A Numerical Framework for Solving Discrete Markov Models A p-
plied to the AAL-2 Protocol

Michael Menth®* and Notker Gerlich?**

2Inst. of Computer Science, University of Ulm, Oberer Eselsberg, D-89069 Ulm, FRG.
bInst. of Computer Science, University of Wiirzburg, Am Hubland, D-97074 Wiirzburg,
FRG.

For performance analysis of modern communication systems discrete Markov modeling
techniques have become important. This paper presents a numerical framework for solving
large discrete Markov models efficiently. The first part outlines the backing theory and
establishes the numerical framework. This framework is applied to a performance analysis
of the ATM Adaptation Layer type 2 protocol in the second part.

1 INTRODUCTION

Markov models play an important role in performance evaluation of communication sys-
tems since the pioneering works of A. K. Erlang at the beginning of this century. The
digital revolution brought about communication technologies that base on a small num-
ber of fixed size data units like the cells in the Asynchronous Transfer Mode (ATM)
system. Given discrete basic time and data units in the system that is to be modeled, a
discrete model offers itself as the basis for performance evaluation studies.

A number of recent performance studies that base on a discrete Markov model [1-
17] exhibit the same underlying analysis pattern: The state evolution of a discrete-time
Markov chain is expressed by a recursive equation, much like the well-known Lindley
equation [18] but in the discrete domain. After having translated the recursive equation
of random variables into an iterative procedure on probability mass functions the average
state distritution is computed. Based on this distribution performance measures like loss
and delay probabilities may be calculated. The sketched method, which is referred to as
Discrete Time Analysis (DTA) by some authors, provides for numerical results only; it
does not obtain closed-form formulae.

The modelers skill consists in devising the recursive equation. Once the equation is
found, there is the problem of turning the equation into an efficient numerical program. In
the references cited above the iterative procedure is achieved in different ways involving
convolution and transformation operators.

*Work done while the author was with the Inst. of Computer Science, University of Wiirzburg, FRG.
**The author acknowledges the support of the Deutsche Forschungsgemeinschaft (DFG) under grant
Tr-257/3.

This paper aims at a more systematic way of deriving the numerical program from
the recursive equations. Specifically, it presents an efficient numerical framework that
implements the iterative procedure directly from the recursive equation. The numerical
framework is derived by formalizing the approaches of [1-17] in Section 2. The formaliza-
tion exhibits that all the studies utilize a backward equation for the numerical program.
It turns out that rearranging into a forward equation does the trick. Additionally, we en-
hance the discrete-time analysis method towards the solution of cyclo-stationary systems.
The enhancement is required for the analysis of the ATM adaptation layer type 2 protocol
in Section 3 by which we demonstrate the application of the framework.

2 A NUMERICAL FRAMEWORK FOR SOLVING DISCRETE MARKOV
CHAINS

We illustrate the formalization of the DTA approaches [1-17] by the DTA of the discrete-
time GIXl/D/1-S queuing system as presented by Tran-Gia and Ahmadi [14]. We briefly
recall their analysis in the first section; the details can be found in the original publication.
In the second section we formalize the DTA approach. The formalization leads to the
development of the numerical framework we aim at.

2.1 Example DTA: The GIX!//D/1-S queue

The discrete-time GIX! /D/1-S queuing system has a finite queue size, a constant service
time, and general inter-arrival times of batches with a general batch size distribution. The
unfinished work process of the system is a Discrete Time Markov Chain (DTMC). Tran-
Gia and Ahmadi [14] represent the state evolution of the DTMC by a recursive equation
that relates the state of the unfinished work process observed immediately prior to the
arrival of a batch to the state observed upon arrival of the preceding batch:

Upy1 = max[min(U,, + B, S) — A,, 0],

where the following notation is employed:
U, random variable for the unfinished work immediately prior to the arrival instant of
the n-th batch;
B, random variable for the size of the n-th batch;
A, random variable for the time interval between the arrival instants of the n-th and
(n + 1)-th batch;
S capacity of the queue.
Note that with the discrete time unit equal to the constant service time, A, customers
can be served while A,, time units pass by.
The iterative algorithm for calculating the successive state distributions* is stated as

un—l—l(k) = 71'0[7T5(un(k) ® bn(k)) ® an(_k)]a

*We use the term “distribution” shorthand for probability mass function.

where the sweep operators m(-) and 7°(-) are defined by

0 k<0 Ak k<S
mo(z(k)) = Z[loo z(1) k=0 5 (2(k)) = Yoo #(i) =9
z(k) k>0 0 k>S

and the ®-symbol denotes the discrete convolution

o0

z(k) = z1(k) ® 2o (k) = Z z1(k = j) - 22(j)-

j=—00

Provided A, and B, are each independent and identically distributed, the DTMC is
homogeneous and the iterative algorithm converges to the limiting distribution u(k) =
lim,, o u, (k), which equals the average state distribution (apart from pathological cases).
From u(k) the authors derive the performance measures of the system.

