
©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work

in other works.

Demonstrating a Personalized Secure-By-Default
Bring Your Own Device Solution Based on Software

Defined Networking

Steffen Gebert⇤, Thomas Zinner⇤, Nicholas Gray⇤, Raphael Durner†, Claas Lorenz‡, Stanislav Lange⇤
⇤University of Würzburg, Würzburg - {steffen.gebert,zinner,nicholas.gray,stanislav.lange}@informatik.uni-wuerzburg.de

†Technical University of Munich, Munich - r.durner@tum.de
‡genua GmbH, Kirchheim - claas.lorenz@genua.de

Abstract—Network virtualization is one classical use-case for
Software Defined Networks (SDN). By programmatically instan-
tiating virtual networks, traffic from one or more devices can
be separated or connectivity can be established as needed. S-
BYOD, which is presented in this demonstration, applies the
SDN concept to Bring Your Own Device (BYOD) scenarios and
offers personalized virtual networks that are set up and extended
on demand. This is done once the user authenticates, activates
access to additional applications, or as soon as applications scale
out and involve more servers. The described proof-of-concept
implementation explores, to what degree an agent-less BYOD
solution, based only on SDN, can lower the attack surface
by explicit user opt-ins for particular services. Further, an
assessment of the number of required rules within the flow tables
of switches completes this work.

I. INTRODUCTION

While SDN’s means to create virtualized networks can
be helpful for BYOD scenarios, where potentially insecure
devices should be included in organizational IT infrastructure,
none of the currently available solutions applies SDN to
offer a fine-grained restriction of network access. Instead,
commercial solutions either group connect all devices into
a special VLAN that can be further restricted, or - in the case
of more sophisticated Mobile Device Management (MDM)
solutions - an agent runs on the smartphones or tablets that
checks its trustworthiness.

Sardine-BYOD (S-BYOD), the solution introduced in this
work, aims at solving the problem only on the network level. No
modification of the user-owned device or restriction of privileges
is needed. Instead, S-BYOD restricts each device to its own
virtual network. After authentication, the user can explicitly
enable corporate services for this specific device following the
sudo principle of operating systems. Based on an off-by-default
approach, the number of services, to which a device running a
potentially malicious app, can connect is reduced. To activate
access to a particular service, an authenticated user can simply
use the web portal of the BYOD solution.

II. SARDINE-BYOD (S-BYOD)

The introduced BYOD solution is publicly available as open
source1 and implemented as plugin for the ONOS controller [1].
Its main innovation is the implementation of personalized
virtual networks which are established and adjusted on demand.

1https://github.com/lsinfo3/2016-itc-sbyod-onos-app

In contrast to other BYOD solutions, which usually group
all devices together in a dedicated VLAN and thus do not
allow to set up fine-grained policies, S-BYOD individually
restricts network access for every device by the means of
Sofware Defined Networking. Further, these virtual networks
are automatically adjusted according to the user’s current
requirements, i.e., when additional services are requested or
when the user roams between access points, as well as when
changes within the IT services infrastructure are made.

A. Building Blocks

To achieve the outlined goal of SDN-based virtualized
networks for BYOD users, the setup builds up on the following
components and mechanisms, which are also shown in Figure 1:

OpenFlow-enabled switches: The wired network infrastruc-
ture is built using OpenFlow-enabled switches. Open-
Flow [2] is a protocol that offers a standardized API for the
communication between SDN controllers and OpenFlow-
enabled switches. This allows to programmatically estab-
lish and modify individual virtual networks.

ONOS SDN controller: ONOS is a well-known controller
for software defined networks and allows to modify the
forwarding tables of switches using the OpenFlow proto-
col. By default, ONOS includes basic network services,
including reactive forwarding and DHCP and offers APIs
for SDN applications running inside the controller.

Wireless Access Points: Given the lack of OpenFlow-based
wireless access points (APs), traditional APs are used, to
which the BYOD users can connect. These APs form an

Switch

Switch

Switch

BYOD	
Application

DHCP	
Application

Device AP

OpenFlow

WiFi

Internet

Portal	
Server

Private	Cloud

Service	
Discovery

Business	
Intelligence

Print	
Services

E-Mail

AP

…

SDN	Controller

Fig. 1. Corporate network setup with BYOD client.

Extended Service Set (ESS), meaning they all advertise the
same ESSID and are connected to the fixed, OpenFlow-
based network.

Corporate Services: Users of the wireless network need to
access business applications that are running in the
corporate infrastructure. Such applications can include
browser-based access via HTTPS, email services using
IMAP/SMTP, or other IP-based protocols, e.g., for printing.
Furthermore, Internet access might need to be available to
a private device in the corporate environment. It is assumed
that most of these applications are running within a private
cloud environment in the corporate IT infrastructure.

