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SUMMARY

Application-aware resource management is the approach to tailor access networks to have characteristics
beneficial for the running applications and services. This is achieved through the monitoring and integration
of key performance indicators from the application layer within the network resource management. The
aim is to increase user-perceived quality and network resource efficiency by traffic engineering with the
help of these indicators. Using analytic and simulative approaches, this paper provides analysis methods
for network operators to quantify the performance gains of alternative resource allocation algorithms that
implement the application-aware concept. Network operators can use the proposed methods to evaluate
possible performance gain trade-offs between investing in a pure capacity increase (over-provisioning) and
the realization of an application-aware resource allocation. For this purpose, we model and analyze the
application quality trade-offs of four algorithms for application-aware resource management at a single
link in varying traffic situations. The algorithms are chosen with respect to different complexity and
implementation level in order to cover the design space in a systematic way. The study of the algorithms
focuses on the application-layer performance for the most used applications today, namely web browsing
and video streaming with constant bit-rate as well as HTTP progressive streaming with variable bit-rate.
Application quality trade-offs are analyzed in particular for a high resource utilization at a bottleneck
link. The results confirm that application-aware resource management outperforms best-effort resource
management in terms of QoE. Moreover, our study provides guidelines for the selection and configuration
of the evaluated algorithms.
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2 WAMSER ET AL.

1. INTRODUCTION

The way how customers use today’s communication networks has changed dramatically in recent
decades. In the past, users ran elastic and less interactive applications, such as file transmissions
or emails. Today, they run a huge set of high quality applications, which are dominating today’s
network traffic, e.g., video streaming, online games and social networking. In particular for
high quality applications, users do not require high data rates, they require a good application
Quality of Experience (QoE). Among other subjective and objective factors that influence QoE
(user expectations, hardware device capabilities, etc.), the applications have different and varying
demands on the network in terms of QoE. This includes, for example, low latency for interaction,
high data rate for data retrieval, or low packet loss for live content streaming. Consequently, just
optimizing network parameters does not necessarily lead to QoE improvement without considering
applications needs.

One solution in order to meet the application requirements is to employ over-provisioning in the
network. As pure over-provisioning of network resources typically results in high costs and thus
is not efficient from the economical point of view, new concepts have to be considered in order to
improve networks’ resource efficiency and application QoE simultaneously. As network operators
do not have control over the server or customer premises, they have to introduce new concepts inside
their networks. Application-aware resource management is such a concept that has emerged as a
first step towards improving network resource efficiency in terms of QoE [7, 10, 16-18,27,34-36].
The idea of application-aware resource management is to orchestrate networks according to user
demands that are based on application quality indicators with high impact on users’ QoE. Network
resource management and orchestration actions are, for example, changing the routing of application
flows among the network or configuring the resource allocation of particular network links, e.g, by
using different resource scheduling such as priority queuing or weighted fair queuing. In this way,
the utility per allocated network resources in terms of QoE can directly be influenced. The quality
indicators can be fetched from the network based on in-network measurements [21,37]. A typical
implementation of the concept consists of three entities: (1) the network and application monitoring
deriving the key performance indicators and network characteristics [30,36], (2) a decision unit [36],
and (3) a resource management action that changes the traffic handling within the network (e.g.,
traffic scheduling with queuing disciplines, routing, dynamic path selection) or the traffic produced
by the applications (e.g. lowering video resolution/quality, server selection) [18, 36, 38]. Although
network resources may be shared unequally, such a traffic handling even leads to an improved
overall performance for all users in terms of QoE [10].

In existing work [10, 12,31], the benefit of application-aware resource management mechanisms
in terms of network resource efficiency and user satisfaction was shown for certain applications.
However, the trade-offs between different application-aware resource management mechanisms for
network links in a multi-application scenario in terms of complexity and implementation level have
not been investigated. In detail, most research has been use-case driven and evaluated solutions for
only tiny scenarios. The existing concepts have not provided a holistic evaluation approach that
tries to understand underlying concepts of how to technically realize resource allocation algorithms
for a multi-application scenario under varying traffic conditions. An algorithm designed for a
particular setup may not be efficient under all circumstances. Consequently, a systematic analysis
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APPLICATION-AWARE NETWORKING 3

of application-aware resource management is important to quantify the real gain of the concept, in
particular, when comparing to alternative solutions, such as network over-provisioning.

This paper provides methods that allow network operators quantifying the benefit of application-
aware resource allocation algorithms for network links in three dimensions; for web browsing and
progressive video streaming applications for constant bit rate and variable bit rate streams; for
varying traffic situations and mixes; for four algorithms covering the space of application-aware
resource allocation. This can be carried out by the proposed analysis algorithms and the simulation,
by inserting the own network settings and traffic situations. Although an application-aware resource
management should consider different network operations, such as changing the routing or server
selection, we focus on resource allocation for network links, as there is already a high potential for
improvement. In addition, improvements can be simply implemented by the operator, since only one
link is touched, which is under the responsibility of the operator. The implementation complexity
varies in terms of actions during run-time and the needed information about the applications. As we
are interested in improving the performance for one network link, we abstract the link by a queuing
model. By the model, application parameters can be derived which allow to draw conclusions
about the resulting application QoE. The prerequisite is that this link represents a bottleneck in
the network. In particular, only problems on the bottleneck link are addressed in this paper. Other
influences outside the bottleneck link can not be solved and are not in focus of the algorithms
considered in this paper. To conduct the evaluations, analytic models are used that are based on
approaches using a Markov M/M/1 queue with processor sharing policies (M/M/1-PS) [6,22]. In
case of algorithms designed for managing dynamic applications like progressive video streaming
with variable bit rate, a discrete event simulator implemented in Java is used. Using both, analytic
and simulative approaches, a study of all algorithms for different traffic scenarios is performed in
order to give selection and configuration guidelines for the algorithms.

