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Abstract. Peer-to-peer networking enjoys euphoric support and fierce resistance simultane-
ously, and for the same reasons. It presents a model where decentralization and lack of struc-
ture, hierarchy and control are promoted. Although significant research is carried out to tackle 
individual issues arising from that paradigm, there has been no obvious approach for evening 
out differences on a more general basis. In this paper we introduce a framework and provide 
implementation techniques for such an approach. The framework aims at integrating partial 

techniques that solve individual problems and has been designed for flexibility. The integrated 
approach we are proposing includes forming and maintaining of peer-to-peer overlays, control-

ling the underlying topology being formed, limiting the signaling traffic being generated and 
optimizing the payload traffic. 

1. Introduction 

Peer-to-peer (P2P) applications are close to become the dominating application of 
the Internet: P2P cooperation appears highly attractive to an increasing number of us-
ers due to appealing “free” resource sharing and easy use. P2P services can be loosely 
defined as being about networked cooperation of equals. Three main characteristics of 
P2P services can be emphasized: sharing of pooled and exchangeable resources, all 
nodes having similar roles, and all nodes being highly autonomous. That contrasts 
sharply with other distributed architectures such as Client/Server where asymmetric 
roles are typical. While loss of a primary component, i.e. the breakdown of a server, 
in an asymmetric architecture may result in a major disruption, any peer in a peer-to-
peer architecture can be moved without resulting in a loss of service.  

P2P systems are often referred to as being self-organizing where a coherent behav-
ior emerges spontaneously without external coercion or control. Pure P2P architec-
tures, such as early the Gnutella service, however turned out to be non-scalable. As a 
response, the need to introduce structure and limited control has been recognized, cf. 
[19]. In order to introduce heterogeneity into unstructured, pure P2P services, various 
mechanisms have been proposed. The suggestions range from “ultrapeers” and “su-
perpeers”, as in Gnutella [9] and Kazaa [18] respectively, to distributed mediation 
servers and peer caches as in eDonkey2000 [20]. These approaches comprise only 
partial solutions to a more complex control problem. In particular, variability in ser-
vice demand or load patterns can only be dealt with in a limited way. The demand for 
services may form hot spots which may shift within an overlay from one location to 
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another one over time. P2P applications may therefore require a more flexible and 
dynamic method of control and management [3].  In particular, different control 
methods should be in place when and where needed, should be flexibly usable in 
combination with each other, and should be extensible in an evolutionary manner. 
More generally, it is our goal to introduce and to implement control and structure into 
peer-to-peer applications on demand. 

In this paper we introduce a framework which facilitates a flexible and highly 
adaptive mode of P2P service management and P2P overlay management. The 
framework provides means for supporting self-organization, e.g. by mechanism to re-
structure an overlay topology. We present in detail the implementation of our scheme 
for an adaptive control of peer-to-peer overlays. The approach is based on the intro-
duction of the concept of virtual nodes, called Active Virtual Peers (AVP). The pro-
posed approach based on AVPs includes for example a dynamic forming and main-
taining of peer-to-peer overlays or an adaptive routing of signaling and download 
traffic.  The approach is also extensible to enforce security or ownership rights and to 
include mechanisms of charging. These additional features, however, are beyond the 
scope of this paper. 

This paper is organized as follows: Section 2 discusses the objectives and require-
ments of control for P2P overlays. Section 3 presents the Active Virtual Peer concept. 
Next, in section 4, a prototype implementation of an AVP for optimizing Gnutella is 
described. Section 5 presents a discussion of the performance features of the AVP 
concept. A related work section is following in Section 6. Finally, Section 7 summa-
rizes and concludes the paper. 

2. Objectives and requirements on control for P2P overlays 

P2P services are effective in providing solutions in a large area of applications be-
cause of their distributed nature and focus they give to the resources found on the 
edges of the network. However, it has become evident over the past few years that 
some form of control is necessary to tackle issues such as the use of the service, the 
separation between the P2P overlay and the network layer, the short and unpredictable 
lifecycles of peer relations and the high signaling traffic generated, as we examine in 
[3]. We believe that there exist four areas where the enforcement of control will be 
beneficiary for such applications. 

The first is access control. Participants of P2P overlays are typically granted access 
to all resources offered by the peers. These resources are valuable. Thus, the resource 
provider, either content provider or network provider, need to identify and regulate 
the admission to the overlay. In particular for P2P file sharing applications, access 
control should block off P2P applications or enable controlled content sharing. 