2.2 Formalization

The decisive part of any discrete-time analysis is the iterative computation of the state
distribution of the DTMC. It is this part which we are interested in formalizing it.
Strictly speaking, the required state distribution x is obtained by taking the limit of

the state distributions x,, observed at discrete time instants n = 0,1, ... Usually, taking
the limit is described as z = lim z,. Equivalently [19], the limit may be expressed by
n—oo
N—1

the limit of the average of the successive state distributions. We will come back to the
second expression later in this section.

However, in both cases before taking the limit the successive state distributions need
to be computed. In the discrete-time analysis approach an iteration is applied to this end.
In the following we formalize this iterative procedure.

For a DTMC, we denote the discrete state range by X = {X,,|n € N}. The DTMC
satisfies the memoryless property

Pr(XnJrl = Sp+1 | Xn = Snaanl =Sp—1,--- 7X0 - 80)
= Pr(Xn+1 = Sn+1 |Xn - Sn)

for all natural numbers n and all states s,. In a homogenous DTMC the (single-step)
transition probabilities p,(i,j) = Pr(X,.1 = j| X, = i) are independent of n and are
consequently written as p(i, j). The state transition matrix is denoted by P = [p(i,j)].

The first step of a discrete-time analysis consists in embedding a DTMC into the
system evolution. That means to define a discrete system state X and to identify discrete
time instants where the memoryless property holds for the evolution of X. In our example
above, the DTMC is embedded at the batch arrival instants; its state is defined by the
unfinished work U.

The further evolution of the system state depends on the current state and on exte-
rior factors which must be independent of the predecessors of the current state for the
memoryless property to hold. We summarize the exterior factors by a system influencing
variable Y that has discrete range). In general, both the state variable X and the in-
fluencing variable Y may be composite variables. In our above example, the influencing
variable Y consists of two components: the inter-arrival time A and the batch size B.

Due to the memoryless property of the DTMC the state transition from X, to X,
depends only on X,, and Y,,. The next DTA step is the representation of the state evolution
by a relation that is recursive in the state variable X. Formally, it means defining a
recursive state transition function f: X x Y — X

Xn-H = f(Xna Yn)
In our above example, the state transition function was defined by
Uni1 = f(Un, A, By) = max[min(U,, + B, S) — A,, 0].

Often it is possible to identify further, say k, discrete-time instants between the renewal
points used so far where the memoryless property holds. Denoting the states of the DTMC
at these time instants between instants n and n+1 by X! 0 < i < k we may derive state
transition functions

X = f(XLY); 0<i<k
Xg-i-l = fk(XTkL:aY)a

where X0 are the formerly used renewal points X,,. The state transition function f is the
composition of the transition functions f*

f=fFofflo...of0

In our example, we can — as the authors of [14] did — identify Markov points immedi-
ately before and immediately after the batch arrival instants. The function f° describes
what happens to the unfinished work upon arrival of a batch, i.e., the transition from im-
mediately before to immediately after the n-th arrival instant; the function f' describes
the server working off the unfinished work between arrivals, i.e., the transition from im-
mediately after the n-th arrival to immediately prior to the (n + 1)-th arrival:

U = f°(U2, B) = min(U? + B, S);

n

Ur?-l—l = fl(Uria A) = maX(U; o Aa 0)

The advantage of introducing the additional renewal points is obvious: it simplifies the
setup of the state transition function f. Furthermore it reduces the computational com-
plexity of the numerical program as will become apparent later.

