
Pareto-Optimal Resilient Controller Placement in
SDN-based Core Networks

David Hock, Matthias Hartmann, Steffen Gebert, Michael Jarschel, Thomas Zinner, Phuoc Tran-Gia
University of Würzburg, Institute of Computer Science, Würzburg, Germany

Email: {david.hock,hartmann,steffen.gebert,michael.jarschel,zinner,trangia}@informatik.uni-wuerzburg.de

Abstract—With the introduction of Software Defined Network-
ing (SDN), the concept of an external and optionally centralized
network control plane, i.e. controller, is drawing the attention
of researchers and industry. A particularly important task in
the SDN context is the placement of such external resources
in the network. In this paper, we discuss important aspects of
the controller placement problem with a focus on SDN-based
core networks , including different types of resilience and failure
tolerance. When several performance and resilience metrics are
considered, there is usually no single best controller placement
solution, but a trade-off between these metrics. We introduce
our framework for resilient Pareto-based Optimal COntroller-
placement (POCO) that provides the operator of a network
with all Pareto-optimal placements. The ideas and mechanisms
are illustrated using the Internet2 OS3E topology and further
evaluated on more than 140 topologies of the Topology Zoo. In
particular, our findings reveal that for most of the topologies
more than 20% of all nodes need to be controllers to assure a
continuous connection of all nodes to one of the controllers in
any arbitrary double link or node failure scenario.

Keywords—SDN, Software Defined Networks, OpenFlow, Con-
troller Placement, Latency, Resilience, Failure Tolerance

I. INTRODUCTION

The introduction of Software Defined Networking (SDN)
has caused a paradigm shift in communication networks. The
SDN concept allows separating control and data plane, namely
moving complex functions from devices in a network to
sophisticated dedicated controller instances. The most popular
example of SDN is OpenFlow [1], where a central OpenFlow
controller defines rules for switches how to handle packets,
thus enabling a centralized routing approach. With the Hy-
perFlow [2] concept, OpenFlow networks can be separated
into several domains, each with their own controller. This
facilitates load balancing and resilience in the SDN infras-
tructure. Recently, the term Network Functions Virtualization
(NFV) [3] has been introduced to describe an approach that
externalizes not only the control plane but also functions of
the data plane, e.g. load balancing or firewalling, to virtual
appliances running on commodity hardware. In this work, we
analyze two crucial issues for external control architectures: i)
how many controllers are necessary in a network and ii) where
to place them for an adequate trade-off between latency and
resilience?

This work has been performed in the framework of the CELTIC EUREKA
project SASER-SIEGFRIED (Project ID CPP2011/2-5), and it is partly funded
by the BMBF (Project ID 16BP12308). The authors alone are responsible for
the content of the paper.

Heller et al. [4] indicated that the topic of general con-
troller placement is well explored and no new theoretical
insights are expected. In particular, the very basic version
of controller placement according to the latency of nodes to
their controller, also known as facility or warehouse location
problem, is a typical example for a Mixed Integer Linear
Program (MILP) provided e.g. with the IBM ILOG CPLEX
[5] software. Most work on the topic of controller placement
in literature concentrates on the fact that the problem is
NP-hard and depending on the complexity of the particular
considered objective often provides only approximations to
solve it. Heller et al. showed that finding optimal solutions
is computationally feasible for realistic network instances and
failure-free scenarios, by analyzing the entire solution space
using ”weeks of computations” on today’s CPUs. Thus, they
could address and optimally answer the question posed before
but without considering failure tolerance. They revealed that in
most topologies one single controller is enough to fulfill ”ex-
isting reaction-time requirements”. We extend their controller
placement analysis to include different resilience aspects that
are important in the context of SDN and NFV. In particular, we
show that in most topologies, where a single controller would
be enough from a latency point-of-view, many more controllers
are necessary to meet resilience requirements. We also take
into account inter-controller latency, load balancing between
controllers, and trade-off considerations between latency and
failure resilience. We implemented a Matlab-based frame-
work to compute resilient Pareto-based Optimal COntroller-
placements called POCO. It makes an efficient combined use
of CPU and RAM, so it can evaluate the entire solution space
even when resilience is considered. The advantage of this
approach compared to any particular MILP or heuristic is that
evaluating the entire solution space naturally provides informa-
tion for all considered objectives for all placements. Regarding
multi criteria/multi objective optimization that means that no
decision has to be taken before invoking the optimization
by defining some constraints or weighted objective functions.
In contrast, offering all possible solutions evaluated by all
objectives, offers the possibility to take the decision afterwards.
In literature, there also exist different approaches for multi
criteria facility location for a given combination of certain
objectives. However, the approach of evaluating the entire
solution space offers – for realistic network sizes – the most
freedom to consider different objectives. With POCO we
do not offer a recipe to solve all instances of the problem
of any size, but we can find optimal solutions for realistic
network sizes. Our POCO-toolset [http://www3.informatik.uni-
wuerzburg.de/poco] is able to solve the problems within ac-
ceptable computation time.

c©2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future

media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redis-

tribution to servers or lists, or reuse of any copyrighted component of this work in other works. The definitive version of this paper has been

published in 25th International Teletraffic Congress (ITC), 2013, 10.1109\/itc.2013.6662939.

The remainder of this work is organized as follows. In
Section II, we give a brief introduction to SDN as well as
different SDN scenarios, and illustrate different challenges
with central controllers and how good placements can alleviate
or avoid these problems. Section III investigates the resilience
against different possible network failures and their impact on
the controller placement. Section IV discusses how to balance
the load among different controllers and how to account for
inter-controller latencies. In Section V, we give an overview
on related work and conclude the paper in Section VI. The ap-
pendix contains an overview of the abbreviations and symbols
used in this work in Table I.