The second area is resource management. The resources of individual peers have 
to be treated with care, e.g. low-bandwidth connected peers should not be overloaded 
with download requests and exploited equally. For P2P file sharing applications, for 
example, content caching capabilities will improve the performance while reducing 
the stress imposed on the network.  
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A third area of interest is overlay load control. Overlay load control copes with 
traffic flows inside the overlay. Its goal is to balance the traffic and load in order to 
maintain sufficient throughput inside the overlay while also protecting other network 
services by mapping this load in an optimum way onto the underlying network infra-
structure 

Finally, the forth area of command is adaptive topology control. Overlay connec-
tions may be established or destroyed arbitrarily by the peers since they can join or 
leave the virtual network at any time. Topology control may enforce redundant con-
nections, thus increasing the reliability of the service. In addition, topology control 
may force the structure of the virtual network to be more efficient and faster in locat-
ing resources when using broadcast protocols.  

The last two areas support the aim of having adaptive and application-suited, man-
agement strategies for P2P services. The outlined control objectives might violate the 
populist concept of unlimited access to free resources in P2P services, but control 
mechanisms governed by these objectives do increase the stability of P2P services 
based on overlays. It is necessary to find the proper trade-off between regulation and 
autonomy in P2P overlays.  

Having identified the objectives of control for a P2P overlay, it is important to ex-
amine how adaptive and un-supervised control mechanisms need to be implemented, 
without diminishing the virtues of the P2P model or introducing further complexity 
and overhead to the network. We believe that it is vital to preserve the autonomy of 
the peers inside a P2P network. Additional control loops, which adapt to the behavior 
of a P2P overlay, must not interfere with the autonomous nature of any P2P applica-
tion. To achieve this goal, we suggest implementing control through an additional 
support infrastructure. This infrastructure will provide all the necessary tools and in-
terfaces to implement the desired forms of control and at the same time protect a P2P 
application. In addition, it is able to combine different algorithms in order to obtain 
optimally suited control structures. Finally, the mechanisms in this infrastructure 
permit self-organization or constraint-based self-organization, with the ultimate aim 
of flexibility and adaptivity. The support infrastructure will be formed of self-
organized, interworking modules that may resemble a P2P network on their own. 

3. The Active Virtual Peer concept 

The main element of the support infrastructure suggested in this paper is the Active 
Virtual Peer (AVP). As its name implies, an AVP is a virtual entity which interacts 
with other peers inside a P2P network. An AVP is a representative of a community of 
peers. Its purpose is to enhance, control and make the P2P relation more efficient in-
side that community. AVPs enable flexibility and adaptivity by the use of self-
organization. An AVP consists of various distributed and coordinated components 
that facilitate different forms of control. By combining these components based on 
network conditions or administrative policies, we can create AVPs of different func-
tionality.  

The AVP performs certain functions, not expected by an ordinary peer. These AVP 
functions are arranged in horizontal layers as well as in vertical planes, see Figure 1. 
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The horizontal layers correspond to the layers on which an AVP imposes control. The 
vertical separation describes the functional planes of AVPs. These architectural planes 
have been examined in detail in [3,4]. 
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Figure 1: The AVP architectural layers. Figure 2: The AVP realm. 

The upper horizontal layer of an AVP is called the “Application Optimization 
Layer (AOL)”. It controls and optimizes the peer-to-peer relation on the application 
level. The AOL may apply application-specific routing in conjunction with access 
policies. The routing performed by the AOL is based on metrics such as the state of 
the peers (“virtual peer state”) or the state of the links between peers (“virtual overlay 
link state”) thus changing the peer load and overlay link characteristics such as packet 
drop rate, throughput, or delay. In addition, the AOL allows for active overlay topol-
ogy control, which is accomplished in two ways. The Active Virtual Peer may initi-
ate, accept or terminate overlay connections based on access restriction or topology 
features. Topology characteristics such as the number of overlay connections or char-
acteristic path length can be enforced or may govern the overlay structure. Further-
more, the AOL layer makes also use of the ALAN control mechanisms, examined be-
low, for implementing its self-organization features. The AOL can instantiate 
modules implementing AOL functions whenever and wherever needed. These fea-
tures enable the AOL to adapt the virtual overlay structure to varying demand, traffic 
patterns and connectivity requirements by launching new overlay connections and 
new virtual peers. These self-organization features make the AOL a very flexible ar-
chitecture. 

