
An Autonomic Approach to Verify End-to-End
Communication Quality

Andreas Binzenhöfer, Daniel Schlosser, Kurt Tutschku
University of Würzburg

Institute of Computer Science
Würzburg, Germany

[binzenhoefer,schlosser,tutschku]@informatik.uni-wuerzburg.de

Markus Fiedler
School of Engineering

Blekinge Institute of Technology
Karlskrona, Sweden.

markus.fiedler@bth.se

Abstract— The complexity of today’s computer networks re-
quires highly trained professionals to verify the end-to-end
connectivity between two communication partners. The concept
of autonomic networks has been proposed in an effort to make
such networks easier to manage. In this context, we present
a plug-and-play mechanism to check the connectivity between
two end points of the network. It will significantly decrease the
amount of mundane work, which is usually involved in such a
task. The main goals of our work are to autonomically set-up
the measurement environment, to capture the current conditions
between the two communication partners and to visualize the
results in an easy-to-interpret way.

I. INTRODUCTION

One of the major problems of today’s distributed appli-
cations is to find the root cause in case of a failure or
decreased functionality. This is especially difficult since there
are multiple areas of responsibility involved. Usually the blame
is shifted from application level via other levels like the
operating system all the way down to the network itself. On
account of this a considerable part of the work of network
administrators consists in proving that it is not the fault of
the network. This creates an urgent need (1) to monitor the
user-perceived quality and the end-to-end connectivity across
multiple networks. It is also non-trivial to (2) set-up and
maintain the end-to-end measurement, especially in the face
of mobile users, dynamic IP-addresses, and Network Address
Translation (NAT). Another question is which parameters to
measure and how to obtain the measurements? Finally, (3)
the measured values must be interpreted in order to derive a
meaningful statement.

In this paper we approach the three above mentioned
problems by introducing an easy-to-use concept, which sup-
ports the administrator in verifying the quality of end-to-end
communications in a more autonomic way. It uses passive
measurements to derive network parameters like jitter, packet
loss, or one way delays. These values are then mapped to
a traffic light scheme which can intuitively be understood
without the need of a well trained professional. The results
can be used to indicate whether the network supports a specific
service like a VoIP call, a videoconference, or file transfers.
To prove the applicability of our approach we integrate the
concept into our autonomic distributed network management

prototype [1] and perform a case study. Related work is
referred to in the corresponding sections.

II. DESCRIPTION OF THE ARCHITECTURE

The main architecture consists of two parts. An overlay
network which provides the plug-and-play framework for
distributed network management [1] and the modules which
offer the measurement functionality.

A. Network Management Overlay

It was previously suggested to use p2p networks for dis-
tributed network management [2]. While most approaches
concentrate on a specific monitoring task, we presented a
generic framework for distributed network management [1]. It
consists of our distributed network application (DNA) which
runs on several end-hosts and enables the peers to commu-
nicate with each other independent of their current location,
their current IP address, or the kind of device they are using.
The algorithm used to organize the overlay network is based
on a modified version of the Kademlia protocol as described
in [1]. Kademlia [3] is a structured p2p network which can
guarantee to efficiently locate any online user.

B. Verification of the End-to-end Connectivity

The implementation is realized using three different mod-
ules which are integrated into our DNA client as shown
in Fig. 1. Module M1 checks the local configuration and

NetworkDNA
DNA

M1 M2 M3 M1 M2 M3

Host A Host B

NetworkDNA
DNA

M1 M2 M3 M1 M2 M3

NetworkDNADNA
DNADNA

M1 M2 M3 M1 M2 M3

Host A Host B

Fig. 1. The modules providing the measurement functionality

determines whether the device is ready to use the network. M2
measures the characteristics of the traffic sent into the network
and exchanges this information with the corresponding module
of the communication partner. The results are mapped to a
simple traffic light scheme, which is easy to understand by
any end-user. M3 represents a traffic generator, which is able
to emulate specific services like Skype calls or traffic with a
constant bitrate.

c©2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future

media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redis-

tribution to servers or lists, or reuse of any copyrighted component of this work in other works. The definitive version of this paper has been

published in Tenth IFIP-IEEE International Symposium on Integrated Network Management (IM 2007), 2007, 10.1109\/inm.2007.374721.