II. SCENARIOS AND PROBLEM DESCRIPTION

In this section, we briefly explain SDN and different
SDN scenarios. Then, we show several aspects that have to
be considered for a resilient controller placement in SDN
networks.

A. SDN and SDN Scenarios

One of the key ideas of Software Defined Networking is
to externalize the network control plane. Functionality, such
as routing, is taken out of the data plane and moved towards
external controllers. Depending on the particular use case,
these controllers can either be realized in hardware or as pure
software components. There can be a single controller or a
set of controllers communicating with each other. Controller
communication architectures can be either flat, with each
controller having the same role, hierarchical with normal
controllers and coordinating ”master controllers”, or follow a
variety of different approaches. The connection between the
nodes and their controllers can be realized inband or outband,
i.e. using the same physical connections or dedicated lines.

The concept of SDN can be used for a variety of use-
cases, some of which we cannot even imagine, yet. Use cases
that go beyond network topology planning are for example
monitoring, load balancing, or traffic engineering. The idea of
Network Functions Virtualization (NFV) is to virtualize dif-
ferent network functionalities, such as monitoring, firewalling,
or security aspects. SDN can serve as an enabler for this
approach, e.g. by providing certain functionalities on central
controllers. This paper focuses on the use case of SDN in core
networks as well as a possible extension towards NFV. We
assume that usually in core networks primary paths are pre-
installed for traffic aggregated between different nodes in the
network. SDN controllers are thus not contacted for each single
flow, but only in case of traffic engineering actions or in case of
outages to find adequate backup paths. Therefore, depending
on the network size a single controller might be able to control
the entire network without being overloaded. However, for
resilience issues, more than one controller is necessary. If
NFV functionalities are based on an SDN control platform,
the number of necessary controllers is significantly higher due
to the heavy load on the control plane. We assume that in SDN
core networks, controllers are co-located with regular network
nodes. The signaling between nodes and controllers is done
in-band, in the sense of ”in the same physical network”. That
means that if the network is physically disconnected in several
parts, nodes and controllers in different parts of the network
cannot contact each other anymore.

B. Resilient Controller Placement for SDN

A main objective for a good controller placement is to
minimize the latencies between nodes and controllers in the
network. However, looking only at delays is not sufficient.
A controller placement should also fulfill certain resilience
constraints. To illustrate this, we look at the best controller
placement with k = 5 controllers in the Internet2 OS3E
topology according to maximum latency as shown by Heller et
al. [4]. Figure 1 shows four different illustrations of the same
placement to depict issues to be considered when judging the
resilience of a placement. In the following, we briefly explain
these issues and what is necessary to be resilient against them.

1) Controller Failures: As illustrated by Heller et al. [4],
a larger number of well-distributed controllers in a network
can help to lower the maximum latency between the nodes
and their controllers. It also increases the failure tolerance if
some of the controllers stop working. Zhang et al. [6] assume
in their work that a node is not able to route anymore if it
loses its connection to the controller. However, we suppose
that in case of a controller outage, it is possible to reassign
all nodes previously attached to that controller to their second
closest controllers in the network using a backup assignment or
signaling based on normal shortest path routing. Thus, as long
as at least one of the controllers is still reachable, all nodes
keep being functional. However, the latencies of the reassigned
nodes to their new controller can be significantly higher than
the latencies to the primary controller. Figure 1(a) illustrates
the latencies of all nodes to the last remaining controller in case
of an outage of all other four controllers using a traffic light
color scheme. The color changes from pure green indicating
a latency of zero to yellow indicating 50% of the network’s
diameter to pure red indicating 100% of the diameter. The
displayed controller failure scenario corresponds to the worst
case because the remaining controller is the one located the
furthest from the center of the network. Thus, the requests
of some of the nodes need to pass almost through the entire
network to reach the controller. To increase resilience against
this phenomenon, the controller placement optimization should
not only consider the latencies during failure-free routing,
but also worst case latencies during controller failures. This
problem is addressed in Section III-A.

2) Network Disruption: In contrast to controller failures,
the outage of network components, such as links and nodes,
often has a much higher impact on the network stability, as it
alters the topology itself. The shortest paths between some of
the nodes change, leading to different latencies and possibly
to the reassignment of nodes to other controllers. Even more
severe is that entire parts of the network are in danger of
being cut off by link or node outages. In the worst case, some
nodes can no longer be connected to a controller as they are
cut off from all controllers. These nodes are still working
and able to forward traffic, but cannot request instructions
anymore. Figure 1(b) illustrates the worst possible scenario for
double node failures. All nodes depicted with a white question
mark icon ? are controller-less, i.e. still working but cannot
reach any controller. Hence, the entire subnetwork consisting
of these controller-less nodes is no longer able to address
any functionality realized by the controller despite the fact
that the nodes are still working. Rerouting flows to working
paths is no longer possible, even though some of the nodes

(a) Latency during controller failures.

?

?

? ?

? ?
?

?

(b) Controller-less nodes. (c) Load imbalance. (d) Inter-controller latency.

? Controller−less nodesBroken nodesBroken controllersNodesControllers

Fig. 1. Illustration of different issues to be considered when judging the resilience of a controller placement.

are still physically connected. In Section III-B, we address
the problem of controller-less nodes and network component
failure tolerance.