In particular, the paper highlights the following contributions:

1. Modeling the application-aware resource management problem
2. Modeling four application-aware resource allocation algorithms with different complexity
3. Analytical and simulative analysis of the algorithms

4. Guidelines for the selection and configuration of the algorithms

The structure of the paper is as follows. First, we outline related work and discuss resource
management options for operators in access networks in Section 2. We introduce the model for the
considered scenario and formulate the resource allocation problem in Section 3. In Section 4, we
introduce four resource allocation algorithms based on the application-aware concept. In Section 5,
we explain the analytic and the simulative methodologies for the evaluation of the algorithms. In
Section 6, we show the results of performance evaluation for the algorithms in terms of network

load, traffic mix, and the aforementioned quality indicators. Finally, we draw conclusions in 7.

2. BACKGROUND AND RELATED WORK

Today, the dimensioning of the capacity of access networks is a crucial task for operators. On one
hand, the cost must be kept as low as possible (cost-efficiency). On the other hand, sufficient capacity
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4 WAMSER ET AL.

must be available for any expected application or service to satisfy the users (QoE improvement).
Although it was widely believed that network traffic may not be predictable, currently published
measurements in literature about access networks show a predictable network traffic behavior [9,23].
Based on such a predictable behavior, an operator can analyze the trade-offs before upgrading the
network. According to the traffic mix and patterns in the network, the best setup can be chosen in
order to improve the overall network performance in terms of user-perceived service quality. One
possibility to achieve this, is the methodology presented in this work for application-aware resource
management.

In this section, we summarize related work which is subject to application-aware resource
management. The current state of the art consists of numerous approaches and concepts, which
use information from different networking layers and of different degrees of complexity in terms of

their functionality, the information flow, and the number of involved entities.

Interfaces and APIs for Application-Aware Resource Management The currently prevalent
idea in resource management for improving the quality for end-users is to differentiate traffic flows
into quality of service levels. In [26], an application network interface is proposed for OpenFlow-
based networks to specify different service levels in the network. The interface allows application
service providers to define application specific requirements that are implemented by the network.
To achieve a network-wide enforcement, Application Label Switching (APLS) is introduced that
adds additional protocol headers (labels) to IP flows that can be utilized by OpenFlow SDN
switches in order to differentiate traffic at bottleneck links. The advantage of this approach is
the usage of the standardized OpenFlow protocol that defines existing bandwidth provisioning
algorithms such as weighted deficit round-robin or weighted fair queuing for resource management.
However, a comprehensive quantification of the benefits with respect to the different algorithms is
lacking. Similar to this approach, an application-network interface via an additional protocol layer
is proposed in [25]. This Service Access Layer (SAL) facilitates a split between service level control
and the application data plane, thus enabling service aware network routing. For the realization the
proposed protocol must be implemented on each network device. In [24], the concept for traffic
prioritization is presented for small networks. The authors specify a prioritization of applications
for active users and a de-prioritization for applications in the background. Finally, there are specific
QoS- or QoE-based management frameworks that define network-wide elements to coordinate the
traffic forwarding. For residential networks, [20] proposes to setup a QoS system that uses hints

from individual hosts to make decisions about traffic prioritization.

Application-Aware Resource Management with Central Entity Besides [20], the authors
introduce in [40] a central entity that has knowledge about the network and application situation. It
performs a dynamic resource allocation decision that utilizes SDN in order to enforce application
demands in the network. An implementation featuring a video on demand application competing
with a file download at a bottleneck link shows that monitoring the VoD application’s buffer state
can help improving the end users’ QoE. The work on participatory networking presented in [7],
proposes a communication mechanism between applications and the network which is initiated by
the applications. Key concepts include conflict resolution between the needs of different applications
or users and decomposition of network control, i.e. limiting an application’s authority. The authors
of [10] introduce an OpenFlow based framework that aims at achieving fairness with respect to QoE
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APPLICATION-AWARE NETWORKING 5

among all users in an adaptive video streaming context. The expected QoE of a user is estimated
on the quality of information during the video streaming. This approach combines a network-aware
service with a network based control entity. Based on monitoring results gathered via intercepting
Media Presentation Description (MPD) files used in MPEG-DASH, the framework dictates video
quality levels for each user in order to maximize the resulting QoE for every participant. Despite the
achieved fairness, open issues here are how universal this approach is and how it can be applied to
other applications.

A system design featuring functional blocks that represent functions for packet handling in
the network is presented in [36, 41]. Feedback loops including a central decision unit allow
for combining network aware applications with an application aware network. A central idea
consists of translating user demands into application demands which in turn can be translated into
network requirements. The system’s capabilities are demonstrated and verified for various use cases

including live video and video on demand scenarios.

Application-Aware Resource Management for Video Streaming In [16], the authors propose
to consider the buffered playtime of a video when assigning network resources. They propose
algorithms optimizing the delivered video quality. In [10], the authors propose to maximize the
QoE of the end-users running adaptive video streaming applications. In [35], the authors propose to

adapt the video rate based on client-side feedback of the buffered video time.

Multi-Application Optimization [15] considers video streaming, VoIP, and data services when
optimizing radio resource management for mobile WiMAX systems. However, they consider only
the requested bandwidth per application and do not differentiate between different application
quality levels. In [29], the authors focus on cross-layer optimization between application layer and
medium access control layer. The application parameters are given by a generic mathematical model
for the MOS as a metric for the perceived quality. [28] considers video streaming, audio streaming,
and data services in a wireless mesh network. The authors’ proposed multidimensional optimization
tries to minimize the distortion across flows on wireless links under given fairness constraints.
In [32], the author propose resource allocation for LTE based on a particle swarm optimization

while considering multiple applications.

