
Modeling and Performance Evaluation of an
OpenFlow Architecture

Michael Jarschel, Simon Oechsner, Daniel Schlosser, Rastin Pries, Sebastian Goll, Phuoc Tran-Gia
University of Würzburg, Institute of Computer Science, Würzburg, Germany.

Email: {michael.jarschel,oechsner,schlosser,pries,goll,trangia}@informatik.uni-wuerzburg.de

Abstract—The OpenFlow concept of flow-based forwarding
and separation of the control plane from the data plane provides
a new flexibility in network innovation. While initially used solely
in the research domain, OpenFlow is now finding its way into
commercial applications. However, this creates new challenges,
as questions of OpenFlow scalability and performance have not
yet been answered. This paper is a first step towards that goal.
Based on measurements of switching times of current OpenFlow
hardware, we derive a basic model for the forwarding speed
and blocking probability of an OpenFlow switch combined with
an OpenFlow controller and validate it using a simulation. This
model can be used to estimate the packet sojourn time and the
probability of lost packets in such a system and can give hints
to developers and researchers on questions how an OpenFlow
architecture will perform given certain parameters.

Index Terms—OpenFlow, switch, performance evaluation

I. INTRODUCTION

In the discussion about the emerging Future Internet, Open-
Flow is currently seen as one of the promising approaches
that may pave the way towards that goal. OpenFlow was first
proposed in [1] as a way to enable researchers to conduct
experiments in production networks. However, its advantages
may lead to its use beyond research, e.g. in the context of
network virtualization. At its core, OpenFlow offers a higher
flexibility in the routing of network flows and the freedom
to change the behavior of a part of the network without
influencing other traffic. It achieves this by separating the
control plane in network switches from the data plane, and
allowing for a separate controller entity that may change
the forwarding rules in modern switches. This enables the
implementation of, e.g., virtual networks, user mobility, or new
network and transport layer protocols.

Generally, only software changes should be necessary to
enable OpenFlow on state-of-the-art Ethernet switches. It is
also not necessary for hardware vendors to open up their
systems to support OpenFlow, since only a quite well defined
interface has to be provided to the control plane. Consequently,
an OpenFlow extension can be introduced as firmware for
existing hardware, significantly lowering the entry barriers for
new technologies. Therefore, it is believed that OpenFlow
may circumvent the technological inflexibility, also known
as the ’Internet ossification’. New technologies or protocols

This work was partially funded by the Federal Ministry of Education and
Research of the Federal Republic of Germany (Förderkennzeichen 01BK0917,
GLab). The authors alone are responsible for the content of the paper.

that are tested using OpenFlow-enabled hardware in large-
scale networks can have a significantly reduced development
time as performance data can be gathered under realistic
circumstances instead of an isolated test environment.

Currently, first OpenFlow implementations from hardware
vendors are available and being deployed in networks. As a
result, we can expect a growing number of works conducting
experiments in OpenFlow-enabled networks. Here, OpenFlow
serves as the basis for the evaluation of new virtualization
techniques or new routing protocols. However, the basic tech-
nology itself, i.e., the use of an OpenFlow controller to modify
the flow table of an Ethernet router via a secure channel, is
still new and few performance evaluations of the OpenFlow
architecture exist.

Understanding the performance and limitations of the basic
OpenFlow concept is a prerequisite for using it for experiments
with new protocols and mechanisms. Therefore, we aim to
provide a performance model of an OpenFlow system with this
paper. The model is based on results from queuing theory and
is verified by simulations and measurement experiments with
a real OpenFlow switch and controller. The advantage of this
preliminary analytical model over the simulation is the fact that
it can provide results in a few seconds’ time whereas the sim-
ulation may require several hours to complete depending on
the computing hardware. Additionally, the M/M/1-S feedback
queue is already a good approximation of the actual controller
performance. The model captures the delay experienced by
packets that have to be processed by the controller in contrast
to be processed just by the switch, as well as the probability
to drop packets if the controller is under high load. Using
this model, we derive conclusions about the importance of the
performance of the OpenFlow controller in different realistic
scenarios, and its effect on the traffic flowing through the
OpenFlow-enabled switch.