3) Load Imbalance: Analog to [4], we assume that nodes
are always assigned to their nearest controller using latency
as metric, i.e. the shortest path d(n, c) between the node n
and controller c. Figure 1(c) uses different markers and colors
to illustrate the node-to-controller assignment. The number
of nodes per controller is imbalanced and ranges from 4
(,) to 10 (). The more nodes a controller has to control,
the higher is the load on that controller. This is especially
relevant in scenarios where nodes communicate often with
their controler, e.g. when considering NFV. If the number of
node-to-controller requests in the network increases, so does
the chance of additional delays due to queuing at the controller
system.

To be resilient against controller overload, the assignment
of nodes to the different controllers should be well-balanced.
In [7], we demonstrated that controller performance can vary
among connected switches. This stresses the importance of an
intelligent controller placement that also takes load balancing
aspects into account. We address this problem in Section IV-A.

4) Inter-Controller Latency: It is clear that a single con-
troller is not enough to reach any kind of resilience in a
network. However, when several controllers are placed in
the network, another issue arises that we briefly address in
Section IV-B. If the control logic of the network is distributed
over several controllers, these controllers need to synchro-
nize to maintain a consistent global state. Depending on the
frequency of the inter-controller synchronization, the latency
between the individual controllers plays an important role.
Figure 1(d) illustrates the maximum controller-to-controller
latencies using the same traffic light color scheme relative to
the network diameter as in Figure 1(a). The color of each
controller indicates the maximum distance of this controller to
all others. For the depicted placement, the messages between
the controllers have to travel relatively long distances in the
network, which might not be acceptable.

III. FAILURE TOLERANT CONTROLLER PLACEMENT

In this section, we include resilience against different fail-
ures into the controller placement and calculate optimal results
using our POCO framework. We first discuss the inclusion
of resilience against controller failures, then the inclusion of
resilience against network element failures.

A. Controller Failure Tolerance

When a controller fails, some nodes are reassigned to other
controllers and experience increased latencies. To quantify the
latencies in a network, we take the maximum over all node-
to-controller-latencies and denote it with πmax latency. Similar
as presented in [4], based on a matrix dv,w containing the
shortest path distances between all nodes v and w of the set
of all nodes V , the maximum node-to-controller latency for a
placement of controllers P ∈ 2V can be defined as

πmax latency(P) = max
(v∈V)

min
(p∈P)

dv,p (1)

We do not consider the average but the maximum latency,
because an average hides the worst case values that are
important when resilience should be improved. All latency
values are calculated relative to the diameter of the network
in the failure free case (% of diameter). In the failure free
case, the maximum latency is denoted as πmax latency

∅ . For a
placement of k controllers, we construct a set of scenarios
C that includes all possible combinations of up to k − 1
controller failures (including the failure free case) and denote
the resulting maximum latency with πmax latency

C .

πmax latency
C (P) = max

(s∈C)
πmax latency
s (P) (2)

The node-to-controller assignments change in case of con-
troller outages. Therefore, for the metric πmax latency

C , not only
the distance to the (primary) controller in the failure free case
but also the distance to the other (backup) controllers in case
of failures is included in the metric. Let the placements P1

be all these subsets of working controllers of a placement P
that can appear for the considered controller failure scenarios
C. Then, πmax latency

C can also be obtained as

πmax latency
C (P) = max

(v∈V)
max

(∅⊂P1⊆P)
min

(p∈P1)
dv,p (3)

When controllers are placed in the network so that
πmax latency
∅ is minimized, the intuitive result is a placement

where controllers are equally spread in the network. On the
other hand, when placing several controllers to reach the
best possible πmax latency

C even in the worst failure cases, all
controllers tend to be in the center of the network. Thus,
even if all except for one controller fail, the latencies are still
satisfying. Figure 2 shows the optimal placement Pmax latency

C
for k = 5 controllers. The corresponding minimal maximum

latency is denoted as πmax latency
C . For a given number of k

controllers, it can be obtained as:

πmax latency
C = min

P∈{P1,P2,...,P(|V|
k)
}
πmax latency
C (P) (4)

As expected, the controllers are all situated close to the
center of the network. Even in the worst case situation shown
in Figure 2, where all but one controller fail, the maximum
latencies are still relatively low. This particular placement with
k = 5 controllers actually corresponds to a combination of
the five best placements of single controllers. The worst case
is reached when 4 out of 5 controllers fail and only the fifth
best single controller placement is still active. In general, when
considering up to k−1 simultaneous controller failures, i.e., in
particular, all subsets P1 of P containing only a single element,
the value of πmax latency

C corresponds to the distance to the k-
closest controller in the failure free case. Therefore, another
shorter (and easier to calculate) definition of πmax latency

C (P)
can be given for this case:

πmax latency
C (P) = max

(v∈V)
max
(p∈P)

dv,p (5)

Even though the maximum latencies are still relatively low
even in the case of k− 1 simultaneous controller outages, this
centralized placement with low πmax latency

C leads to an increase
of πmax latency

∅ compared to the best placement Pmax latency
∅

optimized for the failure free scenario with an equal number
of controllers.

Fig. 2. Impact of worst-case failure scenario (4 out of 5 controllers fail) on
node-to-controller latency.

There is a clear trade-off between the placements optimized
for the failure free case and those including controller failure
resilience. To look at that trade-off in more detail, we show all
possible placements and their quality according to the failure
free and the resilient case for the metric πmax latency in Figure 3.
Each point in the graph indicates one placement. The x-value
of a point indicates the πmax latency

∅ value of the corresponding
placement, the y-value the πmax latency

C value. As mentioned
before, we regard the outage of up to all but one controller. The
dashed lines indicate the mean values for the corresponding
metric over all placements.

For better visibility, the axes limits of the graph have
been adapted to display only the most important range of the
placement solution space. To give an impression, the worst
placements have values of πmax latency

∅ > 85% of the diameter.

