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~ Abstract— In this paper we propose to approximate the waiting a finite interarrival and service time distribution [11]. We
time distribution function (DF) of the waiting customers in a  show first that it can be also used for the approximation of a
M /G /1—o00 queuing system by a Gamma-distribution whose pa- continuous timeG /G/1—cc queuing system. Then, we apply

rameters « and 3 are set by means of the first and second moment . . o . .
of the waiting time that are obtained from the Takacs recursion it to validate the accuracy of the waiting time DF obtained by

formula. Discrete-time analysis (DTA) is another approximation the Gamma-approximation.
approach for the same objective. We show first for analytically ~ We tested the new approximation method for for a wide
feasible special cases that DTA is very accurate and then we userange of coefficients of variatiot,,, [B] of the service time
it to validate the accuracy of the new Gamma-approximation for B and system utilizatiom, i.e. for (cyq,[B], p) € [0.05;4] x
y Iele var k) - )

wide parameter ranges regarding the service time distribution. ) .
We show that the Gamma-approximation respects well even [0;0.95]. The numerical results showed that the Gamma-

the third moment of the service time distribution. As the new a@pproximation is very accurate. It also reflects well theaotp
approach is very simple and fast, it may be used by engineers with of the third moment of the service tini@¢ on the waiting time

only little background in queuing theory to calculate quantiles DF and it is more accurate than another more general ap-
for real-time control loops in technical systems. proximation method from [4]. As the Gamma-approximation
runs within milliseconds, it is much faster than DTA, and
it is also easier to apply than DTA or any other considered
Keywords: numerical methods, queuing theory approximation method. Therefore, it is a useful tool for &ku
l. INTRODUCTION analysis ofM /G /1—oo queuing systems. As the new formula
is very simple and fast, it may be used by engineers with only

Many problems_ in_telecommunication networks can kﬁtle background in queuing theory to calculate quantfies
modelled by queuing systems. If the customers are flows;, thfaéchnical systems in real-time

interarrivalltime fOHOWS. _usue}IIy a Paisson process [1]1_137h The paper is structured as follows. Section Il reviews
the anaIyS|s of the waiting time of thM/G/l_oo queUiNg  pasics about theM//G/1 — oo queuing system, it presents
system IS ofteq required. Takacs recursion formula f"”owstﬁe new Gamma-approximation. Section Il explains the DTA-
simple calculat|on' of Fhe k-th m°”.‘e”t5 (cf. 5.112 in [2].)appr0ximation and shows that it has a very good accuracy for a
The Pollaczek-Khintchine formula yields even the genagati sufficiently strict convergence parameter. Section IVdatiés

fgncgl_(r)]n Off the Ientlre V\t/)altmg |t|mfz ;hstnbutpn Iflunztlol(DSK:)b then the accuracy of the Gamma-approximation. Finally, we
[3]. This formula can be evaluated numerically [4]-{6], u%ummarize this paper and draw conclusions in Section V.

this is not always an easy task without the appropriate tools
Explicit expressions in the time domain exist for specialesa [I. GAMMA -APPROXIMATION OF THEM /G/1 — oo
like the M/M/1— o0, the M/D/1—o00 queuing system [7], WAITING TIME

or some Iong_-tail servicg distributions [8]. Approgimatmof . In this section we review first thd//G/1— oo queuing
E\Ze CV:V alltlng gme cIiDF eX'fSt for genle_rzil serylc:et_tlmeDE st I@ystem with existing approaches for the calculation or appr
/G/1—co [9] and even for general interarrival time DFs, -imation of the waiting time distribution function (DF). The

for GI/G/1—co [10]. However, .they are S““.f'c'e”F'y (.:Omplex’we propose the Gamma-approximation for this task.
they must be adapted for specific service time distributions

they provide good results only for specific parameter rangea. TheM/G/1—o0o0 Queuing System
The contribution of this paper is the presentation of a sempl The M/G/1— o queuing system consists of a Poisson

approximation of the waiting time DF for arbitrary Service, ;o hrocess, iie., the interarrival timé of the customers
time DFs. It is based on the Gamma-distribution, thereforg, exponentially distributed (M) with mea[A] = L and

. _ . . . - - . . : . - )\
we call it Gamma-approximation. It takes into account thg i 1y1ding timeB follows an identically and independently

first, second, and third moment of the service time DF. distributed (iid) general distribution (G) with meaR[B].