Service Discovery: As cloud-based applications scale accord-
ingly to their usage, the virtual machines, on which
an application is running, change over time, i.e., when
using modern deployment techniques [3]. Hence, the IP
addresses of these applications change as well. In order to
allow different instances of cloud applications to connect
to each other resp. to connect to their microservice
instances [4], service discovery systems [5] are an essential
part of modern cloud-based application architectures. This
work makes use of Consul [6] as discovery service.

Captive Portal: Finally, a web-based captive portal is used to
authenticate and authorize users. This portal has access to
the corporation’s authentication services, i.e., LDAP/AD,
and further uses two-factor authentication (2FA), based on
the Time-Based One-Time Password Algorithm (TOTP, [7])
to prevent an attacker from accessing corporate services
with stolen credentials. The captive portal communicates
with the BYOD controller module using RESTful APIs.
In the demonstration, the captive portal is implemented
using Meteor [8] as client- and server-side web framework.
Figure 2 shows the portal, in which the authenticated user
can explicitly enable particular applications, while every
action that elevates privileges has to be authenticated using
a 2FA verification.

Fig. 2. Screen shot of the captive portal to activate access to corporate
services. Green: activated services, red: deactivated services, yellow: services
to be activated after 2FA.

B. OpenFlow Rule Setup

In order to allow basic network connectivity, redirect
unauthenticated users to the captive portal, as well as to drop
all unwanted traffic, the following rules are defined by the
ONOS controller in order of increasing priority:

Table-miss action drop all rmiss: This deny all default rule
drops all unmatched packets by defining an all-wildcard
rule without any actions.

ARP handling rARP : All ARP packets are forwarded to the
SDN controller and processed by ONOS’ proxyarp app.

DHCP service rDHCP : All DHCP packets are forwarded to
the SDN controller and processed by ONOS’ DHCP app.

HTTP to controller rHTTP to ctrl: For intercepting outgo-
ing HTTP connections of any unauthenticated client, this
low-priority rule redirects any TCP traffic to port 80 to
the controller. This allows S-BYOD to intercept the HTTP
connection and redirect the client to the portal web site
for authentication.

DNS server connectivity rDNS: As soon as a new client is
detected, rules are provisioned to allow DNS traffic to the
corporate DNS server. Therefore, persistent rules for each
direction between a client device and the DNS server
are installed throughout the path. Connectivity to the
DNS server configured through DHCP is essential also
for unauthenticated users, as otherwise no attempts to
establish outgoing HTTP connections will be made, which
is necessary for the portal redirection.

Portal connectivity rportal: To enable connectivity between
the client device and the captive portal via a secure HTTPS
connection, the complete path is provisioned by one rule
per direction between client and portal server.

Service Connectivity rservice: As soon as a user has success-
fully authenticated at the portal and enabled a particular
service, these rules permit network-side access to the IP
addresses of the servers offering this service, e.g., email,
web-based service, or any other protocol. Given the higher
priority of rules, the previously applied rules to drop
packets are overridden to successfully forward packets
between the client and the destination server.

Internet Connectivity rexternal: All traffic that is routed out-
side of the Layer 2 network, in which clients and the
accessed applications reside, require connectivity to the
default gateway. Therefore, once the user enables Internet
connectivity in the portal, rules that allow traffic between
the MAC addresses of the client and the default gateway
are installed on switches along the path. Given the
gateway’s configuration to not route traffic inside the
OpenFlow-managed network, access to this MAC address
does not allow the user to bypass security means which
prevent accessing other internal devices.

All client-specific rules are installed once the new client
is connected. All service-specific rules are installed once a
user enables or disables application access in the captive portal.
Once the BYOD service gets notified by the controller that a
host disappeared from the network, all these rules are removed
from the switches.

Once the controller receives packets originating from an
unauthorized user accessing a web page via the rHTTP to ctrl

redirection, it instructs the switch to rewrite the source and

destination IP and MAC addresses to the portal using a
packet_out message. As the packets on the way back
from the portal web server to the user also need to match
the intercepted connection’s addresses, further packet_out
messages also rewrite the endpoint addresses of this intercepted
connection. As the portal only responds to the HTTP request
with a HTTP Location redirect header to its resolvable address,
no flow entries are set up in the switches for this short-lived
connection.

C. Wireless Client Mobility

To ensure high user satisfaction, wireless clients need to be
able to roam between wireless access points, i.e., when moving
from one room or building to another. The security mechanisms
and rules installed by the BYOD solution therefore have to
support this use case.

