfer duration for the round
robin and the buffered playtime scheduler. Again, the duration
is plotted as CDF. The round robin scheduler is plotted in
red, the buffered playtime scheduler is colored in blue. The
figure shows that the curves only differ for the download
durations longer than 1.7s. There, the probability of having
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larger download times is more likely when using the buffered
playtime scheduler. This is obvious since the buffered playtime
scheduler is preferring YouTube flows over the other flows
if the buffer state of the YouTube video is low. Thus, the
web page transfer duration is longer in comparison with the
round robin scheduler. However, at higher buffer levels of the
YouTube player the buffered playtime scheduler is acting in the
same way as the round robin scheduler. The following trade-
off can be seen. Preventing YouTube video stalling is achieved
through delaying the web pages in favour of YouTube flows.

V. CONCLUSION

In this paper, QoE-oriented scheduling for YouTube is
described and evaluated. Applications as YouTube have time-
varying demand on bandwidth due to encoding, download
patterns, and user behaviour. It is therefore necessary to adapt
the QoS mapping in the scheduler on the instantaneous re-
quirements on the client side in order to guarantee good QoE at
the end user. Consequently, a scheduling algorithm is proposed
that dynamically prioritizes YouTube users against other users
if a QoE degradation is imminent. The prioritization is done
in a proactive way according to the buffered playtime of the
YouTube video player.

The results are evaluated with an 3GPP LTE system level
simulator which implements a detailed model of YouTube and
TCP as well as wireless channel models. First, a YouTube
video together with best-effort downloads is simulated. A
buffering period of YouTube can be avoided at the expense
of download time. Especially for long downloads, the overall
QoE is improved since an increase of the download time can
be tolerated for them and does not negatively influence the
QoE. Second, the scheduling algorithm is evaluated with the
most important application today in mobile communication
networks. HTTP web browsing is simulated with a YouTube
video. The impact on web browsing users of the buffered
playtime scheduler is presented. Web browsing users are only
affected if the YouTube player runs out of buffered video data.
There are two thresholds defined to control the impact on the
web users.

Future work will include a precise evaluation of the signal-
ing overhead and the consideration of other applications for the
concept of QoE-oriented and application aware scheduling.
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