Discrete time analysis (DTA) can be used to calculate trﬁ,‘e k-th momentsE[W*] of the waiting timeV can be
waiting time of any discrete imé'//GI/1—oo system with calculated by Takacs’ recursion formula (cf. 5.112 in [2]).

This work was funded by Siemens AG, Munich. The authors alame at{OWEVer, the DF pf the wa?ting time cannot dire(_:tly pe
responsible for the content of the paper. computed in the time domain. The Pollaczeck-Khintchine



solution provides a formula solely for its generating fuoict ~ 4) Approximative Solutions for the DFThere are also
[3]- The retransformation into the time domain is difficuttda approximative solutions of the form
can be done analytically only for special cases. 4 s

1) The Takacs Recursion Formuld&he k-th moments of W(t)=1-(a-e™™ +q-e7) (10)
the Waiting time of all customers can be calculated by thﬁsome preconditions regarding are met (cf. (4.4.1) in [9]).
Takacs recursion formula (cf. 5.112 in [2]): The parameters, 3, v, and§ are quite complex to calculate

N EeN gl and there is not always a solution for them.
EWr = —. Z < > . [ ) -E[B*1 (1) Another simpler approximation for the waiting time DF of

L=p = \i i+1 the generalGI/G/1—oo system is given in [10] of the form
with p=ZI81 peing the utilization of the system adg{1V"?] = Wt)=1—-a e (11)
1. Thus, the first and second moment of the waiting time arlehe rate . . .
parametey is approximated based on the properties
EW] = A\ E[B?] @ of the service time DF and there are various specialized
~ 2-(1-p)- E[B] formulae to adapt; to the exact type of the service time.
- E[B] We can calculate the waiting time DF faf /Gamma,/1—o0
EW? = 2-EW]’+ 3 1—p) (3)  with the following parameters:
In particular, we need the first and second moment of the; — M (1-(1-p)- 1 — cyar[BJ? (12)
waiting time regarding only waiting customers. As the waiti 1+ cvar[BJ? 3 (14 coar[B]?)
time probability isp,, = p, they are given by a = n-EW] (13)
EIW _ E[W] 4 The latter equation assures the correct mean waiting time
Wae] = Pw ) of the approximated DF. This approximation works good
) E[W?] if p is large. We use it in the following to validate the
EW,] = "oy (5) Gamma-approximation where the DTA does not work. A

similar approximation has been applied in [13] to calculate

2) The Pollaczek-Khintchine Solution:The Laplace- the quantiles of waiting times (cf. Section 1.3 in [13]).
Stieltjes transformation (LST)X*(s) of a DF X(¢) for a

random variableX is defined by B. The Gamma-Approximation
o0 We introduce first the Gamma-distribution and some of its
X*(s) =/ et dX (t). (6) properties. Then we use the first and second moment of the
0 waiting time of the waiting customers in &d /G /1—co system
The LST of the waiting time DF is given by the well knownto determine thex- and 3-parameter of a Gamma-distribution
formula by Pollaczek and Khintchine to get an estimate for its DF in a simple way.
s-(1-p) 1) The Gamma-Distribution:The base for the Gamma-
W*(s) = . (7) distribution I'(a, 3) is the Gammdunction I'(z), which is
s=A+AB(s) defined by
with B*(s) being the LST of the service time DF. There are )
means to get numerical results from this expression [4], [6] I'(z) = 0 if 2 <0 (14)
[12], but this is not an easy task without appropriate tools. fOOO >~ l.e7tdr if0<ux