The middle layer of the AVP is denoted as the “Virtual Control Cache (VCC)”. 
The VCC provides content caching on the application-level similar to conventional 
proxies. By maintaining often-requested content in close proximity, for instance in-
side an ISP’s domain, large economies in resources and performance gains can be 
achieved. In addition, the VCC may offer control flow aggregation functions. 

The lower layer of AVPs is denoted as the “Network Optimization Layer (NOL)”. 
Its main task is the implementation of dynamic traffic engineering capabilities that 
map the P2P traffic onto the network layer in an optimized way. The mapping is per-
formed with respect to the performance control capabilities of the applied transport 
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technology. The AVP architecture may apply traffic engineering for standard IP rout-
ing protocols [7] as well as for explicit QoS enabled mechanisms like MPLS [8]. 

Figure 2, above, depicts a scenario where two AVPs, AVP 1 and AVP 2, are lo-
cated within a single administrative domain. AVP 1 consists of three AOL modules 
and one VCC component, while AVP 2 comprises of two AOL modules. Multiple or-
dinary peers, denoted by “Peer”, maintain connections to them. The two AVPs main-
tain overlay connections to each other. The AOL modules of the AVPs are in com-
mand of the overlay connections. This way, the AVPs can impose control on the 
overlay connection.  

Implementation support. The current instance of the AVP technology is based on 
the Application Level Active Networking (ALAN) concept [1, 2]. The ALAN infra-
structure allows a rapid deployment of network services and their on-demand provi-
sion to specified users or communities. ALAN is based on an overlay technique: Ac-
tive nodes, which operate on the application level, are strategically placed within the 
network. These nodes, called Execution Environments for Proxylets (EEPs), enable 
the dynamic loading and execution of active code elements, denoted as proxylets, 
from designated servers. The resulting services may interfere with data transport and 
control. ALAN provides mechanisms for EEP discovery, application specific routing, 
and service creation by deploying a web of proxylets across the physical infrastruc-
ture. The Self Organizing Application-level Routing (SOAR) protocol [1], which is a 
key component of ALAN, enables clustering and grouping of proxylets. This way, 
ALAN facilitates the creation of an application-specific connectivity mesh and the 
dynamic forming of topology regions. Finally, ALAN provides the basic administra-
tive mechanisms necessary for managing such an architecture. 

The AVP layer modules are implemented by single or multiple interconnected 
proxylets. This allows the implementation of the layered AVP architecture in separate 
components. For instance, a proxylet may execute the AOL functions whereas an ad-
ditional proxylet may materialize the Virtual Control Cache or the Network Optimiza-
tion Layer. This approach facilitates better flexibility and efficiency in the constantly 
changing conditions of a Peer-to-Peer overlay. Different configurations of AVPs can 
be deployed in parts of the network that experience different characteristics, or even 
in the same network at different times of the day when conditions have changed. In 
addition, it is possible that different proxylets exist which implement the same layer 
functions differently. This gives further choice over the functionality of the AVP. 

How an AVP imposes control. Having earlier identified the objectives for control 
of a P2P overlay, it is time to see how the AVP facilitates these control issues. De-
ployed AVPs create a realm wherein they constantly exchange information. Each 
AVP consists of multiple AOL and VCC proxylets which communicate and collabo-
rate. The exchange of information allows for coordinated control of the overlay. A 
realm of AVPs is more suitable to evaluate the conditions inside a particular part of a 
P2P overlay than a single entity and this knowledge is distributed in order to achieve 
better results. Again, this capability promotes the flexibility and adaptivity of the 
AVP approach. Continuing, an AVP imposes control by providing effectors on con-
nection level. The effectors comprise so far the Router module and the Connection 
Manager module. The Connection Manager enforces control by manipulating the 
connections peers maintain with each other. That is a significant difference compared 
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to most P2P applications where the way peers connect to each other is random. By 
applying connection management, the AVP can enforce different control schemes. 

The Router module governs the relaying of messages on application–level accord-
ing to local or federated constraints, e.g. access restriction or virtual peer state infor-
mation. The Sensor module provides state information for the distributed and collabo-
rative control scheme. In the remainder of the paper, we discuss in detail how the 
suggested effectors are implemented. 