Out of all possible placements, our POCO-framework re-
turns only the Pareto-optimal placements, which are indicated
in Figure 3 with black points connected with a black line. For

π
max latency

∅
 (% of diameter)

π
m

ax
 l

at
en

cy

 C

Mean M
ea

n

20 30 40 50 60
60

70

80

90

100

Fig. 3. Trade-off between failure free and controller failure values.

a number of n metrics m1, . . . ,mn, a value (x1, . . . , xn) is
Pareto-optimal if and only if there is no value (y1, . . . , yn)
with yi better xi for all metrics mi. In Figure 3, there is no
single optimal placement with best possible values for both
the failure-free case and the controller failure case. In contrast,
Pareto-optimal placements that perform better in the resilient
case perform worse in the failure free case and vice versa.
Thus, POCO usually gives no recommendation for a particular
placement, but returns the set of Pareto-optimal placements,
which enables the network operators to choose the placement
that fits their needs best. In particular, they can also decide
up to how many controller failures should be covered by a
resilient placement.

To verify that our observation also holds for other topolo-
gies, we evaluated the trade-off between the optimal place-
ments Pmax latency

∅ and Pmax latency
C for all 146 topologies1

in the Topology Zoo collection [8] with a size of (at least
5 and) up to 50 nodes for k = 5 controllers. Figure 4
shows the distribution of the worst values πmax latency over
all topologies for 0, 2, and 4 failures respectively (from left
to right). The results confirm our findings. Without failures
(green lines), Pmax latency

∅ achieve the lowest delays, as they
are optimized for this case. But when four controllers break
down simultaneously (red lines), such placements lead to high
latencies in a very large fraction of the examined topologies.
As expected, the placements Pmax latency

C that are optimized for
up to four controller failures provide far lower latencies. But
also when only two out of five controllers fail (blue lines),
the controller placements that are optimized for up to four
failures yield lower latencies than the placements optimized
for the failure free case.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

T
o
p
o
lo

g
y
 f

ra
ct

io
n

Maximum node−to−controller latency for best placement with k=5

P
max latency

∅

P
max latency

 C

Fig. 4. Worst values πmax latency for different numbers of controller failure
(0:green, 2:blue, and 4:red) for the Topology Zoo topologies considering the
optimal placements with k = 5 controllers.

1If several versions of the same topology exist, only the most recent one
was considered.

B. Network Disruption Tolerance

In the following, we address the issue of link and node
failures in a network and the resulting risk of a network
disruption. As shown in Section II-B, a simultaneous outage
of two nodes in the Internet2 OS3E topology can lead to up
to eight controller-less nodes when the placement of k = 5
controllers is done only according to πmax latency

∅ . As explained
before, a node is considered controller-less if it is still working
and part of a working subtopology (consisting of at least one
more node), but cannot reach any controller. Nodes that are still
working, but cut off without any working neighbors, are not
considered to be controller-less. This seems a valid assumption,
as during this failure situation these nodes have nobody to
communicate with. Furthermore, without this relaxation, each
node having at most two neighbors would have to contain a
controller to not be controller-less when both neighbors fail.

Formally, we define πcontroller-less
X as the maximum number

of controller-less nodes appearing for a certain placement when
considering all failure scenarios of X . Let matrices esv,w be
disconnection matrices with esiv,w = 1 if and only if in failure
scenario si, node v cannot reach node w. All other entries of
matrix esv,w are 0. Using this, we define πcontroller-less

N as

πcontroller-less
N (P) = max

(s∈S)

∑

(v∈V)
min
(p∈P)

esv,p (6)

Given these assumptions, the lowest possible value
πcontroller-less
N that can be reached by a placement of k = 5

controllers in the Internet2 OS3E topology when considering
up to two node failures2 is two. A placement Pcontroller-less

N
leading to this value is shown in Figure 5.

?
?

Fig. 5. Illustration of the optimal placement Pcontroller-less
N minimizing the

number of controller-less nodes in at most two node-failures.

To illustrate πcontroller-less
N for different controller place-

ments, we color the topology to indicate how often a certain
node is controller-less when considering all different failure
scenarios. We use a traffic-light scheme, where green depicts
that a node is never controller-less in any scenario and red
that it is controller-less in more than three failure scenarios.
In between the values for green and red, a logarithmic scale
is applied. Figure 6 shows the described color scheme for
two placements Pmax latency

∅ and the placement from Figure 5,
Pcontroller-less
N .

In previous considerations, each node is considered to be of
equal importance and πcontroller-less just indicated the maximum

2We limit the question to two simultaneous failures for two reasons: First,
more simultaneous failures are unlikely to happen. Second, if more than two
arbitrary failures happen in the same time, the topology can be totally disrupted
so that basically no controller placement would help here anymore.

(a) Placement Pmax latency
∅ (b) Placement Pcontroller-less

N .

Fig. 6. Illustration for different placements of how often a certain node is
controller-less when considering all failure scenarios.

number of simultaneously controller-less nodes. However, de-
pending on the concrete application of SDN and centralized
controllers, different nodes may account for a different amount
of signaling with the controller or are of different importance.
To include this, we assign each node of the Internet2 OS3E
example topology with a weight according to the population of
the city where the node is located. The population values are
obtained using Wolfram Alpha [9]. Figure 7 shows the same
illustrations as Figure 6 but with population sizes included in
the optimization as importance of certain nodes. The resulting
best placement Pcontroller-less

N differs from the one obtained
when counting all nodes with uniform weight 1.

(a) Placement Pmax latency
∅ (b) Placement optimized.