. 3) E).(pl'c't DFs for Special Casefor.some speugl cases ItMost important properties of the GamrfunctionI'(z) are
is possible to retransform the expression in Equation (€kba

into the time domain such that an explicit DF is available. We I'(z4+1) = z-T(2)if 2>0 (15)
present two of these special cases in the following. T(k+1) = KifkeN (16)
The waiting time DF for theM /M /1—o0 system can be 1 '
calculated by F(i) = 7 (17)
W(t)=1—p-e (=p)t/EIB] (8) They are interesting to know, but they are not required in the

) . following. The Gammatdistribution I'(«, 8) is given by its
The solution forM /D /1—co is somewhat more complex a”dprobability density function (pdf)

numerically challenging (cf. (2.122) in [7]):
0 if t<0

(BBl A" n frap () = R N (18)
W) =1-(1=p)- > PP 50 (np[B] 1) F(ef) e it >0
n=m-+1

(9) The calculation of its DFF(,,3) and even of its inversion
with m beingm = Lﬁj. Other explicit solutions are given F;;‘ is implemented by many tools for statistical analysis,
for a class of long-tail service time DFs in [8]. e.g. in Matlab [14] by the commands “gampdf” and “gaminf”.



However, closed form expressions f6k, ) exist only for A. Discrete-Time Analysis of th&l/G1I/1—D™* Queuing
integral values ofx. Then, we have System with Bounded Deldy™**

The discrete time71/GI/1— D™** queuing system with

Fra,p(t) = {1 ey W i 4> 0(19) _bounde_d de_Ia)D’”“_-T is based on_dis_cre_te time units, i.e., the
0<i<a il =Y interarrival time of its customers is distributed accordin an

iid general distribution and their holding time follows alan

iid general distribution. The respective random varialdes

enoted byA and B. The value range of both distributions

ontains only multiples of a common basic time unit, but we

omit this unit in the following.

1) State Transitions of the&7I1/GI/1 — D™** Queue:

0 if t<0

Thus, the Gamma-distributiozamma(k, %) equals the
Erlang-distribution Erlang(k,\). Therefore, the Gamma-
distribution can be viewed as an extension of the Erlar;g
distribution towardsk € R*. The mean, the variance, an

the coefficient of variation of the Gamma-distribution are

EX] = «a-p3 (20) We analyze the discrete tim&I/GI1/1— D™ queue by
VAR[X] = a- @ 1) considering a discrete time Markov chain (DTMC) whose state
1 represents the unfinished work in the buffer which is describ
Coar[X] = Ta (22) by the random variablé’. Upon arrival of a new customer,

the unfinished work in the buffer is incremented by the new

Hence, the Gamma-distribution may be used to approxima@stomer’s service time3. If this exceeds the delay bound
distributions with a given mean and variance. D™aw of the buffer, the unfinished work is set to this delay

2) Estimation of the\/ /G /1—oo Waiting Time Distribution bound. Afterwards, the unfinished work is decreased by the
by the Gamma-DistributionThe first and the second momenpassing time units until the next customer arrives. Renewal
of the waiting time of the waiting customers of af/G/1—oc  points of the process exist shortly before (-) and after k) t
queueing system can be calculated by Equations (4) and @jival instants. We number thety] andt;} and the state&/,;
We use them to set the parametersand 3 of the Gamma- andU,}, accordingly. The Markov chain evolves based on the
distribution after a manipulation of Equations (20) and)(2%ollowing recursive stochastic equations.

b
Yy . ) Uy = max(U, —A,0) (26)
EWPE _ E[W] U, = min(Uy,., + B, D™ 27)
varw] ~ B - Ewp 2 o O PBDTE 2
E[W] 2) Discrete Time AnalysisAn early use of discrete time
g = —. (24) analysis (DTA) can be found in [11], [15]-[18] with applica-

@ tion to packet networks. The concept of DTA works as follows.