4. Implementation of the AVP 

The AVP concept is not based on any particular P2P application and does not re-
quire any specific P2P components in order to operate. Furthermore, the AVP does 
not address issues found only on P2P file-sharing applications but provides a generic 
performance management framework suitable for any type of P2P application that 
uses overlays. Nevertheless, for evaluating our prototype implementation, we use the 
Gnutella P2P file-sharing protocol as a vehicle and test environment. We chose 
Gnutella because it is a well-tested, open source, fully distributed P2P network with 
thousands of users; therefore ideal for realistic experiments. Furthermore, through 
Gnutella we are able to illustrate several realistic showcases where the AVP technol-
ogy can provide solutions, many of them presented below. The showcases presented 
in the next section are all representative of experiments carried out at the University 
of Wuerzburg and University College London. We focus on the Gnutella protocol 
version 0.6 [5] to join the Gnutella network (GNet). 

Access control. One of the core capabilities of the AVP is access control. The 
AOL component can create areas of control inside a P2P overlay, where all commu-
nications between the controlled domain and the global Gnutella network are man-
aged by the AOL. Its goal is to control who can access the peers and their resources 
inside the domain. An AOL proxylet imposes access control by blocking and modify-
ing Gnutella packets communicated between the controlled domain and the global 
Gnutella network. The result is that peers inside the controlled domain see only each 
other and become invisible to any peer outside that domain that is not granted access. 
At the same time, the AOL proxylet becomes the single point of contact between the 
controlled domain and the global network.  

The access control as implemented by an AOL proxylet can be better illustrated by 
the following scenario, depicted in Figures 3a and 3b. In Figure 3a, Peers 1 to 5 reside 
inside the global Gnutella overlay. Peer 2 sends out a Gnutella “Ping” message in or-
der to discover other peers. Under the Gnutella protocol, a Ping has to be forwarded 
by the receiving peer, i.e. Peer 5, to any peer in its vicinity, who in turn has to respond 
with a “Pong” message. Thus, Peer 2 receives “Pongs” from Peers 1, 3, 4, and 5.  

In the access controlled scenario, see Figure 3b, an AVP forms a controlled do-
main (CD) for Peers 1 and 2.  In order to facilitate the access control, the AOL proxy-
let establishes connections with all peers. When Peer 2 sends out a “Ping” to discover 
other peers, the AOL proxylet intercepts the “Ping” message and forwards it unmodi-
fied to Peer 1 which is part of the CD. In addition, it modifies that Ping so it seems 
like it was initiated by the proxylet and relays it to the outside world. Peer 2 receives 
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“Pongs” by Peer 1 and the AOL proxylet and concludes that only these two peers 
comprise its neighborhood. The AOL proxylet captures all messages originating from 
the global Gnutella network, modifies them if necessary, and forwards them inside the 
controlled domain. 

Routing Control and Load Balancing. The AOL router represents the core 
mechanism for application of control. One of its main features is the ability to handle 
multiple protocols at the same time. To facilitate these different protocols in an effec-
tive and expandable way, the implementation of the router is divided into multiple, 
partly autonomous elements. In the current version of the AOL proxylet, two different 
mechanisms and protocols have been implemented: the Gnutella protocol version 0.6 

[5] and an AOL intercommunication protocol, denoted as the AOL-to-AOL protocol. 
A major feature of the AOL-to-AOL protocol is the tunneling of other protocol mes-
sages between AOL proxylets, in our example the Gnutella packets. The current ver-
sion of the AOL has the following routing capabilities: 
• Routing of Gnutella packets  
• Routing of AOL-to-AOL packets 
• Routing between local Gnutella and AVP networks 
The routing of Gnutella packets follows the specification of Gnutella version 0.6 but 
is significantly enhanced. The major enhancement lays in the “Probabilistic Routing” 
module, which drops broadcasted packets, e.g. Query messages, Ping messages, etc., 
based on a random value compared to a given threshold per connection. If the random 
value for a packet is larger then the configured threshold the packet is discarded. As a 
result, certain links become less loaded than others. Since the Gnutella protocol is 
based on event-triggered responses, discarding of a limited amount of packets doesn’t 
sacrifice the file locating capability of the system when sufficient responses are still 
available, e.g. by receiving responses on multiple paths and from multiple sources. An 
example of probabilistic routing is depicted in Figure 4. 
 In this example four Peers (1, 2, 3, 4) are directly connected to an AOL proxylet. 
The proxylet has configured different threshold values for the links to Peer 2 (thresh-
old is 0.3), Peer 3 (threshold is 0.6) and Peer 4 (threshold is 0.0). Peer 1 sends a mes-
sage, e.g. a Query1, to the AOL proxylet. The proxylet determines a random value of 