1) M1: Ready for Use: The first step in verifying the end-
to-end connectivity is to exclude errors which actually have a
local cause. The idea is to automate all the things an adminis-
trator usually does when he checks the local configuration of
an end host. In terms of autonomic networking it also greatly
reduces the amount of mundane work required by a human
network specialist. In fact, there are a lot of routine tests, like
checking the IP configuration, which can be automated. A
detailed list can be found in the technical report [4]

2) M2: Traffic Light: The traffic light module measures
the network traffic on two specific end-host, exchanges in-
formation about the measurements and analyzes the effects of
the network on the user perceived quality. The results will be
visualized in a traffic light scheme. The quality can either be
good (green), acceptable (yellow), or bad (red). There are only
two things which need to be configured before the module
can start with the measurements: The overlay name of the
remote host and RT , the time between the exchange of two
results (default 10s). The interval RT indirectly determines
how frequently the color of the traffic light is updated.

Using the search functionality of the overlay network, the
traffic light module is able to automatically determine the IP-
address of the communication partner by its overlay nickname.
While the module is running, it captures all packets which
match this IP-address and an optional port. For each of these
packets it records the IP-ID, the timestamp, and the size of
the packet. Based on all outgoing packets captured within
a measurement interval host B creates a result summary as
shown in Table I and sends it back to host A.

TABLE I

STRUCTURE OF THE SUMMARY PACKET

Name Size Description
SPS 1 bit 0 for a summary packet,

1 for a summary packet response
C 2 bit Color of downlink traffic light of host B

encoding 1 bit 0 if ∆tBout(i) are 16 bit integers,
1 if ∆tBout(i) are 32 bit integers

SID 4 bit summary packet ID
tBout(1) 8 byte time stamp of first outgoing packet
∆tBout(i) 2/4 byte times between outgoing packets i and i− 1,

if i > 1, 0 otherwise
IDB

out(i) 2 byte IP-ID of packet i

The first bit SPS determines whether the packet is a
summary packet or an acknowledgment. The remaining in-
formation in the packet suffices to recreate the timestamps
tBout(i) and the IDs IDB

out(i) of all outgoing packets of host
B. Host A will then compare these values to the corresponding
timestamps tAin(i) and IDA

in(i) to derive the color of its
downlink traffic light. To protect the exchange of the summary
packet against packet loss, host A sends an acknowledgment
message to host B. This message includes the median of the
measured one way delays of link AB mAB , the jitter, and the
throughput.

3) M3: Traffic Generator: In many situations it is inter-
esting to know whether an existing network is suitable for a
new application. In this case a passive measurement approach

would require to actually install the application before the
measurements can be done. To overcome this problem, a traffic
generator is added to the traffic light module. It is initialized
with the distribution of the interarrival time of the packets
and the distribution of the payload. It is also possible to use
other predefined random streams or to replay captured traffic
streams.

III. ANALYZING AND VISUALIZING THE MEASUREMENTS

In this section we will show how to derive one way packet
loss, jitter, and delay and how to map those values to a traffic
light scheme for different services. Without loss of generality
we will concentrate on host A. It is able to capture the IDs
IDA

in(i) and the timestamps tAin(i) of all incoming packets
according to its own clock. From the summary packet sent by
host B it also knows the IDs IDB

out(i) and the timestamps
tBout(i) according to the clock of host B.

A. One Way Packet Loss
The calculation of the packet loss is straightforward. Host A

simply uses the packet IDs to determine which of the packets
sent by host B never arrived at host A. That is, it regards all
incoming packet IDs IDA

in(j) with

IDB
out(1) ≤ IDA

in(j) ≤ IDB
out(imax)

and calculates the percentage of missing IDs. In the following
we will assume that i = 1, ..., imax is the index of the ith
successfully transmitted packet from host B to host A.