ALTO: Application Layer Traffic Optimization A protocol realizing the exchange of
information between network and application is standardized by the IETF Application Layer
Traffic Optimization (ALTO) working group [1]. It aims at providing guidance to content delivery
applications such as P2P or CDNs which have to select one or several hosts or endpoints out of a
set of possible candidates. Such appropriate candidates can be selected and the performance with
respect to user-centric, network-centric and application-centric metrics can be improved. Currently,
several extensions of the ALTO protocol including data centers and cloud applications are being
discussed [2].

Data Center Applications More work on application-aware resource management has been
conducted in the context of data center applications. Research on data center architectures already
shows that combined solutions, e.g. for traditionally separated mechanisms such as routing and
service migration, may increase data center efficiency. However, data center applications are not

end-user applications as in access networks, but run in isolated and manageable server farms. In
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6 WAMSER ET AL.

general, the constrained environment of data centers enables the combination of these traditionally
separated mechanisms. Data center application-aware solutions are also provided in [11,19,39].

In summary, there are many approaches in the literature that propose user- or application-aware
resource management. All related works however do not evaluate the impact of their algorithms in
a global fashion with different network loads or different application traffic mixes, i.e. a variable
proportion of different applications on the network use. The reason for this is simple: modeling
of the problem and a theoretical abstraction are necessary, besides the practical use-case driven
evaluations, to be able to perform more extensive studies.

3. MODEL

In this section, we begin by describing the system of interest - a bottleneck link shared by multiple
users running either browsing or video streaming applications. Following the model, we define a
resource allocation objective for the network scenario. The symbols, which are used throughout this
work, are summarized in Table 1.

Symbol Definition
A The set of active application flows
a € {v,w} | An active video or web flow
ScA A subset of active flows
Sy, Sw,Sp | The set of active video/web/prioritized flows
C Link capacity
q Allocated bandwidth
da>4s,qp | Bandwidth allocated to flow/set of flows/set of prioritized flows
b Average video bit rate
op Standard deviation of video bit rate
s Flow size
A Arrival rate
L Service rate
p Utilization

Table I. Summary of used symbols for resource allocation problem formulation, resource allocation
algorithms, and analytic performance evaluation model.

3.1. Network and Applications

A bottleneck link [ has a limited capacity C'. While sharing the link, users are running either web
browsing applications, which we identify via w, or video streaming applications, which we identify
via v. Each application requests content of a certain size. The size of each application request is
given by s,, and s, respectively. Furthermore, a video also has a specific video length ¢,,. All active
web flows and all active video flows build the set of active application flows A = {ay, ...,an }. Each
flow may occupy a certain amount of the link’s capacity. The request times of the users for web w
and for video streaming v are modeled as Poisson processes, i.e., they arrive with rate A, and \,,.
To assess the performance of the applications in the given network, we evaluate specific key
performance indicators for each application [5, 13]. In case of web, the page load time of a web
site has the most dominant impact on perceived QoE [5]. Therefore, we consider the download
time of a web page as the key performance indicator of web browsing. For video streaming, there
are several well-known metrics and evaluation criteria: SSIM, PSNR, number of stallings during
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APPLICATION-AWARE NETWORKING 7

playback, length of stalling periods. We investigate HTTP progressive video streaming in this paper.
Objective metrics such as SSIM and PSNR consider only the quality of each single video frame.
This is valid and useful for live streaming (RTP streaming etc.) without buffering periods where
image distortion can occur. For HTTP progressive video streaming the image quality itself is never
impaired due to the use of the TCP transmission protocol. If the bandwidth is not sufficient, the
video playback simply stops (stalling) and the picture freezes until the buffer is refilled. According
to [4, 13], for HTTP progressive video streaming, stalling (i.e., playback interruptions) is the most
dominant factor of QoE, clearly exceeding the significance of video resolution as a second impact
factor. Thus, we investigate the buffering ratio, i.e., the total stalling time ¢, divided by the total
video length ¢,,, as a performance indicator of video flows.

3.2. Resource Allocation

TCP is the dominant transport protocol for both application types. Because of TCP, all active
application flows A = {a1, ..., ayy } may share the link capacity C equally. We assume that the share
ratio can additionally be influenced by a network algorithm, i.e., a resource allocation policy, for
each flow a; € A or for each disjoint set of flows S; C A. This means, there is the possibility of
assigning each flow a; a bandwidth ¢,, with Zfil dq, < C. Similarly, each set of flows S; can be
assigned a bandwidth qs; such that s,cA S, < C.The bandw(iliith of a set of flows can be again
= 15

Different application characteristics, usage behaviors, and QoE factors have to be considered

shared equally such that each flow a; € S; has bandwidth g,

when assigning bandwidths to the active flows. Thus, the problem on which we focus can be
formulated as follows: Find a mapping A — R, a; — ¢,,, such that Zi\[:l Ga; < C holds, and
the average QoE of all active flows a;, i € {1,2,..., N} is maximized and fair in terms of the
objective given by the application type.

As described in Section 3.1, the key performance indicators of each application will be evaluated
that have a high correlation to the QoE. This means, a well performing resource allocation algorithm
is supposed to achieve short download times for web flows and low buffering ratios for video
streams.

4. RESOURCE ALLOCATION ALGORITHMS

This section introduces four algorithms aiming at an improved resource allocation in terms of
perceived QoE of the end user. In the following, we take only two applications, i.e., video streaming
and web browsing, into account.

4.1. Fixed bandwidth allocation for all video flows (FBV)

The FBV algorithm reserves a fixed bandwidth for video traffic as it is the more demanding
application. The reserved capacity gg, is a parameter which can be adjusted to reflect the actual
traffic share of video traffic.