The remainder of the paper is structured as follows. In
Section II, we explain the OpenFlow architecture in more
detail and give an overview on related work. Section III
holds details about the setup of the measurements conducted.
Our model is introduced in Section IV. The results from
the performance evaluation are described in Section V. We
conclude the paper by summarizing the main contributions in
Section VI.

c ©
2
0
1
1

IE
E

E
.

P
er

so
n

a
l

u
se

o
f

th
is

m
a
te

ri
a
l

is
p

er
m

it
te

d
.

P
er

m
is

si
o
n

fr
o
m

IE
E

E
m

u
st

b
e

o
b

ta
in

ed
fo

r
a
ll

o
th

er
u

se
s,

in
a
n
y

cu
rr

en
t

o
r

fu
tu

re
m

ed
ia

,
in

cl
u

d
in

g
re

p
ri

n
ti

n
g
/
re

p
u

b
li
sh

in
g

th
is

m
a
te

ri
a
l

fo
r

a
d

v
er

ti
si

n
g

o
r

p
ro

m
o
ti

o
n

a
l

p
u

rp
o
se

s,
cr

ea
ti

n
g

n
ew

co
ll
ec

ti
v
e

w
o
rk

s,
fo

r
re

sa
le

o
r

re
d

is
tr

ib
u

ti
o
n

to
se

rv
er

s
o
r

li
st

s,
o
r

re
u

se
o
f

a
n
y

co
p
y
ri

g
h
te

d
co

m
p

o
n

en
t

o
f

th
is

w
o
rk

in
o
th

er
w

o
rk

s.
T

h
e

d
efi

n
i-

ti
v
e

v
er

si
o
n

o
f

th
is

p
a
p

er
h

a
s

b
ee

n
p

u
b

li
sh

ed
in

2
3
rd

In
te

rn
a
ti

o
n

a
l

T
el

et
ra

ffi
c

C
o
n

g
re

ss
(I

T
C

2
0
1
1
),

2
0
1
1
.



II. BACKGROUND AND RELATED WORK

To better understand the model for the OpenFlow perfor-
mance evaluation, we first give a brief overview of OpenFlow.
More details on OpenFlow can be found in the white paper [1]
as well as in the OpenFlow specification [2].

OpenFlow was designed as a new network paradigm, which
enables researchers to test new ideas under realistic conditions
on an existing network infrastructure. To be able to take
action in the switching, OpenFlow separates the control plane
from the data plane and connects them by an open interface,
the OpenFlow protocol. The control plane is implemented in
software in form of a controller on an external PC. For the
communication between the switch and the controller, a secure
channel is used. This allows researchers to be flexible with
their work, while at the same time using high-performance
hardware.

The OpenFlow switch itself holds a flow table which stores
flow entries consisting of three components. First, a set of
12 fields with information found in a packet header that is
used to match incoming packets. Second, a list of actions that
dictates how to handle matched packets. Third, a collection of
statistics for the particular flow, like number of bytes, number
of packets, and the time passed since the last match.

When a packet arrives at the OpenFlow switch, its header
information is extracted and then matched against the header
portion of the flow table entries. If checking against entries
in each of the switches’ tables does not result in a match,
the packet is forwarded to the controller, which determines
how the packet should be handled. In the case of a match,
the switch applies the appropriate actions to the packet and
updates statistics for the flow table entry. This process is
visualized in Figure 1. In this paper, we want to analyze the
influence of the switch-controller interaction on the normal
switching performance. Before, we provide an overview on
the literature related to this paper.

Packet 
arrives

Extract header 
fie lds

M atch in
any tab le?

Encapsulate  
and forw ard to 

contro lle r

Apply actions, 
update sta tistics

no

yes

Fig. 1. Handling of incoming packets in an OpenFlow switch.

Recently, several papers have been published indicating pos-
sible uses for OpenFlow [3]–[6]. All these papers demonstrate
that the concept of splitting the control plane from the data
plane is useful in a variety of fields, like data center routing,
energy saving, and network virtualization. However, none of
these papers addresses performance issues of the OpenFlow
concept.

Tanyingyong et al. [7] and Luo et al. [8] introduce mecha-
nisms to increase the performance of OpenFlow. They propose
an architectural design to improve the lookup performance of
OpenFlow switching in Linux using a standard commodity

network interface card. They show a packet switching through-
put increase of up to 25 percent compared to the throughput of
regular software-based OpenFlow switching. Luo et al. instead,
apply network processor based acceleration cards to perform
OpenFlow switching. They show a 20 percent reduction on
packet delay compared to conventional designs.