As the introduced S-BYOD relies mostly on static rules for
performance and scalability reasons, a roaming client needs to
be detected quickly and accordant rules need to be updated as
well. RFC 5227 [9] introduces procedures for mobile clients to
detect the correct setup of wireless networks spanning multiple
access points. This is achieved by sending an ARP packet
to the previous gateway, once the client switches to the new
AP. As this mechanism is implemented in most of the current
operating systems, this also offers a safe way to detect the
roaming device. In particular, the controller immediately notices
this through the received ARP packets which originate from a
different switch (port) and thus allows S-BYOD to update all
flow rules and maintain connectivity for the roaming device.

III. DISCUSSION

While ease of use is one important factor for user satis-
faction, security of a BYOD implementation is an important
aspect as well. Therefore, different mechanisms of S-BYOD that
mitigate or still allow certain known attacks will be discussed in
the following. Further, an estimation of the resource requirement
in number of flows in OpenFlow switches will be provided.

A. IP Address Spoofing

To allow connectivity to the portal, every device connected
to the WiFi has to receive an IP address from the DHCP service.
By spoofing the IP address of another, already authenticated
client, an attacker could gain access to internal services.
Guessing such IP address is easy, as the used IP address range
is known once connected to the network. Therefore, all client-
specific flow rules rservice and rexternal have to also match
against the client’s MAC address and thus lead to all traffic
using a self-assigned IP address being dropped.

B. Wireless Client Isolation

In order to prevent communication between mobile devices
and especially to prevent an attacker gaining knowledge of other
(potentially authenticated) users’ MAC addresses, the access
points operate in client isolation mode. By activating such a
setting, no incoming traffic of wireless clients is sent directly
back to the air interface, but only to the wired connection. There,
the wired OpenFlow-based network takes care of separation
of clients. Further implications of ARP/MAC spoofing will be

discussed in Section III-D. OpenFlow-enabled WiFi-APs, if
they would exist, are therefore not even needed, as long as
wireless clients never need to communicate directly.

C. Estimation of OpenFlow Rules

One concern with large-scale OpenFlow deployments is the
number of required forwarding rules. Therefore, the usage of
flow table entries is discussed in the following. As all rules
defined by S-BYOD use exact matches, i.e., MAC and IP
addresses, these rules can be stored in content-addressable
switch memory. In contrast, using wildcards, e.g., matching for
nw_dst= ‘192.168.0.

*

’, would require expensive and
very limited ternary content-addressable memory (TCAM).

In real-world scenarios this is mitigated by utilizing multiple
switches and thus, the client-specific rules are distributed over
the switches. Then, only the switches on the path between a
client and its connection endpoints receive the accordant rules.
For the extreme case that all users are connected to only a
single switch, the number of required rules is calculated as
follows and provides a worst-case estimation:

ntotal = nbase + nclient + nservice (1)

With the following rules to provide the basic network setup:

nbase = |rmiss|| {z }
1

+ |rARP || {z }
1

+ |rDHCP || {z }
2

+ |rdiscovery|| {z }
2

+ |rHTTP to ctrl|| {z }
1

(2)

rdiscovery contains rules which are automatically added by
the controller for discovery of links and broadcast domains.

For each of the c connected clients, 4 additional rules are
added to enable basic connectivity, regardless of the client’s
authentication status:

nclient = c · (|rDNS || {z }
2

+ |rportal|| {z }
2

) (3)

Finally, to estimate the number of rules for enabled services,
si,j = 1 denotes service j being enabled for client i and
|rservice,j | denotes the number of rules required for this service:

nservices =
cX

i=1

j
maxX

j=1

si,j · |rservice,j | (4)

Figure 3 depicts this relationship for different numbers
of active BYOD clients and enabled applications per user,
while assuming that every service is reachable through two IP
addresses.

Fig. 3. Amount of required rules in a single-switch setup, 2 IPs per application.

D. Open Issues and Possible Extensions

While the presented S-BYOD system already provides a
solid state of implementation that can compete with other
existing BYOD solutions, different aspects offer room for
further improvements:

Captive Portal Detection: Modern operating systems imple-
ment a portal detection (aka. Walled Garden Detection),
which expects a certain return code or content for
well-known URLs2. As such detection is not always
working flawlessly, several approaches are currently in
discussion, including Wireless Internet Service Provider
roaming (WISPr), which automates logins, as well as [10],
which suggests a new DHCP option (for IPv4) and a new
IPv6 Router Advertisement option for restricted network
conditions. These problems, however, are not specific to
the proposed solution.