Algorithm: All currently active flows are split into two sets, one set .S, containing all video flows
and one set S, containing all web browsing flows. S, is allocated a certain bandwidth ¢g, which
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8 WAMSER ET AL.

is shared equally among all active video flows. This means, each video flow gets a bandwidth of

Gv = \qSS:\' Consequently, S, is assigned gg

= C — gg, which is also shared equally, such that

w

each web browsing flow receives ¢, = lqss—w‘. In order to avoid starvation of web browsing, gs, has
w

to be smaller than C. If one of the two sets S, or S, is empty, the other set can share the whole link
capacity C' among its flows. This means, ¢, = % if S,, is empty, and ¢, = ‘S—C;I if S, is empty.

Figure 1(a) illustrates the resource allocation of FBV for two video flows (v; and v3) and one
web flow w;. The video flows are sharing ¢g, equally and the web flow receives the remaining
capacity C' — gg, . In case one set S, or .S,, is empty, the applications share C' equally, as illustrated
in Figure 1(b).

Link Capacity Link Capacity
c c
y v
qs s, —— [rmmmm e == } 1
v } v,
} 1] } v
Time Time
(a) FBV: Video flows share reserved data rate (b) FBV: Video flows share link capacity

Figure 1. Behavior of FBV for two different cases in terms of number of application flows and types of
application flows.

4.2. Fixed bandwidth allocation for each video flow (FBF)

A fixed bandwidth can not only be reserved for the entire set of video flows (FBV), but also for
each individual flow. Thus, specific characteristics of each flow can be taken into account. In the
performance evaluation in Section 6, the reserved capacity g,, for a video flow a; will depend on
video attributes such as its video bit rate b;. For example, for videos having a constant bit rate (CBR),
the average video bit rate (g,, = b;) is allocated. In case of videos which show a variable bit rate
(VBR) behavior, the average video bit rate plus its standard deviation (g,, = b; + op,) 18 assigned
to additionally account for bit rate variations of VBR content. However, different characteristics
and bandwidth allocations could also be used in this algorithm. Technically, the FBF algorithm also
has to prevent starvation of web browsing by reserving a minimum bandwidth ¢g,, (parameter) and
adjust the allocated bandwidths in case more bandwidth than available is requested.

Algorithm: All currently active flows are split into two sets, one set .5, containing all video flows
and one set S,, containing all web browsing flows. Each active video flow a; € S, can request a
certain bandwidth g, . If the remaining available capacity ¢, = C — qg,, — Zaje s, Qv; = 0 (e, all
requests can be fulfilled), the remaining capacity g, is added to ¢g, . Each video flow a; is assigned

its requested bandwidth ¢,, and all web browsing flows equally share gg, + ¢,-. Thus, each web

w

browsing flow is assigned g, = %. In case ¢, < 0, more bandwidth is requested than available.
Therefore, all web flows equally share only their guaranteed minimum bandwidth (¢, = \qufl) and

the capacity C — gg,, is assigned to the video flows relatively to the requested bandwidths. Thus,
each video flow a; is allocated a bandwidth of ¢, = (C' —gs,,) - = dvs

a;ESy q“j
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APPLICATION-AWARE NETWORKING 9

Figure 2(a) shows the bandwidth allocation in case that the requested video rates q,, + ¢, < ¢s, -
The video flows use their requested data rate ¢,,, g,, and the web flow w; uses the remaining
capacity g,. Figure 2(b) illustrates the case in which g, + g, > gs,. The video flows share the

allocated video capacity gg, according to their requested video rates.

Link Capacity Link Capacity
c C
v, + qy, w
C_QSV—> ———————————————— } Wi Cl—qswz } !
C-qs, = a0, — a4, { qul{ P
qV| { } Vq
v, { } v, 't } v
Time Time

(a) FBF: Requested video rate does not exceed overall(b) FBF: Requested video rate exceeds overall requested
reserved video rate video rate

Figure 2. Behavior of FBF for two different cases in terms of varying requested data rate by the video flows.

4.3. Weighted bandwidth allocation for all video flows (WBYV)

Another approach utilizes the service ratio between the two classes. The idea is that videos, in
general, require a multiple of the bandwidth needed for web browsing. Thus, there is a weight
parameter wy > 1, such that each video flow is assigned a wy, times larger bandwidth than a web
browsing flow. In contrast to FBYV, there is no fixed separation between the resources of the two
classes. Instead, the resource distribution between the web class and the video class scales according
to the number of active flows.

Algorithm: All active flows are split into two sets, one set .S, containing all video flows and
one set S,, containing all web browsing flows. Each active flow contributes to the calculation
either weighted (video) or normal (web). Thus, a video flow is assigned a bandwidth of ¢, =
C sy T, ST This in
turn results in a total link share with ¢s, = |S,| - ¢, and ¢s,, = |Sw| - quw as C = g¢s, + gs,, -

whereas a web browsing flow will be allocated ¢, = C -

Figure 3(a) shows the behavior of the WBV algorithm with weight wy = 2. As there are two
flows sharing the link, the sharing ratio between v; and wy is 2 : 1. Figure 3(b) illustrates the case
in which an additional video flow is on the link. Here, each video flow gets % of the link capacity
C, whereas wy gets % of the link capacity C.

4.4. Dynamic bandwidth allocation for each video flow (DBF)

In contrast to the above described resource allocations, which are based on flow types or flow
characteristics, also dynamic bandwidth allocation based on current application information is
possible. In particular, the buffer fill of video flows is used in this work. Thereby, the short term
flexibility introduced by the buffer can be utilized and struggling flows can be helped to avoid
stalling, which is the worst QoE degradation for video flows. The strategy relies on an equal sharing
of the capacity among all flows. Video flows that have a low buffer level (below a threshold #;)
will be added to a special set S, of flows, which can utilize a reserved bandwidth fraction g,,.
gp 1s a parameter, which has to be configured by the network operator in order to adjust the
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10 WAMSER ET AL.