Fig. 7. Illustration for different placements of how often a certain node is
controller-less considering all failure scenarios including population sizes.

Obviously, πcontroller-less can be reduced with increasing
number of controllers in a network. Figure 8 shows for
the consideration of one and two failures how πcontroller-less

N
decreases with increasing controller number k for the best
placements P according to πmax latency

∅ and πcontroller-less
N . It can

be seen that in the Internet2 OS3E topology with a number of
k = 7 controllers it is possible to eliminate all controller-less
nodes in all one and two failure scenarios.

3 4 5 6 7
0

5

10

π
c
o

n
tr

o
ll

e
r−

le
s
s

 N

Number of Controllers

P
max latency

∅

P
controller−less

N

Fig. 8. Controller-less nodes decrease with higher number of controllers k.

This raises the general question what the minimum num-
ber of controllers k and their placement is to eliminate the
occurrence of controller-less nodes for up to two link and
node failures. Each subtopology consisting of at least two
nodes that can be cut off from the entire network by at most
two link- or node-failures has to be covered by at least one
controller. Placing a controller in a subtopology automatically

also covers all larger subtopologies that include the smaller
one. This allows to develop a procedure to calculate k for
a topology without evaluating πcontroller-less

N for all possible
placements. Without this trick, the computational effort to find
an optimal k could not be handled. The minimum number of
controllers can be found as follows. First, find the set of all
possible vulnerable subtopologies of at least two nodes that
are not supertopology of any other topology in the set. In
Figure 9, there are eight such subtopologies, so the maximum
necessary number is k = 8. Second, find the minimum number
of controllers necessary to cover all subtopologies. In this
case, in the right hand side of the topology, two controllers
are enough to cover the three overlapping subtopologies, thus
k = 7 is enough.

Large subtopology protected by controller in smaller one

2

2

2

2
3 possibilities to cover

these three subtopologies

with 2 controllers

Total: 25 x 3 = 96 placements

Fig. 9. Subtopologies needing a controller to eliminate controller-less nodes.

In this topology with k = 7, there are only 96 out of(
34
7

)
= 5.4 million placements that are resilient, i.e. covering

all subtopologies. This shows that the protection against net-
work disruption significantly reduces the fraction of possible
controller placements, in this case to 0.002%. The nodes in
Figure 9 with a green border illustrate the best placement out
of the 96 placements according to πmax latency

∅ . However, with
πmax latency
∅ = 44.9%, this placement is by far worse than the

best possible placement with an equal number of nodes not
fulfilling the resilience criterion (πmax latency

∅ = 22.5%). That
means that depending on how important πmax latency

∅ is for an
operator, much better results of this value could be obtained by
paying the price of being not or not entirely resilient against
controller-less nodes.

Before concluding this section, we extend the investigations
made for the Internet2 OS3E topology to the Topology Zoo.
In Figure 10, we illustrate the minimum number of controllers
(measured in percentage of nodes that require a controller) to
eliminate controller-less nodes and the increase in πmax latency

to be resilient for all 146 Topology Zoo topologies.

Obviously, the necessary fraction of nodes with co-located
controllers is higher when resilience against two failures is
required, compared to the one-failure-resilience. In 85% (125
out of 146) of the topologies it is enough to place k = 2
controllers to prevent controller-less subtopologies in any
single node failure scenario. These are evidently all topologies
that can not be split into subtopologies (larger than a single
node) by a single node failure, i.e. at least two-connected
(excluding potential single ”appendix nodes”) with a vertex
connectivity larger than one. Depending on the network size,
k = 2 results in a different fraction of nodes of a topology.
When two arbitrary node failures should be covered, 50 out of
146 topologies need only k = 3 controllers, i.e. they are at least

three-connected (excluding potential single ”appendix nodes”)
with a vertex connectivity larger than two . All other topologies
can be split into several subgraphs with two failures and need
more controllers. The topologies that require a fraction of
around 50% to be covered have a ring structure. To protect
all subtopologies in a ring, every other node has to host a
controller, leading to 50% fraction for an even node count or
even more than 50% for an odd node count.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

T
o
p
o
lo

g
y
 f

ra
ct

io
n

Necessary fraction of nodes with co−located controllers

1 failure

2 failures

(a) Minimal necessary fraction of nodes with co-located controllers to fulfill
the resilience property.

0 2 4 6 8
0

0.5

1

T
o
p
o
lo

g
y
 f

ra
ct

io
n

Relative increase in π
max latency

∅

1 failure

2 failures

(b) Relative increase in πmax latency
∅ to be resilient.

Fig. 10. Evaluation of resilience against network disruption and controller-
less nodes for different numbers of node failures and different topologies.

Finally, we look at the price in terms of increased latencies
that has to be paid to achieve resilience against controller-
less nodes. In Figure 10(b), we show the relative increase in
the optimal πmax latency

∅ between the best resilient placements
with minimal controller number k and the best placements
with an equal number of controllers k that are not fulfilling
the resilience criterion. The topologies where πmax latency

∅ does
not increase, i.e. is equally good as without resilience, mostly
correspond to topologies, where the number k of necessary
controllers is low. In this case, the fraction of resilient place-
ments is high and in particular, often contains the best possible
placements with regard to πmax latency

∅ . There are however
some topologies where the best values obtainable with a
resilient placement are far worse than those obtainable without
regarding the resilience requirements. An option to obtain
both, a resilient placements and competitive πmax latency values,
could be, to place more than the minimum number of con-
trollers. When first, a resilient placement is accomplished, the
remaining controllers can be used subsequently to decrease the
maximum latency. However, this requires additional controllers
and thereby increases the complexity.