                                                           
1 Query: Gnutella protocol message containing search criteria, used to search the P2P network 

for files [5]. 
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Figure 3a: Gnutella conventional forwarding Figure 3b: New routing by AOL proxylet 
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0.5 for this packet2. Since the random value is smaller than the threshold value on the 
link to Peer 3, the AOL proxylet drops the packet along this connection whereas it 
keeps the packet on the links Peers 2 and 4. 
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Peer
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Figure 4: Operation of the “Probabilistic Routing” feature of the AOL.  

The AOL monitors and evaluates constantly the condition of the overlay, e.g. it 
measures and analyses the virtual link state or the virtual peer state. If these states de-
grade, the AOL may adjust the thresholds on the different proxylets and overlay con-
nections. Through adaptive probabilistic routing, the AOL performs dynamic load 
control. Finally, by distinguishing messages between implied events (i.e. responses 
like Pongs and QueryHits) and initial events (i.e. requests like Pings and Queries), the 
probabilistic routing module makes sure superfluous traffic is not generated. 

Topology Control. As mentioned earlier, topology control as enabled by the AVP 
enforces optimal P2P relations inside an overlay, based on a variety of metrics such as 
virtual peer state and virtual link state. The AOL proxylet achieves topology control 
by selectively setting up or closing connections to other AVPs and ordinary peers. By 
shaping the way peers are connected and communicate inside the overlay, an AVP 
can give it certain characteristics like better performance or greater stability.  

Based on the virtual peer state, the AOL can initiate or terminate overlay connec-
tions between AOL proxylets in order to maintain good connection characteristics in-
side the overlay, e.g. more durable overlay connections. The virtual peer state can be 
monitored using parameters like the number of overlay connections maintained, rout-
ing capability of the peers, processing load etc. Let’s examine the following scenario, 
as depicted in Figures 5a and 5b. Figure 5a shows three AVPs and two peers existing 
in that part of the overlay. The link between AVP 1 and AVP 2 is significantly de-
graded, affecting the stability and performance of the information exchange between 
the two peers. 

AVP 1 discovers that the virtual link is degraded and decides to re-structure the 
overlay topology in order to maintain good overlay characteristics. Therefore, AVP 1 
establishes a link with AVP 3 which is in proximity, cf. Figure 6b, and shuts down the 
overlay connection to AVP 2. This way, AVP 1 manages to maintain the connection 
between the two peers in the desired levels of connectivity and quality without any 
knowledge or action taken from their part. 

                                                           
2 Without the loss of generality, the random value is equally distributed in the interval form [0, 

1]. 
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This scenario shows how the AOL proxylets create and terminate overlay connec-
tions in order to enable dynamic topology management of the overlay by means of 
self-organization. It has to be noted that similar schemes where certain peers have 
some influence on the way the overlay is formed have been proposed elsewhere, like 
the Gnutella “Ultrapeer” concept, see Section 5. However, an AVP achieves im-
proved adaptivity and flexibility due to its self-organization features and the coordina-
tion between multiple AVPs or multiple AOL proxylets.  

Resource Management and Caching using the VCC. An AVP may contain a 
VCC (Virtual Control Cache) proxylet. Its task is to provide content caching on the 
application-level by maintaining often-requested content in close proximity. This fea-
ture is illustrated in Figure 6. 

An AVP that has spawned and configured a VCC, controls a domain of peers by 
applying routing and access controls as shown previously. Each time a query is made 
by the peers inside the domain, it is only visible by other peers in the domain and the 
VCC. Moreover, the AOL does not forward the Query message outside the domain 
but modifies it accordingly, so that peers outside the domain see the AOL as the ac-
tual initiator of the query. This way, the peers inside the domain receive QueryHit re-
plies only by other peers in the domain and by the VCC. If the content is available lo-
cally, a direct download connection may be established. Otherwise, the AOL upon 
receiving a QueryHit from outside the domain downloads the content on behalf of the 
VCC where it is ultimately stored. Then, the AOL sends a QueryHit to the peer that 
demanded the content pointing to the VCC. If the file is requested in the future it can 
be retrieved directly from the VCC. 
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Figure 6: Caching by the VCC proxylet.  