ARP spoofing: The authentication using the captive portal is
one critical factor. As soon as an attacker spoofs the MAC
address of an authenticated user, the corresponding session
can be taken over. Wireless client isolation already hides
devices from each other [11]. Further, concepts similar
to Cisco’s port security [12] can be implemented in the
controller to detect ARP spoofing attacks. Finally, 802.1X-
based network access control would offer the most secure
way for authentication and can be implemented on top of
the current setup. The portal using 2FA would then only
be used for authorization of particular services.

DNS tunneling: A well-known attack vector of captive portal
authentication services is DNS tunneling. Using such a
mechanism, an unauthenticated user can communicate
with the Internet using an own, external DNS relay server
that receives the traffic encapsulated in the user’s DNS
requests forwarded by the corporate DNS server. In order
to detect and prevent such tunneling, an extra DNS resolver
can be installed that monitors the number of host names
requested per device. As soon as a rate limit is exceeded,
an administrator can be notified or the device can be
automatically blocked.

IV. RELATED WORK

Programmable BYOD Security (PBS [13]) applies
SDN/OpenFlow to mobile devices using the PBS-DROID
application. This lets the Android device run an OpenFlow-
controlled switch with the smartphone apps connected to it.
By running on the device itself, it allows per-app policies.
Compared to S-BYOD, PBS is able to work on a more

2Google OSs expect an HTTP status 204 from
http://clients3.google.com/generate_204 / Apple OSs
access http://captive.apple.com/hotspot-detect.html

fine-grained level, while the network infrastructure itself does
not have to be changed. In contrast, the motivation behind
S-BYOD is to not require changes to the devices, but instead
providing a high level of security through the support of the
network infrastructure.

V. CONCLUSION

The presented approach for an SDN-based BYOD imple-
mentation can be used together with an existing OpenFlow-
based infrastructure. It makes use of SDN’s means to dynami-
cally define virtual networks, which are set up and maintained
on a per-user level. Using a portal web site and two-factor
authentication, a safe yet comfortable way is provided to the
user, to only selectively enable connectivity to the applications
that are currently needed and thus lower the range of services
that a potentially malicious device can access. By connecting
to a service discovery system used by corporate applications,
changes can be immediately reflected with updates to the flow
rules in the switches and thus provide always up-to-date network
access.

ACKNOWLEDGMENTS

This work has been performed in the framework of the
SARDINE project and is partly funded by the BMBF (Project
ID 16KIS0261). The authors alone are responsible for the
content of the paper. The authors want to thank Lorenz Reinhart
and Benedikt Pfaff for their programming work.

REFERENCES

[1] ONOS project - Open Network Operating System. [Online]. Available:
http://onosproject.org/

[2] Open Networking Foundation, “OpenFlow switch specification, version
1.5.0,” Dec 2014.

[3] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation, 1st ed.
Addison-Wesley Professional, 2010.

[4] S. Newman, Building Microservices. O’Reilly Media, 2015.
[5] G. Kousiouris, D. Kyriazis, T. Varvarigou, E. Oliveros, and P. Mandic,

Taxonomy and State of the Art of Service Discovery Mechanisms and
their relation to the Cloud Computing Stack Cloud Computing Stack.
Information Science Reference - Imprint of: IGI Publishing, 2012, ch. 11.

[6] HashiCorp. Consul. [Online]. Available: https://www.consul.io/
[7] D. M’Raihi, S. Machani, M. Pei, and J. Rydell, “TOTP: Time-Based

One-Time Password Algorithm,” RFC 6238 (Informational), Internet
Engineering Task Force, May 2011.

[8] Meteor. [Online]. Available: https://www.meteor.com/
[9] S. Cheshire, “IPv4 Address Conflict Detection,” RFC 5227 (Proposed

Standard), Internet Engineering Task Force, Jul. 2008.
[10] W. Kumari, O. Gudmundsson, P. Ebersman, and S. Sheng, “Captive-

portal identification in DHCP / RA,” Working Draft, August 2015.
[Online]. Available: http://www.ietf.org/internet-drafts/draft-wkumari-
dhc-capport-16.txt

[11] T. Mirzoev and S. White, “The role of client isolation in protecting wi-fi
users from ARP spoofing attacks,” CoRR, vol. abs/1404.2172, 2014.

[12] National Security Agency (NSA), “Port security on cisco
access switches,” https://www.nsa.gov/ia/ files/factsheets/factsheet-
cisco%20port%20security.pdf.

[13] S. Hong, R. Baykov, L. Xu, S. Nadimpalli, and G. Gu, “Towards
sdn-defined programmable byod (bring your own device) security,”
in Proceedings of the 2016 Network and Distributed System Security
Symposium (NDSS’16), February 2016.