IV. FURTHER ASPECTS OF RESILIENT PLACEMENTS

In this section, we discuss further aspects of resilient
controller placements. First, we focus on node-to-controller
load balancing. Then, we address inter-controller latency in
the placement process.

A. Balancing Controller Load

Depending on the use case, it can be desirable to have
roughly equal load on all controllers, so that no controller is
overloaded while others have only little work to do. In the
following, we address a good balance of the node-to-controller
distribution. As formal metric, we introduce the balance of a
placement or rather the imbalance, πimbalance, i.e. the offset to
a totally balanced distribution, as the difference between the
number of nodes assigned to the controller with the most nodes
and the number of nodes assigned to the controller with the
fewest nodes.

As mentioned before, it is assumed that each node is as-
signed to its closest controller according to the distance matrix
dv,w. These assignments allow to define assignment matrixes
nsp containing for each failure scenario s and controller p the
number of nodes assigned to this controller. πimbalance

∅ and
πimbalance
X are defined subsequently as follows:

πimbalance
∅ (P) = max

(p∈P)
n∅p − min

(p∈P)
n∅p (7)

πimbalance
X (P) = max

(s∈X)

(
max
(p∈P)

nsp − min
(p∈P)

nsp

)
(8)

As shown in Figure 1(c), the node-to-controller distribution
can be really imbalanced if not considered while choosing the
controller placement. If taken into account, the imbalance can
be drastically reduced. There are actually many placements
with k = 5, leading to each controller having either 5 or 6
nodes assigned and thus πimbalance

∅ = 1. However, this leads to
an increase of the corresponding πmax latency values. Figure 11
illustrates the trade-off between the metrics πmax latency

∅ and
πimbalance
∅ by displaying the entire solution space. Analogously

to the previous illustration, the figure also shows the mean
values, as well as the Pareto-optimal values. For better visibil-
ity, the axes limits of the graph have been adapted to display
only the most important range of the placement solution space.
To give an impression, the worst placements have values of
πmax latency
∅ > 85% of the diameter and πimbalance

∅ ≥ 25.

π
max latency

∅

π
im

b
al

an
ce

∅

Mean

M
ea

n

20 30 40 50 60
0

5

10

15

Fig. 11. Trade-off between πmax latency
∅ and πimbalance

∅ .

The graph shows that there exist really well-balanced
placements with optimal balance: πimbalance

∅ that can have
extremely bad πmax latency

∅ . The worst of these placements is
illustrated by a red square in Figure 11. In this case, πmax latency

∅
is even worse than the mean value of all possible placements.
Similarly, placements with lowest latency: πmax latency

∅ can have
bad πimbalance

∅ values. The worst value is again marked with a
red square. However, a good trade-off between both metrics
is possible. The set of all Pareto-optimal values returned by

POCO allows the network operator to choose one of the
placements which seems to be the most adequate for their
particular needs, e.g. a rather balanced one or one with lower
latencies.

To verify whether our observation also holds for other
topologies, we evaluated the trade-off between the optimal
values for both parameters πmax latency

∅ and πimbalance
∅ for the

topologies in the Topology Zoo. In about 20% of all topolo-
gies, there is one placement which is best according to both
metrics. In the other 80% of topologies, the choice of the best
placement according to one metric can significantly worsen the
other. In these cases, our POCO-framework helps the operator
to choose the most adequate and Pareto-optimal controller
placement according to the network’s policies.

In the context of controller-less nodes in Subsection III-B
we have already used node weights based on city populations
to illustrate different importance of different nodes. For load
balancing, and especially for some NFV use cases like fire-
walling or monitoring, different nodes impose different load
on the controllers. To illustrate this effect, Figure 12 depicts
the best placements P imbalance

∅ for two different node weights:
uniform and based on city populations. This consideration can
also be extended from static weights to dynamic weights. As an
example, we considered four topologies together with dynamic
traffic matrices offered in the SNDlib library [10]. Due to
space constraints no further details can be shown here, but we
revealed that node weight dynamics can be quite effectively
included in the controller placement process by considering a
set of dynamic matrices as reference.

(a) Uniform node weights. (b) City populations as node weights.

Fig. 12. Placements P imbalance
∅ for different node weights.

To complete the discussion on load imbalance, we describe
how to combine both, the resilience requirements from this
Subsection and Subsection III-A. In other words, we look for
a placement that offers a trade-off between load balancing and
low maximum latency - not only in the failure free case but
also in case of controller failures. Altogether, this leads to
four optimization objectives to be considered at the same time:
πmax latency
∅ , πmax latency

C , πimbalance
∅ , and πimbalance

C .

An intuitive approach to address this multi-criteria op-
timization would be introducing constraints to some of the
metrics, e.g. πmax latency

C < 80% and πimbalance
C < 15, and

reducing the set of all placements to a smaller set of candidates
fulfilling these constraints. Then, in a second step, the best
placement out of this candidate set is chosen as adequate
placement according to the remaining metrics πmax latency

∅ and
πimbalance
∅ . However, this procedure can be unfavorable for two

reasons. First, it demands a lot of knowledge about the network
to choose limits for the constraints. Second, the risk is high to
miss a much better result with respect to some metrics, if the
result only slightly extends the limits given by the constraints.

Therefore, we use another approach. We compute the set of all
Pareto-optimal values according to the four considered criteria
and show them in Figure 13.

65 70 75 80 85 90 95 100
10

15

20

25

30

22 36 >50 π
max latency

∅

1 6 >10 π
imbalance

∅

π
max latency

 C

π
im

b
al

an
ce

 C

Pareto values
for ∅

Best trade−off? →

→

Fig. 13. Trade-off between πmax latency
∅ , πmax latency

C , πimbalance
∅ , and

πimbalance
C displayed as 4-dimensional Pareto-optimal values.