Implementation details. AOL-to-AOL communication is achieved via TCP con-
nections, although UDP may be used for shorter types of communications in order to 
decrease bandwidth use and other overheads. Table 1 below, lists all types of connec-
tions an AVP may currently implement. 

Connection Connection details 
AOL-to-AOL TCP/IP 

AVP 1Peer

PeerAVP 2
AVP 3

AVP 1Peer

PeerAVP 2
AVP 3

 

AVP 1Peer

PeerAVP 2
AVP 3

Link state between
AVPs has degraded

Virtual connection between
peers is maintained

AVP 1Peer

PeerAVP 2
AVP 3

Link state between
AVPs has degraded

Virtual connection between
peers is maintained  

Figure 5a: Dynamic overlay topology 
control (before)  

Figure 5b: Dynamic overlay topology 
control (after) 
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UDP for short information exchange planned 
Gnutella-to-AOL TCP/IP (Gnutella Protocol v0.6) 

AOL-to-Gnutella TCP/IP (Gnutella Protocol v0.6) 
UDP Ping for Availability Test 

Telnet-to-AOL (Statistics interface) Configuration / Statistic View 
EEP-to-AOL ALAN proxylet technology 

Table1: AOL-implemented types of connections. 

The AOL protocol, used for AOL-to-AOL communications, allows the exchange of 
information vital for the communication and self-organization of the AVPs. This pro-
tocol was designed to be independent from existing protocols and realizes a simple 
and flexible way to communicate between AOL proxylets. An AOL protocol packet 
contains the following fields: Source connection attributes (AOL ID, IP address, Port 
number), Destination connection attributes (AOL ID, IP address, Port number, alter-
native route), Type of payload, Payload and Priority. 

Because of the “Type of payload” and “Payload” fields, AOL protocol packets al-
low the exchange of various types of data. Route advertisement and topology infor-
mation are the most important for topology control. However, the payload may be an 
encapsulated Gnutella packet that will be tunneled through the AOL overlay. 

All elements within this version of the AOL proxylet are connected via a modular 
design. So it is possible to include custom needs at different positions within the code. 
The main parts of the AOL proxylet are: 
• Connection Manager (manages all connections, outgoing and incoming) 
• Router (tree like connected modules, see Figure 8) 
• Protocol (packet interfaces, protocol specific implementations) 
• Configuration (create specific configurations for included modules) 
Different connections can be added to the connection manager. The connection man-
ager will manage all connection listeners as well as all active connections. If a con-
nection is shut down, either by a user, due to a network error, or by the topology con-
trol mechanism, the connection manager will “clean up” this connection. Besides that, 
the connection manager provides information about all active connections, in order to 
support control loops. There are values like connection type, destination, simple sta-
tistics, errors logs kept within this module etc. 

The router is the central module of an AOL proxylet. It is itself internally organ-
ized in a modular way. As illustrated in the Figure 7 below, the root element is the en-
try node of the entire router. Every connection module delivers the received packets 
to the root element of the router, where all active connections are added as possible 
routes. All elements after the root element process the packets according to their spe-
cific capabilities, e.g. Gnutella protocol routing or AOL protocol routing. Every ele-
ment decides on its own whether it should handle a packet or not. The different ele-
ments are grouped according to their purpose (Gnutella Router, AOL proxylet 
Router). At the end of each path the send element is found. The send element is either 
forwarding the packet to another peer or is able to relay the packet via tunnel to an-
other AOL proxylet. 



Implementation of Adaptive Control for P2P Overlays      11 

AOL router

Gnutella router

root

probabilistic

se
nd

tunnel

AOL router

Gnutella router

root

probabilistic

se
nd

tunnel

 
Figure 7: Information flow in the router module of the AOL proxylet.  

An AOL-specific module is the configuration module, which allows the transmis-
sion of commands via a telnet console from an administrator over the network. It will 
also contain in future versions an interface to receive configuration data through other 
AOL proxylets from the same AVP. This way, it will be possible for the AOL proxy-
let to establish a connection to another AOL proxylet or peer to support self-
organization mechanisms. 