The resulting DFfr(,,5) describes then the distribution ofan jteration algorithm starts with a distribution, of the
the waiting time of customers that are not immediately Sérv‘%ystem state at the first renewal point. The distributign.;
upon arrival. The waiting time distribution of all custoregs s i1y system state at renewal point-1 is calculated based
given by on the distributionz,, of the system state at renewal point

Ft)=1=p+p- Fra,p/(). (25) and the distributiony of the factors. The calculation itself is
described by a state transition function from one renewatdtpo
to the next one, i.e., it it denoted by the recursive stodahast
equation

If the service time inM/G/1— oo is exponential, we get
the M/M/1 — oo system. As the waiting time DF of its
waiting customers is exponential, we hawg,.[W]=1, and
therefore,a=1 (cf. Equation (22)). In this cas[e, ]the Gamma- X1 = [(Xn,Y). (28)
approximation meets the exponential distribution exaatih  If the Markov chain is aperiodic, the series of the converges
the same mea®[W]. The question is now: how exact is theto the stationary state distribution which characterizes t
Gamma-approximation for other distributions of the sesviddistribution of the system states at the renewal pointsr afte
time? This is the issue in the remaining part of the paper. Bolong time. We recognize convergence in practice if the
that end, we compare its results with the ones of the DTA aeitries of two successive state distributiansandz,, , ; differ
the approximation given in Equation (13). not more thare.. If the Markov chain is periodic, there are
modifications to the iteration algorithm such that the serig
converges also to the stationary distribution [19]. The lho
In this section, we explain the discrete time analysis (DTAJoncept is extended to different types of renewal pointg, e.
for the discrete time=I/GI/1— D™ queuing system with shortly before and after a customer arrival, and stationary
bounded delayp>™*. We use it to approximate the continuouslistributions can be calculated for both types. Thus, we can
time GI/GI/1— 00 queue and identify potential sources otalculate the distribution of the unfinished work in the buff
inaccuracies. Finally, we compare its results for the wgiti shortly before and after a customer arrival by DTA using
time DF of anM /D /1—co and anM /M /1—oo queuing system Equations (26) and (27) as state transition functions. Note
with analytical results and show that its accuracy depemds that the stationary state distribution shortly before aauer
the parameters of the DTA-approximation. arrival yields the waiting time distribution for new custers.

Ill. DISCRETETIME ANALYSIS AND ITS ACCURACY



B. Approximation of the Continuous Tindel /GI/1—oo0 by validate its results by analytical values in the speciabsasf
Discrete TimeGI/GI1/1—D™** through DTA the M/D/1—o0 and theM /M /1—oco system.

The continuous timé&1/GI/1—oco queue and the discrete 1) ngerﬁtiop of the ITagtor Dis”}[,b‘%“orf for DTAWe
time GI/GI/1-D™* queue with bounded delay™** differ determine the time granularity by definifg[A] =n,, - v and

significantly regarding the nature of their interarrivahé and _choosenu =100 by defau_lt. As the DTA requires distributions
service time distribution and regarding their buffer sige, nStéad of DFs to describe the factotsand 5, we calculate