To display the 4-dimensional solution space, the follow-
ing illustration is chosen. Two out of the four dimensions,
πmax latency
C and πimbalance

C , are chosen as x- and y-axis of the
graph. The other two dimensions, πmax latency

∅ and πimbalance
∅ ,

are illustrated by different marker sizes and colors. For
πmax latency
∅ , we use the traffic-light color scheme as described

before, and for πimbalance
∅ we use squares of different sizes,

where a larger size indicates larger πimbalance values, i.e. worse
balance. The points connected by black lines show the two-
dimension Pareto-set according to πmax latency

C and πimbalance
C .

The points in the background illustrate all the remaining
solution space that is not part of the Pareto-optimal set.
The area surrounded by a rectangle on the right side of the
graph illustrates the location of the two-dimensional Pareto set
according to πmax latency

∅ and πimbalance
∅ . Looking at this location

shows that in particular, choosing one of the placements being
Pareto-optimal for the failure free case can result in arbitrarily
bad performance when considering also the controller failure
case. The constraint approach as described above could be
illustrated in the figure, by looking only at these Pareto-values
which are in the ”lower left corner” of the graph and selecting
the best, i.e. ”greenest” or ”smallest” square, out of those.
Maybe the best trade-off, as indicated in the figure, is reached,
if the ”smallest” or ”lightest” square on the Pareto-optimal
curve according to πmax latency

C and πimbalance
C is chosen. In

this case, the resilience is included in the trade-off as well as
possible, and still the failure free case is on an acceptable level.
All this information provided by our POCO-framework allows
the network operators to choose the most adequate placement
for their particular requirements. This can be either one of
those described before or a totally different one.
B. Inter-Controller Latency

As last aspect of resilient controller placement, we inves-
tigate how the inter-controller latency can be respected in
the choice of a controller placement and what influence it
has on the normal controller-to-node latency. Formally, the
inter-controller latency πcontroller-latency is defined as the largest
latency between any two controllers p1, p2 of a placement P:

πcontroller-latency(P) = max
(p1,p2∈P)

dp1,p2 (9)

In [11], Levin et al. investigate the impact of a ”logically
centralized” but physically distributed network control plane
on the operational performance of a network. However, they
do not consider placement issues or the impact of failures on
such an approach.

In general, without illustrating the placements here, all
placements considering inter-controller latency tend to place all
controllers much closer together. This increases the maximum
latency from nodes to controllers.

π
max latency

∅

π
co

n
tr

o
ll

er
−

la
te

n
cy

∅

Mean

M
ea

n

20 40 60 80

20

40

60

80

(a) Solution space. (b) Example placements.

Fig. 14. Trade-off between node-to-controller and inter-controller latencies.

In Figure 14(a), we show the trade-off between both latency
metrics for the failure free case ∅. The Pareto-optimal values
show that these two optimization goals cannot be achieved at
the same time. To illustrate how the Pareto-optimal placements
look like, Figure 14(b) shows four example placements out of
the Pareto-optimal set: the best according to inter-controller
latency, the best according to node-to-controller latency, the
best when taking the average of inter-controller and node-to-
controller latency, as well as the best when taking the weighted
average with node-to-controller latency counting twice as
much as inter-controller latency. It can be observed that when
higher influence is given to node-to-controller latency, the con-
trollers are more distributed in the network. Otherwise, when
inter-controller-latency is given higher priority, the controllers
are placed closer together.

V. RELATED WORK

Before concluding this paper, we provide an overview on
related work on the general controller placement problem and
its variants. Related work to resilience in general can be found
in our previous publications, e.g., [12], [13].

The general problem without any additional constraints is
also known as plant, warehouse, or facility location problem.
If the objective is to minimize πmax latency, the problem is
called k-centers problem, if the objective is πavg latency, it is
called k-median or k-mean problem. Further references to this
general problem are provided in Heller’s work [4]. A variant
of the problem similar to our node-to-controller balancing has
been introduced by Archer et al. [14] as load-balanced facility
problem. The objective is similar to our πimbalance. However,
the authors address this problem in another context and provide
only approximations to the solution. In the context of load
balancing, also the term capacitated and uncapacitated facility
problem can be found, see e.g. [15] and contained references.
The capacitated version assumes that the maximum number
of nodes that can be assigned to a single controller is limited.

Different authors, among others Khuller et al. [16] and
Chaudhuri et al. [17], look at variants called fault tolerant
or p-neighbor k-center problems. These variants are similar to

what we call ”controller failure resilient placements”. Again,
only approximations to the problem are provided. Zhang et al.
[6] address a resilient optimization of the controller placement
problem considering the outage of controllers or connections
between nodes and controllers, i.e. network disruptions. They
do not reassign nodes to new controllers if the original con-
troller fails, but assume these nodes to be controller-less. They
propose a placement heuristic and simulation with the objective
to minimize the number of such controller-less nodes. The
very recent work of Hu et al. [18] goes in a similar direction.
It introduces and compares different heuristic approaches to
increase the resilience of a software defined network against
connection failures between nodes and controllers. Both papers
[6], [18] focus only on resilience against network failures and
do not consider any additional metrics such as πimbalance or
πmax latency or trade-offs between resilience and failure free
case.