Currently, only one paper focuses on performance mea-
surements of OpenFlow [9]. In the paper, the OpenFlow
switch performance is measured for different types of rules
and packet sizes. However, the performance of the switch-
controller interaction is not taken into account.

In contrast to the above mentioned papers, we did not only
measure the performance of the switch-controller interaction
but also provide a simple performance model of an OpenFlow
system.

III. OPENFLOW MEASUREMENTS

Before introducing the analytical model in Section IV,
we first derive the performance parameters. Therefore, we
measured the forwarding performance of various OpenFlow
implementations.

A. Measurements

In order to measure the parameters we need for the analyt-
ical model and the simulation, we set up an OpenFlow test
bed as depicted in Figure 2. We connect several servers as
load generators to a typical gigabit switch. It has to be noted
that this switch is only used to multiplex the traffic of several
traffic generators to increase the bandwidth being produced
using small packet sizes. This switch has been tested to work
with maximum link rate and does not limit the transmission
speed between the traffic generators and the traffic sink.

The packets leaving this switch towards the OpenFlow
switch are cloned by a wire tap. This device ensures that
packets arriving at the wire tap are forwarded to the OpenFlow
switch and the measurement server at exactly the same time.
Next, the packets are processed by the OpenFlow switch. For

Traffic Generators Traffic Sink
Measurement

Server

OpenFlow
Controller

OpenFlow
Switch

WiretapWiretap

Aggregation
Switch

Test Traffic
Control Traffic
Measurement Traffic

Fig. 2. Test bed set up to measure model parameters.



our experiments, we used three different OpenFlow implemen-
tations, a Pronto 3290 24 port gigabit switch, a NetFPGA
OpenFlow switch as well as the Open vSwitch software
switch.

If the switch contains a rule matching the packet received,
the forwarding decision is instantaneously executed on the
switch. If there is no matching rule in the switch, the switch
either extracts some parts of the packet or sends the complete
packet to the controller requesting for an action to execute.
The controller will answer to the switch’s request with an
action to perform on all packets of this flow. Furthermore, the
packet triggering the request is forwarded by the switch or
the controller itself, depending on the implementation and the
cabling of the controller.

After leaving the switch, each packet is replicated by
another wire tap to the measurement server as well as to the
traffic sink. Replicating the packet before and after the Open-
Flow switch makes it possible to precisely monitor the sojourn
time. We use an Endace DAG card in our measurement server
to keep the measurement error below nine nanoseconds [10].

In order to measure the time the OpenFlow switch needs to
forward a packet without controller interaction, we send packet
bursts of two million identical packets through the OpenFlow
switch. A rule matching these packets is preinstalled into the
switch so that no controller access is involved. We measured
the forwarding time for different packet sizes between 64 byte
and 1514 byte Ethernet frame length and estimated the sojourn
time µS based on the results. Figure 3 shows the measured
forwarding delays in microseconds for the Open vSwitch
software switch, the Pronto 3290 switch, and the NetFPGA
OpenFlow switch depending on the packet payload. The error
bars indicate the standard deviation from the measured mean
over 10 identically performed measurements for each payload
size. The y-axis is in logarithmic scale to be able to display
the curves for all switches in one figure. We observe an
almost linear increase of the mean forwarding delay from
about 4µs to about 16.5µs with the increase in payload size
for both hardware-based implementations with the NetFPGA

0 500 1000 1500

10
1

10
2

10
3

Payload (Byte)

F
or

w
ar

di
ng

 D
el

ay
 (

µs
)

Open vSwitch

Pronto 3290

NetFPGA

Fig. 3. Measured switch delay.

performing slightly better. The Open vSwitch as a software
implementation is two orders of magnitude slower and suffers
from frequent memory accesses especially at small packet
sizes. From these results we decided to use the performance
values of the Pronto 3290 as input parameters for our model
as the difference between Pronto and NetFPGA is marginal
and the technical specifications of the Pronto are much closer
to those of commercial hardware switches than those of the
NetFPGA.