addition, DTA is a numerical algorithm that terminates with them by
having calculated the exact result. As these issues may lead 0 for k=0
to wrong approximation results, actions must be taken tpkee P(4" = k) = { A A
FA(k)—F2(k—1) fork>0.
the error small. ¢ ¢
1) Continuous and Discrete Time Distributionshe DTA- Note that the valué corresponds to a duration bfu. We limit
approximation requires the transformation of the contiruothe DFs forA and B according to Equation (29) withy =
DF F, of the interarrival time and the service time intal0—* by default and mark the discretized random variables by
discrete DFsF,; which are step functions. We achieve thig “/”. We test the system under a given utilizatipn Thus,
by increasing the step functiohy; to F. at the multiples of the mean of the service time B[B] =p - E[A]. Due to the
the basic time uni.. Thus, the approximation quality can bediscretization, the meaR[X] and the coefficient of variation
increased by decreasing the basic time wnit cvar [ X] Of the discretizedd’ and B’ differ slightly from the
2) Infinite and Finite Distributions:The range of the in- ones of the intendedd and B. The discretization error of
terarrival time and the service time may be infinite for thel’ and B’ leads also to a slightly different system utilization
continuous timeG1/GI/1—oco queue, but it must be limited p' = %.
for the discrete time>1/G1/1—D™* queue since this is @ e use the exponential DF.(t)=1—e"*/Fl4] as the base
requirement of the DTA algorithm. Thus we choose a valugr the interarrival time DF ford’. Figures 1(a) and 1(b) illus-
tmae : 1= Fe(tmaz) < €7 and setFy to trate the inaccuracy of the discretized exponential distion
A’ in relation to the continuous DF ol. Figure 1(a) shows
0 for t =0 the discretization errolRg[A’] = %’A]}EW regarding the
Fa(t) = § Fe(n-u)  fort <tma. Ate((n—1) u,n-u] meanE[A]. The discretized distribution has a slightly larger
1 for t > thae- mean, but the difference decreases with increasing An
(29) decreasing discretization parametgrcan improve the result
_ThUS, the approximation quality can be increased by decreggly up tos; = 0.0001. Figure 1(b) shows the discretization
ng ey o _ _erorR,,, [A]= w regarding the coefficient of
3) Infinite Buffer and Limited DelayThe continuous time \ayiation c,,,, [A]. The discretized distribution has a slightly
GI/GI/1—oc queue has an infinite buffer by definition, but the, ey coefficient of variation, but the difference dece=asith
discrete time(:1/G1/1-D™*" queue requires a limited delayjncreasingn, . In contrast to the mean, the accuracy of the
which lies in the nature of DTA. This is obviously a source fogefficient of variation is further decreased by a decregsin
approximation errors. To avoid them, the delay boup@®*

must be set large enough, i.e., it must be set so large thaby comparison of Analytical and Approximated Distribu-
the probabilitye, for customer to exceed this delay boungisn Functions: We compare the waiting time DFs for an
D™e* is very small. This can be controlled by having a look aM/D/l—oo and anM/M/1—oo system calculated from the
the stationary state distribution of the unfinished workriiio DTA-approximation of the3I /GI /1-D™** system and from
after the packet a_rrlval. If the probability for the unfingsh o analytical formulae given in Equations (8) and (9). They
work to be D™* is smaller thare,, then the delay bound 4¢ presented for a system utilizatioryof 0.9 in Figures 2(a)
is sufficiently large. T_hus, the approximation quality ca® by, 2(b). We have plotted the complementary DF (CDF)
increased by decreasing. o . because this makes the difference between the analytidal an
4) Conyergen(?e Accu_racyThe iteration algorlth_m Of_thE_! approximated values on a logarithmic y-scale more visible.
DTA terminates if the difference of two consecutive distribthe waiting time is given in multiples of the mean servicedim
utions regarding the same renewal point differ less than g[p) since this is the invariant component in most systems.
@n each component. '_I'hus, the approximation quality can ke approximations are shown for, = 100, e; = 1074,
increased by decreasing. £4=10"1° ande, = 101678} for both considered queuing
S A -
C. Validation of the DTA-Approximation @l/GI/1—o0 z;(:tig?osr;sﬂggrag%c;xuygﬂ&r& V\;:Enles_lOH OV{::/':Z SE”'IIS?? t
We explain first the generation of the factor distributioos f yields already a sufficiently good correspondence between t
the DTA and compare then the resulting DFs. Then, we sh@malytical and approximative CDF and the curvedpe=10%
that the DTA-approximation of the discrete tini®& /GI/1— coincides with the analytical values. We observe withirneafc
D™ system can be used to calculate the waiting time DF tfe figures that the inaccuracy increases for the sameith
the continuous tim&>1/G1/1—o0o0 system. To that end, we increasing system utilization. When we compare the results
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Fig. 1. Discretization error for an exponential DF depegdion the
discretization parameters, andey.

approximation accuracy for which we use a symmetric an one

for M/D/1—o0 and M/M/1— oo, we also realize that the strongly asymmetric service time distribution.