The next step is to turn the state transition function into an efficient numerical pro-
gram. The program computes the successive state distributions z,(k), n = 0,1,..., by
iteration and, thus, requires an equation which is recursive in the state distribution. The
numerical programs of the DTA studies [1-17] employ the equation

Topr(k) = D Pr(Xpu = k| X, =i AY, =j) - z(i) - y(j),

1EX,JEY

without stating the equation explicitly. Since Pr(X, 1 = k| X, =i A Y, = j) equals 1 if
k = f(i,j) and otherwise is 0, we get

teak) = Y @) vali). (+)

{(@g) | f(@.5)=Fk}

A good example is the use of the discrete convolution in the GIXI /D/1-S analysis above:

z(k) = Z z1(4) - 22(7),

(@) | f(@g)=Fk}

where f(i,7) = i + j, since the convolution is the numerical program that corresponds
to the sum of two independent random variables. Computing this function requires the
pre-image {(4,7)|f(i,7) = k} and, hence, the inverse f~!. Setting i = k — j and varying i
from —oo to oo yields the usual formula of the discrete convolution.

Indeed, requiring the inverse of the transition functions is characteristic for all the
operators employed in the numerical programs of the DTA studies. For this reason we call
the approach taken a backward method. The problem with using the backward method
in a systematic derivation of the numerical program is that the pre-image needs to be
computed. That problem is hidden by employing operators like the discrete convolution.
But using these operators fails with multi-dimensional state variables as in [2] or [5]. The
need to avoid the computation of the pre-image provided the stimulus for our developing
of the forward method which we turn our attention to in the next section.

2.3 The Forward Method

In equation (x) the probability of state k is computed by summing the compound proba-
bilities of the tuples (4, j) in the pre-image of k£ with respect to the transition function f.
Therefore, inverting f partitions the set X x) into sets of tuples which contribute to the
probability of a certain state k. This observation suggest the forward iteration algorithm:
After initializing the successor distribution x, (k) with 0, the algorithm traverses X’ x)
adding x(i) -y(j) to the probability of state f(i, 7). Since the algorithm uses the transition
function f directly we call the approach a forward method.

Algorithm: Forward Iteration

Input: state distribution z,, and influencing distribution y
Initialize x,; with zeros
for all s € X do
for all j € Y do
Tn1 (f(E,7)) = T (f (4,) + 2a (i) - y ()
end for
end for
Output: =z,

Implementing the forward iteration for our above example we get the GIX/D/1-S
Forward Iteration algorithm:

Algorithm: GIX!/D/1-S Forward Iteration

Input: state distribution u, and influencing distributions a and b
Initialize wu,; with zeros
for i :=0to S do
for j :=1 to max(B) do
for k£ :=1 to max(A) do
end for
end for
end for
Output: wu,qy

If we employ the transition functions f° and f! for implementing the forward iteration
algorithm the resulting algorithm has two single loops instead of one double loop. It is
obviously faster than the above iteration. In general, only some components of a compos-
ite influencing variable Y are relevant for a specific transition function f*. In the above
example, f° requires only component B and f! requires only component A of the influ-
encing variable Y = (A, B). In the extreme case, we may decompose f into k — 1 transfer
functions in a system having a k-dimensional influence variable Y where each transfer
function depends only on a single component of Y. Then the iteration algorithm consists
of k single loops instead of a single k-fold loop. In other words, the complexity of the
algorithm reduces from O(n*) to O(n).

Algorithm: GIX!/D/1-S Forward Iteration with Additional Renewal Points

Input: state distribution u, and influencing distributions a and b
Initialize distribution z with zeros
for i :=0to S do
for j :=1 to max(B) do
2(f20,)) = 2(f°(i, 5)) + un(i) - b(j)
end for
end for
Initialize w,; with zeros
for i :=0to S do
for j :=1 to max(A) do
Unt1(f1(i,4)) o= i1 (f1 (3, 5)) + 2(4) - a(j)
end for
end for
Output: wu,y

It is an important question how our numerical framework is related to other iterative
methods for solving a DTMC (see the thorough treatment by Stewart [20]). The basis
of this class of methods to compute the limiting distribution of the DTMC is the power

iteration equation
Tpi1 = Tp P

that requires the state transition matrix P. The algorithm for computing the transition
matrix P from the transition function reveals the relation to the power iteration.

Algorithm: Transition Matrix

Input: influencing distribution y
Initialize P with zeros
for all 2 € X do
for all j € Y do
p(i, f(i,) = p(i, f(i, 7)) + y(j)
end for
end for
Output: P

Employing the transition function leads to the algorithm traversing the non-zero entries
of P only. It is comparable to using a sparse storage scheme for P where storing the row
index is replaced by computing it by means of function f. By comparing both algorithms
we observe that the Forward Iteration algorithm intermingles the computation of P with
the vector-matrix multiplication of the power iteration equation. In summary, the forward
method (as well as the backward method) implements a sparse power iteration without
computing the iteration matriz explicitly.