B. One Way Jitter
In order to calculate an estimate for the one way jitter over

time, we draw on the formula applied in the real-time transport
protocol (RTP) [5]. From the time stamps in the summary
packet we calculate ∆tBout(i), the time between outgoing
packet i and i + 1 at host B, and ∆tAin(i), the interarrival
time of packet i and i+1 at host A. We initialize the jitter on
link BA with jBA(1) = 0 and estimate the current jitter as

jBA(i) = jBA(i− 1) +

∣∣∆tBout(i)−∆tAin(i)
∣∣− jBA(i− 1)

16

The gain parameter is set to 1
16 since this gives a good

noise reduction ratio while maintaining a reasonable rate of
convergence [5].

C. One Way Delay
An accurate time synchronization is absolutely essential for

the measurement of the one way delay. There are different
ways to achieve synchronized clocks. The most prominent
examples are atomic clocks, GPS, and the network time
protocol (NTP) [6]. Let Θ be the difference in milliseconds
between the clocks of host A and host B. Without loss of
generality we assume that ClockA = ClockB −Θ. If DBA(i)
is the measured delay of the ith successfully transmitted
packet from host B to host A, then the real delay would be
DBA(i) + Θ. For unsynchronized clocks, we have to assume
that Θ might be quite large. In this case, one usually has to
measure the round trip delay, divide it by two, and use the
outcome as an estimate for the one way delay.



In general, we do not know whether the clocks of host A
and host B are synchronized or not. Therefore host A initially
calculates the one way delay of the ith packet on link BA
as DBA(i) = tAin(i) − tBout(i). As long as all delays in both
directions are positive, Θ has to be smaller than the shortest
actual one way delay. In this case we assume sufficiently
synchronized clocks and take DBA(i) as a direct estimate for
the one way delay on the downlink of host A. In the worst
case this estimate is twice as large as the actual delay.

If otherwise one of the measured delays is negative, we
assume unsynchronized clocks and Θ >> DBA(i). How-
ever, instead of performing additional active round trip time
measurements, we can easily adjust our passive results. Each
host calculates the median mBA (or mAB respectively) of
the measured one way delays on its side and inserts it into
the acknowledgment of the summary packet. If one of these
values is negative, it will recalculate its estimates of the one
way delays. In case mBA < 0 this results in

D
′
BA(i) = DBA(i) +

mAB −mBA

2
.

The equation assumes symmetric one way delays and readjusts
the measured values in such a way, that the median one way
delay is equal in the uplink and the downlink.

Another problem, which has not yet been discussed is that
computer clocks tend to tick at different rates. Therefore, we
estimate the clock drift drel according to [7] and remove the
drift by adjusting the one way delays as follows:

D
′
BA(i) = DBA(i)− drel ·

(
tAin(i)− tAin(1)

)
.

D. Calculating the Traffic Light
Different services react differently to changes in the net-

work. While real time services have strict delay and packet loss
requirements, the quality of a file transfer mainly depends on
the average throughput. Utility functions [8] are a good way
to translate network dynamics into humanly understandable
terms. They take parameters like packet loss, jitter, and delay
as input and deliver a number between zero and one, which
reflects the current user perceived quality.

In the current version of our prototype we decided to use
simple tables to determine the color of the traffic light. For
VoIP connections, e.g., we defined Table II according to the
ITU-T recommendation G.114 [9].

TABLE II

TRAFFIC LIGHT COLORS FOR VOIP

delay [ms] packet loss [%] jitter [ms]
green <75 <1 <10
yellow <200 <3 <25

red >200 >3 >25

A more complex calculation of the traffic light color is
part of our future work and is beyond the scope of this
paper. However, there are numerous algorithms and models for
real time services which can also directly be integrated into
our prototype. The E-model [10], e.g., is a well established
computational model that uses measured network parameters
to predict the subjective quality of voice calls which can
then easily be mapped to our three-color scheme. Another

interesting approach to quantify user satisfaction for voice
applications is shown in [11], where the authors derive a user
satisfaction index based on bit rate, jitter and round trip times.
Finally, in [12] a set of measurements that can be used to
derive a media delivery index is described in detail.

