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Abstract

In this paper we investigate the performance of a video delivery sengitey the OnlineTVRecorder.com service in
Germany as an example. We show that the request arrivals for fileldads play an important role and the system reacts
differently when the arrivals are time-dependent. We consider two siamallytical models: a steady state Markov chain
analysis for constant arrivals and a fluid model to capture flash cedf@dts. Furthermore, our analytical approach also
takes the distribution of the offered files into account, as well as the usgratience which leads to aborted downloads.

1 Introduction

Recently, new services have emerged which utilize thereteas a delivery mechanism for multimedia content. With the
advent of broadband accesses, more users are willing toldad/targe volume content from servers, such as video files of
TV shows. While some popular video services (e.g. YouTulm)ay some broadcasting companies (e.g. ABC.com) use
streaming data with Flash technology, some media distiiby.g. iTunes) offer entire TV shows for download. In this
study, we investigate the performance of the German siten®RVRecorder.com (OTR), which acts as an online video
cassette recorder (VCR) where users can program theirifexsbrows over a web interface and download the recorded
files from a server or its mirrors. These files are offered ffedgnt formats and can consist of several hundred megabyte
up to 1 GB or more depending on the length of the TV show as wdhaencoding format. OTR can, thus, be seen as an
example for a server-based content distribution systeim laige data files.

However, as these server farms are often overloaded, naestxare queued when the provided download slots are
full. The restriction to a maximum number of simultaneousvdimads guarantees a minimal download bandwidth for
each user. Additionally, the service offers premium userwitized access to downloading. The download duratiselft
depends on the total capacity of the server and the numbesen§ sharing this capacity. On the other hand, users who
might encounter slow downloads may abort their downloaditgmpt if their patience is exceeded.

In this paper, we discuss the impact of the user’s impatiendbe performance of such an OTR server with different
file size distributions. The paper is organized as followkerdescribing the problem and formulating simple anabfti
models, we provide numerical results and compare theiopaence in terms of download duration and success ratio.
Especially, we address the question of how to properly dsimenthe number of simultaneous downloads at a server in
order to optimize the performance of the system and to maeirthie user’s satisfaction.

2 Problem Formulation and Analytical M odel

Let us consider the following system. User requests arriibeserver with an arrival rats. While we will at first
consider a fixed arrival rate in order to evaluate a steadg Markov model, we will also consider later a non-statignar
arrival rateA(¢). This is a more realistic scenario when looking at individilas, since the popularity of a TV show
highly depends on the time it was recorded. Once a show becromtdated, the interest for this file decreases. This
phenomenon is usually referred tofesh crowd arrivalg1]. However, since a server may offer several differensfile
the overall arrival rate may remain nearly constant. Theegugsition of time-dependent arrival processes with bffie
starting points can be modeled as stationary Poisson wdaoea sufficiently large number of offered files per server.
When a request arrives and there are free download slotsli¢hé may proceed with the download. We assume that
the server system has a total fixed capa€ltyhich is shared among all simultaneously downloading tdién¢) at time
t. The maximum number of users served in parallel is restticie:. Thus, the time-dependent download rate) is

u(t) = %min{m,}?} &

for a file sizef,; and the download rate is limited by the physical rRtef each client.

As we need the distribution of the file sizes to compute therdoad rate.(¢), we investigated the actual file sizes of
video files offered at OTR. The measurements which were nradgiil 2007 show that the actual file size distribution
over 11563 file samples from 19 different TV channels has ané868.31 MB and standard deviation of 196.82 MB. It
can be well fitted by an Erlang-distribution withk = 3.34 phases and an average volumea#107.67 MB per phase,



i.e., itis the sum of k] independent identically distributed random variableshdsing an exponential distribution with
meanB and an exponential distribution with meéin— |k|) B.

2.1 Discussion of the M odel

In general, with a slight abuse of the Kendall notation fogujng systems, the model as described above can be expressed
as M(t)/GI/1*-PS with user impatienag an unlimited waiting queue, and a server capacity whichasexd among users
at maximum. Thus, the service rate is influenced:landéd and depends on the number of currently served users.