Link Capacity Link Capacity
¢ c
qw,=C§{ }ow, Gy = €=y, =, { }owy
2
4, =C-< { }ovs
2
q, =C-— { } V1 2
3 @, =C ¢ { P ove
Time Time

(a) WBYV: Link share in case of two flows (one web, one(b) WBYV: Link share in case of three flows (one web, two
video) videos)

Figure 3. Behavior of WBYV for two different cases in terms of number of video flows. Weight wy, = 2 for
both figures.

extent of prioritization. This prioritization shall help to fill the buffer. If the buffer usage exceeds a
threshold ¢;,, the video flow is removed from 5,,. Note that multiple video flows may be prioritized
simultaneously. to avoid stalling, which is the worst QoE degradation for video flows. The strategy
relies on an equal sharing of the capacity among all flows. Video flows that have a low buffer
level (below a threshold ¢;) will be added to a special set S, of flows, which can utilize a reserved
bandwidth fraction g¢,. g, is a parameter, which has to be configured by the network operator in
order to adjust the extent of prioritization. This prioritization shall help to fill the buffer. If the buffer
usage exceeds a threshold ¢, the video flow is removed from S,,. Note that multiple video flows
may be prioritized simultaneously.

Algorithm: All active flows are put into a set .S, in the beginning. Additionally, an empty set .S,
is defined for prioritized flows and a bandwidth g, is reserved for that set. For each video flow the
playout buffer is monitored. If the playback buffer falls below the lower threshold ¢;, the flow is
moved from S, to S,. If the playback buffer of a flow in .S, is above the high fill threshold ¢y, it is
moved back to .S,,. All prioritized video flows share g, equally, i.e., Qv, = ‘gﬁ. All other flows (i.e.,
web browsing flows and non-prioritized video flows) equally share the remaining bandwidth. This

means, the bandwidth allocated to non-prioritized video flows is ¢, = C|s— q‘”, or q,, = |S—C‘ if S is
empty. Web browsing flows are never prioritized and thus always receive q,, = (fg q"’ O Gy = 1 SC i

if S, is empty.

Figure 4(a) illustrates the case in which the playback buffer of all videos is greater then ¢;. All
flows share the available capacity C' equally. Figure 4(b) shows the case in which the video flow
vy 1s added to the set S;,. As in this case only the buffer of vy is below the threshold ¢;, v, receives
all the allocated capacity g,. All other flows, i.e., w; and vy, share the remaining capacity C — g,
equally.

5. EVALUATION METHODOLOGIES AND SCENARIO

In Section 5.1, we introduce the analytic approach that can be used to evaluate the performance
of FBV, FBF, and WBV. In order to analyze DBF, we provide a simulation that is described in
Section 5.2. In Section 5.3, the investigated scenario is outlined; details about the video encoding,
average bit rates etc. are given.
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Link Capacity Link Capacity
c c
} wa }owy
Ty —d |mmm oo } v a0, b
} v, } v
Time Time
(a) DBF: All video flows have a buffer level higher than ¢; (b) DBF: One video flow gains a higher priority

Figure 4. Behavior of DBF for two different cases in terms of current state of the video applications.

5.1. Analytic Approach

We model the access link as a birth-death process with a single server and model its utilization
variations as a stationary process of singular and independent arrivals of traffic. This means, flows
enter the system, they are served with a certain download bandwidth, and leave the system after the
download is finished. For mathematical tractability, we consider Poisson arrivals with rate A, and a
negative exponentially distributed job size (i.e., video or web page size) with mean s, which gives
the service rate 1 = % Thus, the model for normal TCP behavior without any resource allocation
policy, which shares the capacity equally among all flows, is described by a M/M/1 queue with
processor sharing policy (M/M/1-PS). To account for different application usage, we use different
arrival rates \,, \,, and mean job sizes s,, s,, for video streaming and web browsing.

This two class M/M/1-PS model is a special case of the more general discriminatory processor
sharing (DPS) model described in [22]. Following the work of [6], it is possible to find the
conditional average response times V' (7) for each class depending on the job size 7. Thus, for
any given web page size or video size, the average download time can be given. As V,,(7) consists
of the video length (depending on video size 7 and video bit rate) and the stalling time, the average
stalling time should be definable. However, as we are not interested in a single user request, but
in the situation in the whole network, we analyze the unconditional average response times V', for

which we have:

1
V=
'ulf
u(l p) 0
Vip = ————
Mw(l_p)

where p = p, + py = ;% + ;% Note that V,, does not allow for a computation of average stalling
times, as video bit rate distributions have to be taken into account. Thus, here (and for all resource
allocation strategies) we follow a simulation approach as described below in Section 5.2 to obtain
more detailed results.

The WBYV strategy corresponds to the above described more general DPS model, in which each
class is assigned a weight which controls the division of processor capacity. Thus, using the weight
w for allocating w times larger bandwidth to videos than to web pages, we can use the generalized
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results from [6]:

voo_ 1 ( o P (1 — w)

e =p) wa (1= po) + (1 = pu) )
V. — 1 (1 P P (w0 — 1) )

Y (=) wpe (1= py) + (1 = pu)

FBV and FBF are best described by the generalized processor sharing (GPS) model in which
each request or class of requests receives an arbitrary service rate. Thus, FBV can be described by
a model with two classes, one for video and one for web pages. From the work of [3], stationary
Jjoint distributions can be obtained but no closed form for the conditional response times is given.
However, numerical results can be obtained by solving the steady state equations of the FBV model.
FBF can be modeled by a single class for each video and one class for all web pages, which enlarges
and complicates the FBV model such that we did not conduct an analytical performance evaluation.
DBF is a dynamic strategy prioritizing flows depending on current playback buffers, so no analytical
model can be provided. Therefore, our analysis of FBF and DBF will be based on results of the

simulation runs only.