IV. PROTOTYPE STUDY AND RESULTS

To validate the feasibility and the practicability of our
approach we implemented the traffic light concept as an
extension of our DNA framework [1], [4] and set up a small
testbed environment in our laboratory. As shown in Figure
2 it consists of two end hosts A and B running Windows
XP and a Linux server routing the traffic between the two
end hosts. Our prototype was installed on host A and host B
and we use NISTNet [13] on the router to emulate one way
delays, packet loss, jitter, or asymmetric bandwidths. We used

Host A Host BNISTnet

Fig. 2. Setup of the testbed

100Mbit/s links and a 30ms one way delay in both directions
and monitored a Skype VoIP call which periodically sends
packets every 30ms. The prototype was able to detect the
unsynchronized clocks as well as the clock drift and adjusted
the one way delays according to Section III-C.

To study the influence of the time between two summary
packets, we have a closer look at the measured packet loss.
We increase the current packet loss by five percent every 30
seconds until it reaches 20 percent, then we decrease it again
by five percent every 30 seconds until it is back to zero percent.
After 60 seconds we repeat the entire procedure. Figure 3
shows the packet loss as observed by the prototype when
sending a summary packet every 2, 10, or 30 seconds, respec-
tively. Since packet loss occurred randomly and uncorrelated a
measurement interval of 2 seconds leads to heavily fluctuating
values. While a measurement interval of 30 seconds quite
accurately reflects the current loss rate, it reacts too slowly
to changes in the network. That is, the end user would have
to wait for 30 seconds until the traffic light would adapt. We
therefore chose an interval of 10 seconds as a good trade-off
between accuracy and up-to-dateness.

0 100 200 300 400 500 600 700
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time [s]

pa
ck

et
 lo

ss
 [%

]

 

 
2 s
10 s
30 s

Fig. 3. Loss at different resolutions
In the following we again use a VoIP call to determine how

the measured network parameters translate into user-perceived



quality. Figure 4 shows the measured one way delays on the
left y-axis and the current color of the traffic light on the right
y-axis. We started with a plain connection between host A and
host B, translating into a green color. After 60 seconds we
increased the one way delay to 50ms, which did not change
the color of the traffic light. After another 60 seconds we
increased the delay to 150 seconds with a jitter of 30ms and
introduced an additional packet loss of 3 percent. After a slight
delay the color of the traffic light changed to yellow. When
we further increased the delay to 300ms with 40ms of jitter
and 10 percent packet loss, the traffic light finally changed to
red, signaling a bad quality. After 60 seconds we decreased
the delay to 100ms with 10ms of jitter and the packet loss to 2
percent, which was reflected by a yellow traffic light. Finally,
we returned to 50ms delay without any jitter or packet loss
and observed a green traffic light.

0 100 200 300 400
0

50

100

150

200

250

300

350

400

450

time [s]

on
e 

w
ay

 d
el

ay
 [m

s]

 

 

0 100 200 300 400

red

yellow

green

Fig. 4. Traffic light and delays

To show that the color of the traffic light of our prototype
actually reflects user perceived quality, we recorded the voice
quality on application level at host B and compared it to the
original quality as sent by host A. To do so, we periodically
calculated the ”Perceptual Evaluation Of Speech Quality”
(PESQ) value [14] of a typical 10 second conversation [15],
which was repeatedly transmitted with a 2 second pause
between transmissions. A PESQ value above 3 corresponds
to good quality, while it is still considered to be acceptable
between values of 2 and 3.