The measurements which provided the data for the response
times of the OpenFlow controller Nox 0.9 were performed
in a different scenario. We installed the Cbench [11] tool on
the measurement server and attached the controller directly.
The Cbench tool measures the rate in which flow requests
are handled by the controller. Unfortunately, we were not able
to match requests and responses to the OpenFlow controller.
Hence, we need to rely on the number of answers per second
the Cbench tool measured. These showed a mean value of
4175 responses per second with a standard deviation of
101.43. From this value, we calculated the mean values of
the controllers sojourn times and use these in our analytical
model and in the simulation.

Finally, we also require the inter-arrival times of new pack-
ets and flows. These are based on the measurements published
in [12], where we analyzed the traffic of a residential wireless
Internet access for over 30 days. The packet size distribution
and the probability of new flows used in our performance
evaluation have been extracted from this study.

IV. A SIMPLE MODEL OF AN OPENFLOW ARCHITECTURE

We abstract the OpenFlow architecture as a feedback-
oriented queuing system model, divided into a forward queu-
ing system of the type M/GI/1 and a feedback queuing
system of the delay-loss type M/GI/1 − S. We deliberately
start by assuming Markovian servers for both systems, i.e.
an M/M/1 for the forward model and an M/M/1 − S for
the feedback model, to test the robustness of the modeling
approach. The forward queue has an average service time of
9.8 microseconds. The queue size of the forward system is
assumed to be infinite. In contrast, the buffer for the packets
waiting on a controller response is assumed to have a finite
capacity of 512, which models the queue of the feedback
system. The arrival process at the switch, i.e. of the forward
system, is a combination of the arrival process of packets
received from the line cards with rate λ and of packets being
forwarded from the switch buffer after the controller has
determined the appropriate action and the corresponding entry
in the flow table was created.

The OpenFlow controller is thus modeled by the feedback
M/M/1−S queuing system with an exponential service time
with a mean value E[BC ] ∈ {31µs, 240µs, 5.2ms}. The high
as well as the low mean service time were chosen arbitrarily
one order of magnitude larger respectively smaller than the
measured mean service time of 240µs. We assume that all
merging traffic flows again form Poisson streams. The smallest



Switch 

0

Controller 

M

M



S

0nfp

0)1(  nfb pp

0 nfb pp

S

C

Fig. 4. A simple model of an OpenFlow switch.

value for E[BC ] is taken from our controller benchmark, the
other values have been chosen arbitrarily to reflect the impact
of controller applications one or two order of magnitudes
slower. The queue length S of the controller system is limited
in order to model the possibility of dropped packets under high
load conditions. The arrival rate in this system is a fraction
of the arrival rate of packets from line cards in the switch,
governed by the probability pnf of a flow being seen by the
switch which has no flow table entry yet.

The two main performance indicators of interest for an
evaluation are the total sojourn time of a packet through the
system and the probability of dropping a packet. A packet has
to traverse the switch system at least once. With a probability
of pnf , the switch has no entry in its flow table for that packet
and forwards it to the controller. A packet can be blocked at
the controller with probability pb. After the controller sojourn
time, it is again queued in the switch and traverses it for a
second time. The complete model of the forward and feedback
queuing systems with both components and all traffic flows is
shown in Figure 4.

It is important to note that a single packet cannot be
forwarded to the controller twice, i.e., pnf is only applied
to the initial packet flow with rate λ0. In our analysis, we
ensure that a packet does not experience more than the sojourn
time of the controller plus twice the sojourn time of the
switch. Figure 5 illustrates the way a packet takes through the
system in a more sequential manner. WS and WC represent the
waiting queues at the switch and the controller respectively,
whereas BS and BC represent the corresponding service units.

WS BS 

WC BC WS BS 

pnf 

1-pnf 

Fig. 5. Phase diagram of the packet sojourn time.

A. Assumptions

In the forward queuing system, we take the simplifying
assumption that the overall arrival process at the switch (for-
ward), as well as the arrival process at the controller (feedback)
are Poisson. This can be justified as the state processes on the
forward and the feedback paths are on very different time
scales, which allows the decomposition of the two queuing
systems. Moreover, we queue all packet arrivals in a single
queue at the switch, instead of a separate queue per line card.
The feedback queue used to model the controller actually
comprises out of the line-out card of the switch towards the
controller, the buffer, and processing at the controller itself.
However, the Nox controller we used as a reference for this
model controls the traffic rate it receives from the switch in
order to prevent overload. Therefore, no additional queuing
happens at the controller itself, and the line-out buffer at the
switch is the only place where packet loss may happen. The
transmission time of packets from the switch to the controller
is encapsulated in the service time of the controller.