5.2. Simulation

To confirm the analytic findings on the average download times, to obtain more detailed results,
and to evaluate the strategies for which no analytic approach is present, we follow a simulative
approach based on the analytic model. The streaming of videos and the download of web pages
over a single link is simulated with a Java discrete-event simulation. Again, a single link has a fixed
capacity C, which is shared among all application flows of the users in the system. The streaming is
implemented such that different flow control (i.e., bandwidth allocation) strategies can be applied.
Each run simulates the link utilization slightly more than one day. The arrivals of both video and web
page requests follow Poisson processes with rate A, and \,, respectively. The size of videos s, and
web pages s,, is exponentially distributed. With video streaming, the stalling of each video depends
on the download bandwidth, video bit rate, and buffering strategy. The average video bit rate b is
exponentially distributed. For the simulation of variable bit rate videos, the video is split in chunks
of 2 s playtime. The bit rate of each chunk is different, but constant bit rate was assumed within a
chunk. For the varying chunk bit rate, we use a simple auto-regressive model, which can accurately
model videos without scene changes [33]. Note that, in practice, higher variations may occur if the
video content is composed of several scenes, which can negatively effect the presented results. For
each video, a playout buffer is maintained and a simple buffering strategy is adopted: stalling of a
video begins when the playout buffer is empty, and playback resumes after 5s of playtime are in
the buffer. Thus, not only the resulting video and web page download times, but also stalling times
can be obtained. In the performance evaluation, the buffering ratio, i.e., the ratio of stalling time and
playback time, will be used. An initial delay of 2s was chosen as it provides some time to pre-buffer
video data without significantly deteriorating the perceived quality [14].
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5.3. Evaluation Scenario

The aim is to investigate a recently new emerging scenario with progressive video streaming. We
use the observations of [8] for our evaluations and additionally investigated the sizes of 50 randomly
downloaded videos and web pages, respectively. In detail, we focus on 360p Flash videos, which
is the current default quality for YouTube videos on smartphones. According to [8], the average
encoding bit rate of 360p YouTube videos is b = 0.5 Mbps. Furthermore, we measured a mean
video clip length of 110s. Therefore, we define s, = b - video clip length = 6.87 MB. To align the
simulation and the analytical approach, we model the video size as a random variable following
an exponential distribution with the reciprocal of s, as rate parameter. Each video is divided into
chunks with random sizes, which again follow an exponential distribution with the reciprocal of
2s - b as rate parameter. Only the last chunk is cropped to reach the desired video size. The size of a
web page is exponentially distributed with a mean of s,, = 1.3 MB. For the performance evaluation,

we simulate one link with capacities of 5,10, and 20 Mbps and a maximum of 50 flows.

6. PERFORMANCE EVALUATION AND INSIGHTS

This section presents the results of the performance evaluation of all algorithms of this paper. In
particular, we start with investigating for which scenarios an active resource scheduling for a link
is needed, i.e., for which level of network use a resource scheduling may improve the quality
of the applications. Based on this observation, the algorithms are evaluated analytically and with
simulation for different traffic mixes, i.e., for different sharing ratios between web and video flows
for a particular network use. Finally, we provide an overview of all algorithms and differentiate
their trade offs between the quality of web and video traffic. Note that the following plots contain

confidence intervals for 95 % confidence level.

6.1. Situation in Current Networks Without Resource Management

To motivate why an application-aware resource management is needed, the performance of all
network flows in terms of QoS parameters is presented and then linked to the actually perceived
quality of each application. The results allow us stating that pure network parameters may not
show any performance issues, whereas looking at the application parameters reveals dramatic
performance degradation.

6.1.1. Best Effort Networks As described in Section 3, it is assumed that with TCP all flows share
the available link capacity equally. This means, every flow gets the same bandwidth share. Figure 5
shows the normalized download time of 1 MB for different capacities and network loads. Both the
results of the analytical model and the simulation of Section 5 are presented. First, it can be seen that
the analytical model closely resembles the simulation as the analytical model results fall within the
95 % confidence intervals of the simulation. Second, for a given network load, a higher link capacity
leads to lower average download times. Third, confirming the analytical model in Equation 1, when
the network load increases towards 1, the time to download data grows hyperbolically. This leads to
unacceptable download times that are commonly avoided in most networks by over-provisioning.
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Figure 5. Normalized download time of 1 MB in best effort networks.

6.1.2. Application Performance Although the general results of Section 6.1.1 hold, different
applications have different requirements to the network. Thus, also the changing of network
parameters has a different impact on the quality of the various applications. This holds especially for
the two considered applications in this work, i.e., video streaming and web browsing. Therefore, we
analyze application inherent parameters that have a high correlation with the user-perceived quality
of the application as described in Section 3.1. These key performance indicators are download time
of a web page for web browsing and buffering ratio for video streaming.

Figure 6(a) compares the download rate r at different link capacities and loads for videos with
an average encoding rate of 0.5 Mbps. It shows that the download rates decrease linearly when
network load increases. The download rate has to be at least as high as the average video rate to
guarantee a video playback without interruptions. It can be seen that a 5 Mbps link can provide such
download rates up to a load of 0.9. Higher link capacities can even guarantee smooth playback for
higher loads. However, this is only true for CBR videos where the download rate does not fluctuate.
Currently deployed streaming applications apply pre-buffering of video content and use video
encoding with VBR, which may result in different video performance. For example, with VBR the
network requirements of the video can vary over time, but the use of the buffer can overcome certain
load peaks. Therefore, this behavior was emulated in the above presented simulation as described in
Section 5.2. Figure 6(b) shows the simulation results for the average buffering ratio of VBR videos
for different capacities and network loads. It can be seen that, in contrast to CBR, stalling of videos
with slightly varying bit rate can occur already with loads around 0.7 and above. Consequently, the

benefits of resource allocation strategies in high load scenarios will be investigated in the following.