inaccuracy increases for increasing coefficients of \anat
cvar| B Of the service time, too. Thus, the DTA leads to goo8- Impact of the First and Second Moment of the Service Time

and trustworthy results only for small or medium coeffic®nt ¢ first moment of the service time determines the system

of variation ¢,,.[B] and moderate system utilization. utilization p — E[B] and the second moment determines the
After all, we use the discretization and termination parame j.tficient of \Ifa¢iation of the service time by, [B] —
var -

ters set ton,, =100, e =10"*, £4=10""%, ande, =10"% for  /Zrpa_ppp . o
—m Since p and ¢,.-[B] are more intuitive, we

the DTA analysis in the following.

use them to control our parameter studies instead:[B)
and E[B?]. We use the Gamma-distribution as service time
since it can be easily adapted to meet a gigesnd c,.-[B]

In this section we illustrate the accuracy of the Gamméef. Equations (23) and (24)). We discretize the continuous
approximation by a comparing its complementary DF (CDR}amma-DF according to Equation (29) to obtain approximated
with the results obtained from the corresponding DTA-asialy and finite DF A’ and B’ as input for the DTA-analysis. For
in Section Il and approximative results from the simpl¢he sake of a fair comparison, we ug#B’], E[(B’)?], and
exponentialG1 /G /1—oo approximation in Equation (13). We E[(B’)?] to calculate the first and the second moment of the
consider first systems with a different coefficient of vadat waiting time of waiting customers in Equations (4) and (5)
cvar[B] Of the service time and different utilization levelssince they are required to fit the parametaersnd 5 of the
p. Then we study the impact of their third moment on th&amma-distribution in Equations (23) and (24). Then, we use

IV. VALIDATION OF THE GAMMA -APPROXIMATION
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Fig. 3. The CDFs of the waiting time from the Gamma-, DTA-, andaagntial approximation for ad//Gamma/1 — oo system with various coefficients

of variation ¢, [ B] at various utilization levelg.

E[B']
E[A7]

this distribution together with' =
approximation in Equation (25).

to derive the Gamma- and the exponential approximation of Equation (13). We

have chosen the coefficients of variation of the service time
Figures (3(a)) to (3(f)) compare the CDFs of the waiting,., ={0.05,0.5,1.5,2.0,3.0,4.0} in these figures to perform
time for the Gamma-approximation, the DTA-approximation,



a parameter study. Note that the Gamma-approximation tangabows that the CDFs of the waiting times from the service
be parameterized to approximate the waiting time DF when thimes By, and B, differ notably, but it also shows that
coefficient of the service time ig,.,.[B]=0. For ¢,..[B]=1 both the DTA and the Gamma-approximation account for this
it yields exactly the analytical results, therefore, we ted difference.
this figure. The different values for the system utilization

p = % = {0.5,0.7,0.9,0.95} within a single figure are 10°
obtained by varying the mean service tiiéB].

The DTA-approximation is very good for low values of
the system utilizatiorp and the solid lines of the Gamma-
approximation coincides with the dashed lines of the DTA-
approximation in all figures fop =0.5 and p=0.7 whereas
the exponential approximation shows significant deviation
It is known from [10] that the accuracy of the exponential
approximation is only good for large values @f Thus,
the Gamma-approximation yields very good approximation
results for small and medium system utilization. The DTA-
approximation is also quite accurate for low coefficients of 10°°
variation like 0 < ¢,q-[B] < 1 and the solid lines of the
Gamma-approximation coincide with the dashed lines of the
DTA-approximation forcvm[B]:O'OE) andcmr[B]:O.E). For Fig. 4 The CDFs of the waiting time from the Gamma- and DTA-
larger values OfC’UW[B} and Iarge vz_allues op, the accu_racy app;roiimation for anM/G/1 — oo system forp = 0.9 with two different
e = 107® of the DTA-approximation does not suffice toservice times that differ only in their third but not in theirsfi and second
produce accurate results since the respective CDFs deviaggent.
significantly from a straight line in the logarithmic plotn |
these cases, the correspondence of the solid lines for the
Gamma-approximation and the dotted lines of the exponen- V. CONCLUSION
tial approximation is relatively good. Hence, the Gamma- We have first reviewed the gener&d /G /1 —oo queueing
approximation leads to good approximation result for a vegystem and some approaches to characterize the waiting time
broad range ofc,..[B] and p. The high resolution of our of waiting customers. However, there is no explicit expi@ss
numerical results proposes, that it can be used to calculateept for some special cases. The waiting time DF can
even large quantiles of the waiting time, e.g. the 99.999®fly obtained by a numerical inversion of its Laplace-$gsl
percentile. transform which is not possible with the appropriate sofeva
Approximation methods are numerically also not simple, or