B. Limitations of the Model

In its current form, the model does not capture the fact that
incoming traffic at the switch is queued first per line card, i.e.,
one queue per port. As well, it is currently limited to a single
switch per controller, whereas OpenFlow allows the same
controller to be responsible for a number of different switches.
Furthermore, the model assumes TCP traffic as opposed to
UDP traffic. For TCP traffic only the first packet header of a
new flow is sent to the controller, while for UDP all packets are
relayed until a flow rule is in place. These limitations will be
addressed in future work by refining the model described here.
Refinements may contain replacing the forward input queue
by a polling system or replacing the M/M/1 − S system of
the controller with a more general M/GI/1− S system that
allows the use of a measured service time distribution as an
input for the model.

Although it might be desirable to have the complete distri-
bution for the model, we focus on the first two moments only
as they provide us the most important performance indicators
required by a service provider for dimensioning the network.

V. PERFORMANCE EVALUATION

In this section, we discuss the output of our model and vali-
date them by means of a simulation. We use a set of scenarios
depicting different use-cases for an OpenFlow-enabled switch.
This is mainly reflected in the forwarding probability pnf . A
value of pnf = 0.04 represents a normal productive network
carrying end user traffic, where [12] showed that this is the
probability for new flows being observed at the switch. Values
of pnf = 0.2 or 0.5 model a network where a part of the traffic
is routed via the controller, e.g., if a portion of the traffic is
using a virtualized network. Finally, pnf = 1 depicts the case
where the controller handles the complete traffic going through
the switch, e.g., in an experiment testing new protocols, such
as described in [1].



0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

60

ρ
C

E
[T

S
] (

m
s)

 

 

Model
Simulation

p
nf

 = 1

p
nf

 = 0.5

p
nf

 = 0.2

p
nf

 = 0.04

Fig. 6. Impact of the forwarding probability on the mean packet sojourn
time for E[BC ] = 5.3ms

We also vary the mean service time of the controller.
The slowest value is two orders of magnitude larger than
the service time of the switch, which may be the case if
commodity hardware is used to run the controller. We provide
results for faster controller systems as well to allow to predict
the system behavior if dedicated hardware is used. The buffer
size at the controller queue is set to S = 512 packets in all
experiments, which was chosen arbitrarily as a middle ground
between experimental and commercial switches.

To be able to validate the results from the analytical model,
we implemented a packet based simulation in OMNeT++. The
simulation model also reflects the structure of the analytical
model, cf. Figure 4. Verification through simulation was
chosen over measurements as simulations results are faster
to obtain and do not require as many repetitions to stabilize.
The process time of the controller in the simulation uses the
same distribution as the analytical model. In contrast, we are
able to study the feedback generated by packets looping back
over the controller in the simulation, which we are not able to
fully reflect in the analytical model. The assumptions about the
arrival and departure process of the controller are also relaxed
in the simulation, i.e., no Poisson process is assumed. Instead,
the actual inter-departure times of packets after traversing the
switch and the controller, respectively, are used.

The simulation results shown in this section are based on
six simulation runs per parameter and different seeds. The 95
percent confidence intervals are given for the simulation results
in all figures, but are only represented by dashes as they are
very small compared to the scale.

Figure 6 illustrates the modeled as well as the simulated
mean sojourn time of a packet depending on the controller
load for an expected controller service time value of E[BC ] =
5.3ms. Graphs are shown for several pnf , i.e., the probability
that a received packet at the switch represents a new flow and
subsequently causes the switch to send an OpenFlow packet,
which needs to be answered by the controller. Values are given
for controller loads from 5 to 95 percent in 5 percent steps.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

ρ
C

C
T

S

 

 

Model
Simulation

p
nf

0.04

0.2

0.5

1.0

Fig. 7. Impact of the forwarding probability on the coefficient of variation
for E[BC ] = 5.3ms.