6.2. Performance Evaluation of Resource Management Algorithms

This sections evaluates the resource management algorithms, which were presented in Section 4.
In this section, if not stated otherwise, results for a link capacity of 10 Mbps and a network load of
0.9 are shown. Note that this is the load of a best effort system (M/M/1-PS) with given arrival rates
Avs A, JOb SiZes s, Sy, and capacity C' (cf. Section 5) which is also used for the systems that apply
the different resource allocation algorithms. Nevertheless, this general approach can also evaluate
situations with different network parameters.
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Figure 6. Video application performance in best effort networks.

This analysis investigates the key QoE influence factors of the two considered applications, web
browsing and video streaming. As the performance of a given resource management algorithm
depends not only on application characteristics but also their popularity in the network, the traffic
mix (/’\\—1) is introduced. For example, a traffic mix of i— = 2 means that on average there are two

times more video downloads than web page downloads over the link.

6.2.1. FBV The FBV strategy reserves a certain share of the capacity to video flows. The challenge,
however, is the selection of the right prioritization settings. If too much bandwidth is allocated for
video, the download time of web pages is considerably affected. If the reserved rate is too small, the
video may stall and the prioritization is useless. Therefore, several fixed allocations ranging from
gs, = 0.3C' up to gg, = 0.9C are simulated. Figure 7(a) depicts the analytical and simulative results
of the average download time of a web page for a fixed network load p = 0.9 and varying traffic
mixes. It can be seen that the download times in a best effort network are 9s on average for each
traffic mix. On the left side of the dashed vertical line, more web page downloads are on the link.
The plot depicts that an increased bandwidth allocation generally increases the web page download
times as videos are in the system, which leave little resources for the web page downloads. When
the traffic mix increases towards 10° = 1 and beyond, this effect is mitigated because less web pages
are in the system. Thus, they are not penalized to such big extent as the bandwidth share becomes
more aligned to the traffic share. In the rightmost part of the figure, only few web flows are in the
system. They can then use the remaining (i.e., not reserved for videos) capacity almost exclusively,
which stems from but also leads to short download times. For the analytical M/M/1-GPS model, the
mean number of users in the system is obtained from the state probabilities. Little’s Theorem is used
to compute the mean delay in the system, which is equal to the mean service time in a processor
sharing system. As can be seen in the plot, the simulation runs are approximated very well by the
analytical model. Thus, also the analytical model can be used for the performance evaluation.
Figure 7(b) shows the exactly same situation from the perspective of video flows and depicts
the average buffering ratio for different traffic mixes and different bandwidth allocations. Again
the best effort performance (cf. Figure 6(b)) is shown as a base value. In the rightmost part of the
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figure, it can be seen that the buffering ratio converges towards the best effort performance for
any prioritization. This can be explained by the fact that web flows are seldom in the system and
for short times only. This means that there are many videos which compete most of the time only
among themselves, which leads to a best effort behavior. In the left part of the plot, video flows are
more seldom in the system but have no problems because of the bandwidth allocation. In general, a
higher bandwidth allocation leads to smaller buffering ratio with traffic mixes below 1. Only in the
case of gs, = 0.3C), the allocation is not sufficient as the buffering ratio is higher than the best effort
base line. This again shows the need for careful selection of the right allocation parameter. The
trade-off between the optimization of the two applications will be further discussed in Section 6.3.
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(a) Download time of web pages. (b) Buffering ratio of video flows.

Figure 7. FBV: Fixed bandwidth reservation ¢g, for all video traffic at a load p = 0.9.

6.2.2. FBF The difference of FBF compared to FBV is that it allocates bandwidth to individual
video flows. As described in Section 4, two allocations are investigated. First, each video is assigned
its average bit rate, and second, each video is assigned its average bit rate plus standard deviation to
account for bit rate variations (VBR content). Figure 8(a) shows the average download times of web
pages for both allocations. For comparison selected FBV performances (¢s, = [0.3 0.6 0.9]C') are
depicted in gray. Obviously, it can be observed that the FBF download times increase if the traffic
mix increases. This is due to the fact that more and more video flows are in the system which request
bandwidth, hence, the reserved bandwidth for video, which is unavailable for web page downloads,
adds up.

Figure 8(b) shows the buffering ratio of the video flows in the same scenario. It can be seen that the
average video bit rate allocation is not sufficient as it cannot avoid stalling of VBR videos. However,
the allocation of average video rate plus standard deviation performs quite well for traffic mixes
below 1 where it almost completely avoids stalling. When more video flows are in the system, the
reservation of the videos exceeds the available capacity. Thus, each video receives a share relative
to its request which leads to increasing buffering ratios and consequently bad performances of the
video streams. With increasing traffic mix, it performs better than all FBV algorithms, which use an
equal share policy if too many videos in the system, as the relative sharing of bandwidth is better
aligned to the demands of the video flows.
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Figure 8. FBF: Fixed bandwidth reservation for each flow with either average bit rate or average bit rate plus
standard deviation at link load p = 0.9.

6.2.3. WBV The WBY strategy assigns a weight wy to each video flow such that it receives a wy
times larger bandwidth than a web flow. Figure 9(a) shows the results of the analytic DPS model
(cf. Equation 2 in Section 5) and of the simulation runs. It can be seen that the analytic model
and the simulation results are well aligned, especially for smaller values of wy . Moreover, a larger
wy increases the download time, as web flows receive less bandwidth compared to video flows for
any traffic mix. Only for large weights and large traffic mixes, the bandwidth given to web flows
becomes almost arbitrarily small which leads to a fast increase of download times.