5. Performance of AVP Concept 

The performance of the AVP concept has to be characterized within the context of 
three areas: a) the overhead introduced by the AVP concept in relaying P2P protocol 
messages, b) the impact of the new routing strategies implemented by the AVP on 
network load, and c) the change of the overall performance of the P2P application, 
e.g. the boost of stability in the P2P overlay by using the AVP. 

Overhead: For the intra-AVP and inter-AVP communication, cf. Section 4, the 
following protocol overhead is introduced due to packet encapsulation. Each relayed 
packet, i.e. Gnutella packet in the case of this prototype, will be extended by an addi-
tional 40 bytes header. The overhead introduced by the encapsulation is considerable 
but permits the distinct handling of messages without holding state information as for 
tunnels needed.   

Impact of AVP Routing Strategies on Network Load: If necessary, the network 
load can be reduced immediately and locally by the AVP concept. If an intra-AVP or 
inter-AVP connection is overloaded, i.e. an AVP experiences reduced packet 
throughput on that connection, the AOL component of an AVP has two choices as ex-
amined in Section 4 (“Routing Control and Load Balancing“ and “Topology Con-
trol”): It may alter the path, e.g. set up a new virtual connection to another AOL 
which can relay the messages more appropriately, or it may drop distinct signalling 
packets randomly on a path. The latter mechanism can be applied in Gnutella without 
severe degradation of the service since Gnutella applies multi-path broadcasting in-
stead of unicast communication. 

P2P Service Performance and Overlay Stability: Previous studies have revealed 
a high variability of the original Gnutella overlay [3]. For example, the observed av-
erage overlay connection holding time in this study was 405 sec with a 90% interval 
of approximately 10^-1 sec and 10^3 sec, cf. Figure 8. This average is very short 
compared with typical overlay architectures such as VPNs (Virtual Private Networks).  
The high variability is, of course, a result of the key P2P characteristic that a peer may 
leave or join the network arbitrarily, a feature which should be maintained. The AVP 
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concept is capable of decoupling the peer behaviour from the AVP behaviour and the 
AVP overlay behaviour in particular.  The connection holding time of the intra- and 
inter-AVP connections is can be chosen to be much larger than that of ordinary peers. 
This way, the AVP concept offers always stable overlay connectivity for peers. The 
increased the stability of the AVP overlay, in turn, boosts the stability of the Gnutella 
service. 
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Figure 9: Observed Gnutella Overlay Connection Holding Time Distribution [3]. 
 
In addition, an AVP is composed of multiple nodes, holding redundant information 

in an effective way. So it is possible that an AVP can leave the structure only with 
loosing a minimum of information, for example about routing or alternative available 
nodes. This way, the AVP concept may permit a more failsafe overlay and increases 
the resilience performance feature on P2P systems. 

Finally, the performance and scalability of other P2P services was significantly 
boosted with the introduction of self-organizing hierarchy. Gnutella is the most fa-
mous example. With serious scalability problems and inefficient use of the resources 
in its first versions, it experienced serious performance gains upon the introduction of 
the “ultrapeers”. Similarly, Kazaa became the leading P2P file-sharing application be-
cause of the efficient use of network resources, that the users viewed as better per-
formance, enabled by the use of  the “superpeer” concept. The AVP allows amongst 
other things the creation of a two-level or even multi-level hierarchy, so we anticipate 
significant performance gains offered to P2P applications. 

5. Related Work 

Earlier work on the virtualization of resources and group management of has been 
investigated by Birman et al. [17] in the ISIS toolkit. While appearing similar in ar-
chitecture that approach provides limited support for autonomous node operation and 
self-organization.  

The inability of Gnutella and most other P2P applications to maintain topology and 
membership information in an efficient manner has been partly acknowledged by 
Limewire, developers of Gnutella client software, who proposed the concept of 
Gnutella “ultrapeers” [9]. This concept suggests the creation of a two-level node hier-
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archy inside the GNet, where the “ultrapeers”, i.e. nodes possessing better networking 
capabilities and processing power, take charge of much of the load from the slower 
peers by maintaining more overlay connections. The decreased number of nodes re-
sponsible for message handling and routing, reduces the signaling traffic significantly, 
as well as it makes the Gnutella network more scalable. The concept of AVPs is simi-
lar to the “ultrapeers” since both apply a peer hierarchy and reduce signaling traffic. 
AVPs differ from “ultrapeers”, however, because of their overlay load control capa-
bility and adaptivity to the underlying network structure. The well-known Kazaa P2P 
filesharing service [18] applies a concept similar to “ultrapeers”. In Kazaa these dis-
tinct nodes are denoted as “superpeers”.  