Admission control to the system can be taken into accounebtricting the size of the waiting queue. However, in
this paper we use the number of download stote guarantee the bandwidth per user and only investigatartpact
of the user’s impatience on the system’s performance. Whilegingis considered with an i.i.d. random varialsle
balking, i.e., taking back the download request if the waiting quisueo long, is neglected in this paper. We focus on the
effect of wasted capacity due to users’ impatience regssdbdé whether they are being served or not, and the impact of
variability of the file size distribution, which is expresdey the service rate. Our findings show that the ratio of ssafoé
downloads increases with the variability of service time.

Basically, there are several approaches on how to andlytieealuate such a system depending on the number of
available download slots. If n < L%J, the user’s access bandwidth limits the download rate. &ffestively results in a
M(t)/Gl/n-FCFS system with independent service ratesesiis an i.i.d. r.v. and: is constant. An analytical evaluation
is provided in [2]. Forn > L%j, the download rate and therefore the service rates depetiteozurrent state of the
system. On the other hand, if the downlink of a user is notithéihg factor, i.e., a user can always utilize the offered
bandwidth of the server{ < R), the system approaches a real processor sharing systéninatieasing, which is
investigated in [3, 4].

In order to emphasize the effects of the system, we congidinis paper only very simple models which are easily
analytically tractable. It is well known that for systemstgfe M/GI/n only approximative evaluations can be perfaime
for metrics of interest [5]. Several problems arise whenafugation is performed at a higher level of detail. Firstitys is
because we consider time-dependent flash crowds arrivplgiregg a transient analysis as described later in Sectidn 2
Furthermore, several (virtual) service units ¥ 1) with general service time and general impatience makeficdlt to
provide an exact analysis.

2.2 Steady State Analysiswith Markov Model

We now consider a steady state analysis for evaluating ttierpgance of the server system with aborted downloads due
to impatience. We assume homogeneous users with equakdmamedwidths? and generally independent patience time
6. In our modelf is the time threshold after which a user aborts his downldizagt if the download timetakes longer
than that. However, this Gl assumption is not an accurateetfodthe actual users’ behavior. In reality, a user will @av

a state-dependent patience, since he is more willing toifvdie file is nearly completed, cf. [6]. However, in order to
make the model analytically tractable, we consider an egptially distributed). The model will be denoted M/M/LPS.
Thus, we have a homogeneous Poisson arrival process, ex@service time, a single server unit which services up to
n clients and operates with the processor sharing regimes that bandwidth restrictions of the users’ downlink capaci
are taken into account. The queue length for waiting useassamed to be infinite.

The model itself is a simple birth-death process where adalysitions between neighboring states are possible. The
service rateg:; are dependent on stat@nd are expressed in (2). With the resulting state proligsiihe waiting time,
sojourn time, and success ratio can be obtained.

ui:é—l—min{i,n}%min{m,]%} i=12,.. @

2.3 Time-Dynamic Evaluation with Fluid M odel

The Markov model described in the previous section onlyalto investigate the steady state behavior. In order to also
consider the flash crowd arrivals mentioned above, we usédeafhalysis technique, see (3).

A=Dpu+vW F=D@0-ppn @3

W — 0 if D<n b A—Dp ifD<n
\A=Du—vW otherwise =~ |0 otherwise

Arrivals enter the waiting populatio” with rate\ or directly the downloading populatiab, if the number of slots
n is not full. If the slots are full, waiting users simply prazkto the downloading state with rateD. After entering state

1In this work the sojourn time of a user in the system, i.e., the efithe waiting and the service time, is referred to as dowhtoae.



D, the client remains in this state until he either fully dowends the file and enters the finished st&ter he aborts the
download when the download duration exceeds his patiemestibldd. The latter is expressed by entering abort sthte

In both cases the transitions are performed atgateultiplied with a probabilityp (when the download fails) ar — p in

the case of success. The probabilitgan be interpreted in the following way. An abort occurs wttenpatience of the
downloading user is exceeded either during downloadingadtivg. The patience in this model is characterized by the
exponential random variabtewith rater = 1/E[¢] and the downloading time is exponentially distributed a# wigh

ratey = % The variableC(t) denotes the time-dependent capacity per user(i(), = min {m, R}, and
E[fs] is the mean file size. Thus, the probability that the patiésexceeded at timecan be expressed as

v E[f]
v+o T E[L]+COEW

Note that in the case of a single downloading st@teexponential file sizeg, and thus exponentially distributed
ratesy, are assumed. If we consider Erlahglistributed file sizes as obtained in our measurementstabe/3 must be
expanded to several intermediate stdigsDy, ..., Di. Fork — oo this approaches deterministic values.