As a first general observation, we see an increase in the
mean sojourn time which is caused by the influence of the
controller. The more packets need to wait for a controller
response, the more packets have a longer sojourn time caused
by the controller service time and additional waiting time
imposed by queuing. Since the controller reaches a high
utilization sooner than the switch with an increasing λ0, i.e.,
an increasing raw traffic rate, it contributes a much longer
waiting time to the total packet sojourn time.

In case of pnf = 0.04, the mean sojourn time of the system
barely deviates from that of the switch, since only a small
fraction of traffic has to be handled by the controller. Only at
a controller load of 75 percent and above we observe the start
of an exponentially rising gradient. If we increase pnf to 0.2,
we see this increase at a controller load of about 45 percent.
For pnf = 0.5 it already starts at a load of 30 percent and at the
maximum value pnf = 1.0 we detect the increase already at
10 percent controller load. In all cases, the simulation curve
is located slightly above the curve for the model. For low
values of pnf this deviation appears to be marginal. Here,
simulation and model show a nearly identical progression.
With an increasing pnf , we see a deviation increase except
for very high controller loads. However, the deviation remains
small.

In Figure 7, the coefficients of variation for the sojourn
times are shown also dependent on the controller load. We
observe an increasing coefficient of variation with a decreasing
pnf . This is caused by the fact that with a smaller pnf less
packets are subject to the delay imposed by the controller and
therefore, the deviation from the mean value for these packets
is much higher. Again, we can also see a small discrepancy
between simulation and model for medium controller loads.
This discrepancy increases with smaller values for pnf com-
plementary to what we see in Figure 6. However, simulation
and model seem to be a good fit.

Figure 8 depicts the simulated as well as modeled mean
sojourn times dependent on the controller load for an expected



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ρ
C

E
[T

S
] (

m
s)

 

 

Model
Simulation

p
nf

 = 1
p

nf
 = 0.5

p
nf

 = 0.2

p
nf

 = 0.04

Fig. 8. Impact of the forwarding probability on the mean packet sojourn
time for E[BC ] = 240µs.

controller service time value of E[BC ] = 240µs, correspond-
ing to Figure 6. For pnf = 0.04 and a controller load of 95
percent no value is given as this would violate our assumption
of an offer a ≤ 1. Overall, we observe the same effects as
discussed for Figure 6 albeit for mean sojourn times two orders
of magnitude smaller. The point where the gradient starts to
increase exponentially is shifted to lower controller loads, e.g.,
for pnf = 0.04 we see an increase already at 45 percent load
as opposed to 75 percent in Figure 6.

Corresponding to Figure 7, Figure 9 shows the coefficients
of variation for the sojourn times for E[BC ] = 240µs. While
the progressions of the coefficients are very similar here to
those in Figure 7 for pnf = 0.5 and pnf = 1.0, they differ
for pnf = 0.2 and pnf = 0.04. Contrary to Figure 7, the
model curve for these two values of pnf now underestimates
the simulation for small controller loads. We also note an
increasing gradient for pnf = 0.2. For pnf = 0.04 we
see an exponential decrease in the coefficient of variation at
controller load above 70 percent. Furthermore, the model curve
now underestimates the simulation for all observed controller

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

ρ
C

C
T

S

 

 

Model
Simulation

p
nf

0.04

0.2

0.5

1.0

Fig. 9. Impact of the forwarding probability on the coefficient of variation
for E[BC ] = 240µs.

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

60

70

80

ρ
C

E
[T

S
] (

m
s)

 

 

Model
Simulation

E[B
C
] = 5.3⋅10−3

E[B
C
] = 2.4⋅10−4

E[B
C
] = 3.1⋅10−5

Fig. 10. Impact of the controller service time on the mean packet sojourn
time.

loads. In this scenario, not only the delay imposed by the
controller is relevant, but we also observe a non-zero waiting
time at the switch. This is caused by the now much smaller
difference between the service time of the switch and that of
the controller. A high utilization of the controller also leads to
a non-negligible utilization of the switch, resulting in a non-
empty queue.

Finally, Figure 10 displays the simulated as well as modeled
mean sojourn times dependent on the controller service time
for pnf = 1.0. We can observe the influence of the controller
performance relative to the switch performance on the total
system. As we have seen in Figure 6 and Figure 8, the mean
sojourn time increases exponentially with increasing load.
However, for an E[BC ] = 5.3ms the gradient already shows
a much higher increase at smaller controller loads than that
for E[BC ] = 240µs. With an E[BC ] = 31µs, the curve is
governed by the switch delay and therefore, the mean sojourn
time is barely distinguishable from the service time of the
switch and does not show an increase at all.