Thus, our numerical framework combines the relatively simple derivation of the model
with the advantage of coping with huge state spaces. Each iteration step involves |X|- ||
multiplications, for each of which the state transition function must be calculated. The
backward method spares the expense of computing the transition function at the price of
added complexity for deriving the numerical program. Apart from that, the framework in-
herits its numerical characteristics like convergence behavior etc. from the power iteration
method.

2.4 Coping with Periodicity
The derivation of the forward method so far proceeded from the assumption that the
model is aperiodic. Employing the transition equations only, the underlying DTMC may
well be periodic with consequences for the convergence behavior of the forward iteration.
In this section we describe the add-ons for the forward iteration to cope with periodicity.
An irreducible DTMC is said to be periodic of period p or p-cyclic if the number
of single-step transitions required on leaving any state to return to that same state by
any path is a multiple of some integer p > 1; if no such p > 1 exists the DTMC is
called aperiodic. The state set of a p-cyclic DTMC may be partitioned into p distinctive
periodic classes. These classes are ordered such that a single step transition from a state
of class j is only possible to enter a state of class (7 + 1) mod p. Therefore, a path of p
steps leads always to a state of the same class. Furthermore, in the DTMC with transition
matrix PP each periodic class forms an irreducible closed set. From the last two statements

follows that the DTMC with transition matrix PP is aperiodic. Consequently, there exist
p limiting distributions, each corresponding to one class,
29 = lim xyP/(PP)", 1< <p.

n—o0

Since the stationary distribution of an irreducible aperiodic DTMC equals

N-1
I 1
r = l1m — E T
N—oo [V "
n=0

(see [19]) the average state distribution of the periodic chain is computed by

1 p
e=13720)
pj:l

See Feller [21] for proofs.

For the forward iteration to cope with periodicity, the period p of the model must
be considered when testing for convergence of the iteration. To this end, the outcome of
the j-th iteration step must be compared with the distribution of the (j — p)-th iteration
step. Thus, one needs to store the distributions of p consecutive iteration steps. Once
convergence is established, one simply has to average the p stored distributions eventually
to obtain the stationary distribution.

It remains to compute the period before starting the iteration. Stewart [20] presents
an efficient algorithm that calculates the period from the directed graph that may be
associated with the DTMC. The vertices of the graph correspond to the states of the
DTMC, and the edges correspond to transitions among states. Since the state transition
function f calculates the successors of a state it may be employed in a depth-first-search
algorithm [22] that constructs the state graph starting from an arbitrary initial state.

2.5 Recipe

Given a finite discrete Markov system, i.e., the system’s salient features are measured
in discrete time units, the following recipe summarizes our numerical framework. (If the
system is continous the embedded Markov chain technique [18] may be employed to obtain
a discrete Markov chain.)

Recipe:
1. Define the state variable of the system.
2. Identify renewal points.
Conceive the state transition function(s).

Compute the period.

SN S

Apply the forward iteration algorithm to obtain the state distribution within a
convergence criterion that takes the period into consideration.

Based on the state distribution performance measures may be derived. The following
section demonstrates the application of the recipe to a model of the AAL-2 protocol.

3 APPLICATION TO THE AAL-2 PROTOCOL

In order to provide bandwidth-efficient ATM transmission to traffic that is characterized
by low bit-rate, short and variable length packets, and delay sensitiveness, ITU-T specified
the ATM Adaptation Layer Type 2 (AAL-2) [23]. The transmitting system multiplexes
packets into a protocol data unit (CPS-PDU) that is passed as ATM cell payload onto
the ATM layer. If one CPS-PDU has not enough space to accommodate the packet, the
packet is split and overlaps two CPS-PDUs. In order to ensure a maximum multiplexing
delay a timer function may be used. Each time a new CPS-PDU is started to be filled
a timer may be started. If the timer runs out the cell is scheduled for transmission even
before the CPS-PDU is filled.