With the computation of the population dynamics of the davadling users, we obtain the dynamics of the download
rates from Eqn. (1). In particular, for a starting timethe durationd(¢y) can be computed by integratingover time,

e, [21 u(tydt = 1.

p(t) = 4)

3 Numerical Results

Due to the space limitations we focus on the flash crowd seemath
the fluid model. We assume an exponentially decreasingahnrate
A(t) = Be~** with 3 = 1 anda = 1073, Thus, the total number of
arriving users in the system is limited ton; o, A\(¢t)dt = (‘% = 1000.
Fig. 1 shows the time-dynamic evolution of the populatiaresn the
flash crowd scenario. We compare the population sizes fromarake
simulation runs with the numerical solution of the diffefiahequation
system (3).

In the following we look at the different behavior of the systwhen

AN there are constant and flash crowd arrivals. In order to coempgstems
c&\ . . B
00T 0r 05 08 1 12 1a 16 s 2  With bothtypes of arrivals, we match the arrival rate fortbestant case
time [s] to get the same number of arrivals as in the case of flash croveis,
we use the parametefs= 1, o = 1074, as well as the server capacity
Figure 1: Population changes with fluid model’ = 100 Mb/s, user bandwidthR = 2Mb/s and patience threshold
¢ = 200 min, and the file size distribution is taken from measurement
values, as well as = |C/R] download slots.

Fig. 2 and Fig. 3 depict the two measures of interest to usdthenload time and success ratio for two exemplary
simulation runs. We take a look at the temporal evolutiongisimoving average with a window size of 100. Both figures
show that there is a significant difference when constaribw-tiependent arrivals are considered. With a constamaarr
rate, after an initial transient phase, both the downloadtibn and the success ratio become constant. With flashderow
there is a higher variation of both values as the arrivalglhgplecrease over time from which later arrivals benefite Th
figures show that it is very important to consider if the alsvare time-dependent or not, as they yield quite different
results.
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The next investigation aims at the optimal dimensioninghaf humber of download slots for different file size
distributions. We focus on the flash crowd scenario with Hrae parameters as above excepifes 10~3. While Fig. 4
shows the success ratio when the file size is distribute@redbterministic, exponential, Erlang, or lognormal, Fg.
depicts the average goodput in kbps depending on the maximounbern of simultaneously served users. Both figures
illustrate the influence of the coefficient of variance onskistem behavior. What is remarkable is that for determiisti
and Erlang-distributed file sizes a maximum success ratsgxvhereas for exponential and lognormal the succeiss rat
remains nearly constant whenis larger than the optimal value = |C/R]. However, this is caused by the fact that
in systems with higher coefficients of variation smallerdfitge downloaded more often. In all four cases the goodput is
highest at this value, as can be seen from Fig. 5. The gooslpefined as the ratio of the file size and the download time
for successful downloads. For largethe system capacity is wasted due to longer download timeseckby capacity
sharing and the aborting of a download due to the user’s iemped.

4 Conclusion and Outlook

In this paper we discussed the performance of an online Terdiing service for distributing large-volume video files.
The user behavior was characterized with an impatiencshbte after which the client aborts the download. We derived
two simple analytical models, a stationary and a transieid flow model and compared their performance in terms of
the mean download duration and success ratio.

In the future, we wish to perform a more detailed analysiscivitian be used for comparison to other content distri-
bution methods, e.g. using peer-to-peer networks [7]. Bizimg the benefits of distributed serving nodes as in P21 wi
optimal strategies for caching contents, our goal is togtebetter content distribution networks with a higher falisy
and scalability.
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