) ) ‘they are specific to the used service time distribution. Thus
The Takacs formula requires the third moment of the servigg methods require a substantial overview on queuing heor

time to calculate the second moment of the waiting timgnq appropriate tools. Therefore, we proposed the Gamma-
of waiting customers (cf. Equation (5)). Therefore, we argyproximation that estimates the waiting time distributio

interested in the impact of this value on the CDF of the waitintnction (DF) by a Gamma-distribution based on the firstahre
time of aM/G/1 — oo and in the approximation accuracy of,oments of the service time distribution.

the Gamma-approximation regarding this parameter. To thatrg show the accuracy of the new Gamma-approximation, we
end, we consider two distributions with the same first angseq discrete time analysis (DTA) to get an estimate for the
second moment. They are given in Table I. The symmetiig,e waiting time DF. Therefore, we showed first the accuracy
distribution has a third moment of’[B,,,] = 3.6 - 10° of the DTA approach by validating it with the known DF for

u® while the asymmetric distribution has a third moment Ghe 17/D/1—o0c and theM /M /1—oco queueing system. Then,

E[B},,,]=9.72-10° u? we showed by an analysis of the complementary DFs (CDFs)

of the Gamma-, DTA- and an exponential approximation

method that the accuracy of the waiting time CDF obtained
from the Gamma-approximation is very accurate such that it
can be even used for the calculation of 99.999% quantiles. We

- - — Approximation—asym
—— GIGl-asym

- - - Approximation—-sym
—GIGI-sym

Probability (P(W > t))

0 50 _1_60 _ 150 200
Message Waiting Time t (E[B])

B. Impact of the Third Moment of the Service Time

TABLE |
SYMMETRIC AND ASYMMETRIC DISTRIBUTIONS, BOTH WITH A FIRST AND
SECOND MOMENT OFE[B]=100 U AND E[B2]=18000 U?.

Baym =i (U) | P(Baym=1) | Basym=1 () | P(Bagm=1) have studied a broad range of coefficients of variatign [B]

10 o 90 L of the service time and the system utilizatipnand the above
100 % ) results hold in all cases. The third moment of the servicetim
190 &1 900 &L has a minor impact on the CDF of the waiting time, but it is

We use both service time distributions to calculate the CQffso well captured by the Gamma-approximation.

of the waiting time for a system utilization ?f: 0.9, i.e.,
we set the mean of the interarrival f6/A] = pB]

E

The computation time for the Gamma-approximation is

== Figure 4 negligible while the DTA-analysis takes minutes or hours to



produce sufficiently accurate results, and for large cdeffts

of variation ¢,.,[B] and a large utilizatiory it takes even

days. This makes the advantage of the new calculation method
obvious: it provides quite accurate estimates very quickly

Therefore, it is suitable for the implementation in reati

systems, e.g., where QoS measures like quantiles of the

waiting time are needed to perform admission control.

After all, the Gamma-approximation is very simple to apply
if the Gamma-distribution is available which is the case in
most of today’s mathematical toolboxes. Therefore, it is an

attractive means for engineers with only little backgroumd
queuing theory. In addition, it calculates fast which makes
appropriate for application in technical control systems.
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