0 100 200 300 400
1

1.5

2

2.5

3

3.5

4

time [s]

P
E

S
Q

 v
al

ue

0 100 200 300 400

red

yellow

green

Fig. 5. Traffic light and PESQ

Figure 5 shows the current PESQ value on the left y-axis
and the color of the traffic light on the right y-axis for the
previously described example. The color of the traffic light
corresponds to the trend of the PESQ values. It stays green

while the PESQ value is above 3.5 and changes to yellow
once the PESQ value decreases to values between 2 and 2.5.
During the phase in which the traffic light shows a red color,
the PESQ value falls as low as 1.4. Note that the PESQ value
constantly rises during the following yellow phase, while the
network settings rather imply steady values. The reason is that
Skype actually adapted its voice codec to the current condition
of the network (c.f. [4]).

V. CONCLUSION
The quality of a service as it is perceived by the end-

user is an aspect which is often neglected in classic network
management. In this paper we presented a self-organizing
approach to evaluate the quality of specific end-to-end com-
munications. It measures important network parameters like
the one-way-delay, jitter, and packet loss on both endpoints of
the communication. Correlating these traffic characteristics of
both communication partners, it translates the measured values
to an easy to understand traffic light scheme.

As a proof-of-concept, the algorithm was integrated as an
additional module into our already existing distributed network
management environment [1]. The feasibility of this concept
was verified by monitoring a Skype VoIP call in a small
testbed. It could be shown that the color of the traffic light
corresponded to the current PESQ value. That is, the traffic
light reflected the subjective impression of the voice quality.
The results can be used by network administrators to inspect
the current state of their network, by service providers to verify
that they preserve a negotiated service level agreement, or
by (mobile) users to see whether the quality of their current
connection allows the use of a specific service.

REFERENCES

[1] A. Binzenhöfer, K. Tutschku, B. a. d. Graben, M. Fiedler, and P. Arlos.
A p2p-based framework for distributed network management. In New
Trends in Network Architectures and Services, LNCS 3883, Italy, 2006.

[2] Bugra Gedik and Ling Liu. A scalable p2p architecture for distributed
information monitoring applications. IEEE Trans. Comput., 54(6), 2005.

[3] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information
system based on the xor metric. In IPTPS, Cambridge, USA, 2002.

[4] A. Binzenhöfer, D. Schlosser, and B. a. d. Graben. A novel approach to
verify end-to-end connectivity in an autonomic way. Technical Report
383, University of Wuerzburg, 2006.

[5] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A
Transport Protocol for Real-Time Applications, 1996. RFC 1889.

[6] David L. Mills. A brief history of NTP time: memoirs of an Internet
timekeeper. SIGCOMM Comput. Commun. Rev., 33(2):9–21, 2003.

[7] Vern E. Paxson. Measurements and Analysis of End-to-End Internet
Dynamics. PhD dissertation, University of California, 1997.

[8] M. Fiedler, S. Chevul, O. Radtke, K. Tutschku, , and A. Binzenhöfer. The
network utility function: A practicable concept for assessing network
impact on distributed services. In ITC19, Beijing, China, 2005.

[9] ITU-T Recommendation G.114. One way transmission time, May 2003.
[10] ITU-T Recommendation G.107. The e-model, a computational model

for use in transmission planning, December 1998.
[11] K. Chen, C. Huang, P. Huang, and C. Lei. Quantifying Skype user

satisfaction. In ACM SIGCOMM, Pisa, Itlay, 2006.
[12] J. Welch and J. Clark. A proposed media delivery index. Internet Draft,

August 2005.
[13] M. Carson and D. Santay. Nist net: A linux-based network emulation

tool. ACM SIGCOMM Computer Commununications Review, 33, 2003.
[14] ITU-T Recommendation P.862. Perceptual evaluation of speech quality

(PESQ), an objective method for end-to-end speech quality assessment
of narrowband telephone networks and speech codecs, 2001.

[15] Signalogic. Speech Codec Wav Samples,
http://www.signalogic.com/index.pl?page=codec samples.