The Gnutella2 framework [10] extends the “original” Gnutella protocol beyond file 
sharing. The Gnutella2 architecture promotes “leaf mode” node operation, supports 
reliable UDP communication, enables bandwidth management schemes, and aims to 
create an efficient, self-organized P2P network. However the access control features 
in Gnutella2 are limited. 

In [23], the authors suggest the use of dedicated P2P application “boosters” at the 
ingress/egress links of administrative domains with the aim of improving scalability 
and reducing signaling traffic of P2P file-sharing services. While they envisage mul-
tiple scattered boosters to create a two-level hierarchy achieving the aforementioned 
goal, their concept dramatically lacks flexibility. The formation of sets (groups) of 
nodes, based on application level and network level information, is examined in [24]. 
The authors describe many possible uses of that service, with P2P networking one of 
them. While in areas such as reliable multicast such a service may be beneficial, we 
argue that it is very demanding in terms of underlying network infrastructure (it as-
sumes Ephemeral State Processing capabilities) and considerably inflexible when ap-
plied to P2P. Both approaches, [23] and [24], however, are limited in their capability 
to adapt toward varying network load condition in contrast to features of the AVP 
concept. 

The OverQoS architecture [26] aims to provide QoS services for overlay networks. 
Dedicated OverQoS routers are placed at fixed points inside an ISP’s (Internet Ser-
vice Provider) network and connected through overlay links. The aggregation of 
flows into controlled flows of an overlay enables this architecture to adapt to varying 
capacities of the IP network and ensure a statistical guarantee to loss rates. This 
OverQoS approach complements and extends the limited load control provided so far 
in the AOL proxylet. However, it lacks any adaptivity to the varying network topol-
ogy as addressed by the AVP. 

Resilient overlay networks (RONs) [25] provide considerable control and choice 
on end hosts and applications on how data can be transmitted, with the aim of improv-
ing end-to-end reliability and performance. However, RONs are mostly restricted 
within single administrative domains.. 

Finally, the characterization and quantification of the connectivity topology charac-
teristics is widely investigated. Power-law type or small-world topologies are widely 
identified with P2P systems [11,12] and are extensively examined as part of the AVP 
concept. Distributed Hash Tables have recently been widely introduced for search of 
information in P2P systems [13]. Examples include Pastry of Microsoft Research 
[14], Chord from UC Berkeley and MIT [15] or CAN (Content Addressable Net-
works) form ICSI at UC Berkeley [16]. Measurement of duration and size of P2P 
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connectivity in Gnutella overlays as well as topology control have been investigated 
in [3]. Understanding of P2P traffic volume and connectivity behavior is essential for 
network planning, traffic regulations, security assurance, performance guarantees and, 
possibly, revenue generation. 

6. Conclusions 

We have presented a new framework and an implementation technique for a flexi-
ble management of peer-to-peer overlays. The framework provides means for self-
organization to yield an enhanced flexibility in instantiating control architectures in 
dynamic environments, which is regarded as being essential for P2P services.  

Application level active networking (ALAN) was chosen as a natural vehicle to 
enable evolutionary adaptation on the application layer. P2P services can be predomi-
nately viewed as overlay networks which lend themselves to application level man-
agement and control in order to maintain their beneficial characteristics.  In particular, 
the incorporation of ALAN maintains the decoupling of network and application lay-
ers while providing operational support at the same time. Furthermore, the ALAN in-
frastructure enables the AVP to respond to changing network conditions on the time 
scales that match network scales as well as native P2P application behavior by de-
coupling the P2P behavior from the AVP behavior. 

The proposed concept relies on Active Virtual Peers as the main building block. 
The presented AVPs for Gnutella implement means for overlay control with respect 
to access, routing, topology forming, and application layer resource management. The 
AVP concept not only allows the combination of algorithms and techniques with 
proven merit that address only individual issues but allows them to operate over a 
flexible and adaptive framework. The significance of this approach lies with the ex-
pandability and adaptivity of the system as P2P services evolve.  

In order to facilitate a more complete control, additional AVP features will be im-
plemented in future work such as mechanisms that allow monitoring of overlay traffic 
and strategies for topology self-organization.  
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