The buffering ratio in the same scenario can be seen in Figure 9(b). The video flows benefit
from WBV with wy > 1 in case of traffic mix below 1. If more video flows are in the system, the
effect reduces and the buffering ratio again converges towards that of best effort networks (equal
sharing). It can be seen that WBYV is suitable to align bandwidth allocation to the flow sizes by
choosing an appropriate weight wy for the given traffic mix. As the resulting resource allocation
also accounts for the number of flows, it can significantly reduce buffering ratios for video flows
while only slightly increasing the download time of web pages. Again trade-offs between the two

applications have to be taken into account and are further investigated in Section 6.3.

6.2.4. DBF The results presented so far showed the performance of resource allocation algorithms
in which a parameter was set statically for each flow. This means, the bandwidth allocation changed
only depending on the current number of flows and the respective parameters. In contrast, DBF is
a dynamic resource allocation strategy, which prioritizes a video flow if its buffer fill is below a
threshold ¢;, and de-prioritizes it once its buffer level has passed a threshold ¢,,. For the performance
evaluation of DBF, the prioritization bandwidth g, which can be utilized by suffering video flows,
is set to ¢, = 0.9-C and the thresholds are set to t; = 10s, ¢, = 20s. Figure 10(a) shows the
performance of DBF (dashed) and compares it to WBV (solid), which showed a decent performance
with respect to both traffic classes. It can be seen that the download time of web pages is highest for
an equal traffic mix. The more the traffic mix becomes imbalanced (either more videos or more web

pages are in the system), the download time improves and comes close to the best effort situation.
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Figure 9. WBV: Weighted bandwidth reservation for all video traffic with weight wy, at link load p = 0.9.

The video flows, on the other hand, face a significant performance improvement, which is
depicted in Figure 10(b). If there are many video flows in the system, the buffering ratio is worst
but still converges to the best effort situation. However, if there are less videos in the system, the
buffering ratio is much smaller than without resource allocation strategy. It can be seen that DBF
supports video flows even better than WBV with a high wy > 5, but at the same time does not
penalize web flows too much.

To sum up, DBF has been shown to effectively reduce stalling for traffic mixes ;\—“ < 2. But
although DBF is a video prioritization algorithm, it only slightly increases the download time of
web pages. Thus, DBF ranges among the best investigated algorithms especially taking balanced
and fair behavior into account. However, it has to be noted that the influence of the parameters
gp;t1, t, wWas not investigated in this work and is thus still open. Moreover, the gain of dynamic
allocation based on application state comes with the cost for monitoring and signaling application
information to the resource management entity. The trade-offs for this additional cost will also be
investigated in future work.
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Figure 10. DBF: Dynamic bandwidth allocation for each video flow based on buffer fill at link load p = 0.9.
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6.3. Comparison of the Different Strategies

After presenting the performance of each individual algorithm, we conduct a Pareto analysis to
compare how the different strategies influence the QoE in our scenario. Therefore, the two QoE
performance indicators, i.e., download time for web flows and buffering ratio for video streams, are
used as axes for the Pareto plot in Figure 11. The best effort performance (mean download time
9.04 s, mean buffering ratio 0.058) is depicted by a red cross and serves as a reference. Similarly,
the Pareto-optimal performances of the algorithms for a given traffic mix are marked in the plot.
We distinguish five different traffic mixes by colored lines ranging from 0.1 (black), i.e., ten times
more web flows than video flows, over 1 (light brown), i.e., the same amount of web and video
flows, to 5 (yellow), i.e., five times more video flows than web flows. Note that only the marked
points are Pareto-optimal algorithm performances, the lines connecting the points, which belong to
the same traffic mix, however, are only for visualization purposes and do not indicate the location of
other Pareto optima. The marker shape of the Pareto-optimal points represents the type of algorithm,
which achieved the respective results.

The Pareto-optimal performances, i.e., performances, in which it is impossible to improve in
one dimension without deteriorating the other dimension, are either below or left of the best effort
performance. This means, the usage of any of the resource allocation algorithms does improve the
performance at least in one dimension. It can be seen that especially WBYV algorithms can be used
to optimize the web page download time, whereas FBF and DBF achieve minimal buffering ratios.
The most interesting part is the bottom left gray shaded box, which indicates an improvement for
both web and video flows. The marker shapes indicate that WBV and FBV algorithms can achieve
such performances when they use the right parameter for the given traffic mix. Note that the specific
algorithm parameter for a Pareto optimum is not given in this plot but can be obtained from the
respective plots in the previous sections.
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Figure 11. Overview of Pareto-optimal performances for different traffic mixes.
7. CONCLUSION

This work presented new methods that allow analyzing application-aware resource management
analytically and with simulation. Application-aware resource management aims at improving not

only network’s resource efficiency but also users’ satisfaction, i.e., the application Quality of
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Experience (QoE) of users. To count for varying traffic situations, a joint optimization of two
application types, namely web browsing and video streaming, is considered, which has not yet been
investigated by the research community. With the proposed methods, network operators can quantify
performance gain trade-offs between investing in pure capacity increase (over-provisioning) and the
realization of application-aware resource management approaches.

This work proposed a model for the application-aware resource management problem and
discussed four algorithms for resource management. The algorithms vary in complexity and
implementation levels in order to cover the design space of application-aware resource management.
In order to evaluate the performance of the algorithms, analytical models based on processor
sharing queues (M/M/1-PS) were presented if possible. Moreover, a discrete event simulation was
implemented in Java to assess all algorithms.

Furthermore, a first study of application-aware resource management approaches of this paper
provides configuration guidelines for the selection and configuration of the considered algorithms.
The results of the study show that it is possible to improve the quality of all applications compared
to best-effort transmission. This means that for specific traffic mixes it is possible to get a significant
gain in network resource use compared to simple best-effort transmission, while still having a low
implementation complexity. In case of more complex, i.e., more dynamic algorithms, the application
quality of videos were significantly improved. Based on all analysis, operators have the possibility
to set up a resource management according to their objectives and traffic situations of their networks.
Such an analysis in terms of quality of experience and varying traffic conditions has not yet been

considered in the literature.
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