In all cases, the observed blocking probabilities (pB) for
packets at the controller queue were zero for the simulation
and infinitesimal small in the model. This indicates that the
OpenFlow architecture is stable for our input values.

VI. CONCLUSION

In this paper, we proposed a basic model to analyze the
forwarding speed and blocking probabilities of an OpenFlow
architecture. Blocking can thereby only occur in the forward-
ing queue to the controller. The results show that the sojourn
time mainly depends on the processing speed of the OpenFlow
controller. Our measurements have shown that the processing
time of the controller lies between 220 µs and 245 µs. The
impact of the controller processing time can be best seen in
the variation of the sojourn time. The higher the probability of
new flows arriving at the switch, the lower is the coefficient
of variation, but the longer is the sojourn time.

The presented model helps to see the importance of the
controller performance for installing new flows. When using



OpenFlow in high speed networks with 10 Gbps links, today’s
controller implementations are not able to handle the huge
number of new flows. Possible directions for future research
might consider the performance of an OpenFlow system,
where more than one switch is connected to the OpenFlow
controller. Here, it is of special interest how the sojourn time
of a single switch is influenced when a burst of new flows
arrive at different switches. Another possibility would be to
integrate the queues of the line cards into the model and to
evaluate the impact of different processing strategies in form
of a polling system.

ACKNOWLEDGMENTS

The authors would gratefully thank Michael Düser and
Fritz-Joachim Westphal from Deutsche Telekom Laboratories
Berlin for the fruitful discussions and support during the
course of this work.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, p. 69, 2008.

[2] “OpenFlow Switch Specification, Version 1.0.0,” December 2009.
[3] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,

S. Banerjee, and N. McKeown, “Elastic Tree: Saving Energy in Data
Center Networks,” in 7th USENIX Symposium on Networked System
Design and Implementation (NSDI), San Jose, CA, USA, April 2010,
pp. 249–264.

[4] M. Casado, D. Erickson, I. A. Ganichev, R. Griffith, B. Heller, N. McK-
eown, D. Moon, T. Koponen, S. Shenker, and K. Zarifis, “Ripcord:
A Modular Platform for Data Center Networking,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2010-93,
June 2010.

[5] S. Das, G. Parulkar, P. Singh, D. Getachew, L. Ong, and N. McKeown,
“Packet and Circuit Network Convergence with OpenFlow,” in Optical
Fiber Conference (OFC/NFOEC’10), San Diego, CA, USA, March
2010.

[6] R. Braga, E. S. Mota, and A. Passito, “Lightweight DDoS Flooding
Attack Detection Using NOX/OpenFlow,” in 35th Annual IEEE Confer-
ence on Local Computer Networks, Denver, CO, USA, October 2010,
pp. 416–423.

[7] V. Tanyingyong, M. Hidell, and P. Sjödin, “Improving PC-
Based OpenFlow Switching Performance,” in Proceedings of the
6th ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, New York, NY, USA, 2010, pp. 13:1–13:2.
[Online]. Available: http://doi.acm.org/10.1145/1872007.1872023

[8] Y. Luo, P. Cascon, E. Murray, and J. Ortega, “Accelerating
OpenFlow Switching With Network Processors,” in Proceedings of
the 5th ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, New York, NY, USA, 2009, pp. 70–71.
[Online]. Available: http://doi.acm.org/10.1145/1882486.1882504

[9] A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “OpenFlow Switching:
Data Plane Performance,” in IEEE ICC, Cape Town, South Africa, May
2010.

[10] Endace, “DAG 7.5G2 Datasheet.”
[11] R. Sherwood and K.-K. Yap, “Cbench Controller Benchmarker,”

http://www.openflowswitch.org/wk/index.php/Oflops, 2010.
[12] F. Wamser, R. Pries, D. Staehle, K. Heck, and P. Tran-Gia, “Traffic

Characterization of a Residential Wireless Internet Access,” Special
Issue of the Telecommunication Systems (TS) Journal, vol. 48: 1-2, May
2010.