VI. CONCLUSION AND OUTLOOK

When designing a centralized network control architec-
ture, it is crucial to determine how many controllers are
required and where they should be located in the network. In
this paper, we addressed these questions including different
important aspects: quality in terms of maximum latencies
between nodes and controllers as well as resilience in terms
of failure tolerance and load balancing. We discussed different
resilience aspects and showed that the optimal values for the
metrics quality and resilience are often impossible to achieve
at the same time and adequate trade-offs have to be found. In
particular, we revealed that in most of the topologies more
than 20% of all nodes need to be controllers to assure a
continous connection of all nodes to one of the controllers
in any arbitrary double link or node failure scenario. The
existence of more than a single controller, however raises new
questions such as the inter-controller latency. We have also
briefly addressed this issue in our work. Introducing our frame-
work for resilient Pareto-based Optimal COntroller-placement
(POCO), we offer network operators a range of options to
select the placement that is most adequate for their particular
needs, e.g., certain constraints on maximum latency, failure
tolerance, or maximum number of nodes per controller. An
evaluation on a large set of 146 topologies from the Topology
Zoo underlines the validity of our findings. The POCO-toolset
used to produce the results presented in this paper is available
online [http://www3.informatik.uni-wuerzburg.de/poco].

In the future, we plan to extend our work in two directions.
Based on our Omnet++ implementation [19] of OpenFlow,
we want to evaluate further aspects of resilient controller
placement on a level of detail that could not be covered
by this paper. This is especially interesting for packet-based
protocol simulations considering, e.g., restoration times for a
node to switch between different controllers or a detailed trade
off between node-to-controller and inter-controller latency. In
addition, we will look at controller architectures and placement
metrics for other SDN scenarios, such as SDN in business
networks, data centers, or access networks, and integrate them
into POCO.

ACKNOWLEDGMENTS

The authors want to thank Rastin Pries for the fruitful
discussions and helpful insights.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM CCR, vol. 38, no. 2, 2008.

[2] A. Tootoonchian and Y. Ganjali, “HyperFlow: a Distributed Control
Plane for OpenFlow,” in INM/WREN’10, Berkeley, CA, USA, 2010.

[3] Network Functions Virtualisation - Introductory White Paper. [Online].
Available: http://portal.etsi.org/NFV/NFV White Paper.pdf

[4] B. Heller, R. Sherwood, and N. McKeown, “The Controller Placement
Problem,” in HotSDN ’12, New York, NY, USA, 2012.

[5] CPLEX, ILOG, Inc., http://www.cplex.com/.
[6] Y. Zhang, N. Beheshti, and M. Tatipamula, “On Resilience of Split-

Architecture Networks,” in GLOBECOM 2011, 2011.
[7] M. Jarschel, F. Lehrieder, Z. Magyari, and R. Pries, “A Flexible

OpenFlow-Controller Benchmark,” in European Workshop on Software
Defined Networks (EWSDN), Darmstadt, Germany, Oct. 2012.

[8] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet Topology Zoo,” IEEE JSAC, vol. 29, no. 9, 2011.

[9] Wolfram Alpha. [Online]. Available: http://www.wolframalpha.com
[10] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski, “SNDlib 1.0

- Survivable Network Design Library,” Networks, vol. 55, no. 3, 2009.
[11] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann,

“Logically Centralized? State Distribution Trade-offs in Software De-
fined Networks,” in HotSDN ’12, 2012, pp. 1–6.

[12] M. Menth, M. Duelli, R. Martin, and J. Milbrandt, “Resilience Analysis
for Packet-Switched Communication Networks,” IEEE/ACM Transac-
tions on Networking, vol. 17, Dec. 2009.

[13] M. Menth, R. Martin, and J. Charzinski, “Capacity Overprovisioning for
Networks with Resilience Requirements,” SIGCOMM CCR, vol. 36(4),
Oct. 2006.

[14] A. Archer and S. Krishnan, “Importance Sampling via Load-Balanced
Facility Location,” in IPCO’08, Bertinoro, Italy, 2008.

[15] F. J. F. Silva and D. S. de la Figuera, “A Capacitated Facility Location
Problem with Constrained Backlogging Probabilities,” IJPR, vol. 45,
no. 21, 2007.

[16] S. Khuller, R. Pless, and Y. Sussmann, “Fault Tolerant K-center Prob-
lems,” Theoretical Computer Science, vol. 1203, 1997.

[17] S. Chaudhuri, N. Garg, and R. Ravi, “The p-Neighbor k-Center Prob-
lem,” IPL, vol. 65, no. 3, 1998.

[18] Y. nan Hu, W. dong Wang, X. yang Gong, X. rong Que, and S. duan
Cheng, “On the Placement of Controllers in Software-Defined Net-
works,” JCUPT, vol. 19 Supplement 2, 2012.

[19] D. Klein and M. Jarschel, “An OpenFlow Extension for the OMNeT++
INET Framework,” in 6th International Workshop on OMNeT++,
Cannes, France, Mar. 2013.

APPENDIX

Table I summarizes the symbols used in this work.

TABLE I. SUMMARY OF ABBREVIATIONS AND SYMBOLS.

Name Description

∅ Failure free case
C Controller failure case - if not specified differently, we consider the

simultaneous outage of up to all except for one controller.
N Node failure case - if not specified differently, we consider the

simultaneous outage of up to two nodes.
X Considered failure case. Shown results focus on X ∈ {∅, C,N}.
πmax latency
X Maximum latency. Corresponds to metric Lwc in [4].
πavg latency
X Average latency. Corresponds to metric Lavg in [4].
πimbalance
X Node-to-controller distribution imbalance.
πcontroller-less
X Maximum number of controller-less switches (X ∈ {L,N})
πcontroller-latency
X Maximum inter-controller latency.
πmetric
X Best value πmetric for given metric and controller number k.
Pmetric

X Any placement leading to πmetric
X .