The AAL-2 uses the ATM layer service to transport service data units from one end
system to another through an ATM network. For the numerical results we assume that
the ATM layer service is Constant Bit Rate. The traffic stream must be shaped according
to the Peak Cell Rate (PCR) negotiated in the traffic contract. A traffic shaper ensures
that the ATM cells of the connection keep the minimum inter-cell distance 7= 1/PCR
by delaying cells if necessary. Figure 1 depicts the model we are going to analyze. Packets

Packet

—_—
ATM cell
—_—

[—
bursty shaped
cell cell

— stream stream
AAL-2 Spacer

Figure 1: Model of AAL-2 combined with spacer

arriving at the AAL-2 are multiplexed into ATM cells; the cells are subject to spacing.

3.1 Define the state variable of the system

Employing the model we derived in a previous paper [2], we define the system state
variable as

X = (U,T, S).

Component U denotes the number of data units packed already into the CPS-PDU while
T records the age of the oldest packet contained in the CPS-PDU; component S indicates
the amount of time a cell will have to wait at the shaper prior to transmission. The range
of X is ([0, Ly], [0,L], [0,Ls]), where L, denotes the size of the CPS-PDU, L, is the
AAL-2 time-out value, and L; is the maximum delay in the spacer.

3.2 Identify renewal points

As in the above example we can identify the arrival instants as renewal points. In par-
ticular, we use the instants immediately prior to a packet arrival and immediately after

such an event for conceiving the state transition function. The influencing variables are
the size of the arriving packet V' and the inter-arrival time A. Thus we have

Y = (V, A).

3.3 Conceive the state transition functions

Since we identified two renewal points we have to set up two state transition functions: f°
that describes the state transition from the immediately before an arrival to immediately
after that event, and f! that covers the state transition from immediately after an arrival
to immediately before the next arrival.

In conceiving f° we must distinguish two cases depending on whether the arriving
packet completes the PDU (U? + V,, > L,,) or not.

P, T 8 = (UTE + Vi — {;u, (()), SY+Tys) fUL+V, > L,
U,)+V,, T,), S;) else.
The constant T is the spacing interval.
The transition function f! distinguishes three cases: there are no packets waiting, there
are packets and no time-out occurs, and there are packets and the timer runs out.

fl : (U7?+1a Tr(z)—i—l? 52-1-1)
(Urh Tr%: [Srlz - An+1]+) if Uri =0
(Ué, T& + An+17 [S}b o An+1]+) if U; >0
ATy + Apir < Ly
0,0, [[S} — Ly +TN" +T, — Ay + Ly — THT) else,

where [z]* denotes the maximum of x and 0. Note that a time-out possibly occurs L; — T}
time units after the last arrival and the next arrival occurs A, — Ly + T} time units after
the time-out. During this interval the spacer state is continuously decreased one unit per
time unit.

3.4 Compute the period

It is easy to verify that the model is p-cyclic if the packet length is a constant ¢ and
the timeout time is set large enough for no timeout to occur. In that case the state is
Unir = (Up + k- ¢) mod L, which is clearly periodic. Thus, depending on Y a period
p > 1 may result from this step and must be considered in the iteration.

3.5 Apply the forward iteration algorithm

The transition functions f° and f! are used to implement a forward iteration according to
the Forward Iteration algorithm. Note that f° requires only component V' while f! needs
only component A of influencing variable Y = (V, A) which leads to the desired reduction
in complexity.

Having obtained the state distribution our formulae in [2] compute the waiting time
and packet loss probability.

3.6 Numerical Results

The numerical results provided in this section illustrate how the above analysis may
be used for obtaining source traffic descriptors for CDMA traffic carried by an AAL-2
connection.

The standard 8k vocoder employed in the North-American CDMA cellular standard
IS-95 [24] operates at four different rates according to speech activity and noise conditions.
Depending on the rate, the vocoder generates variable length speech frames, one frame
per 20 ms. Including 10 octets of address and frame quality information, frames of 256,
160, 120, and 96 bit are observed with probabilities 0.291, 0.039, 0.072, and 0.589, resp.

The base station multiplexes the vocoder packets of all ongoing connections onto a
single AAL-2 connection to the core network. The multiplexing is organized in such a way
that justifies modeling the inter-arrival time of packets by a geometric distribution [2].
The transport capability of the underlying ATM pipe is 2 Mbps which is the capacity of
T1/E1 links that are widely used in today’s mobile network infrastructure. The overlaid
AAL-2 connection uses the CBR service category which requires declaring the source
traffic descriptor PCR.

sources

delay [ms]

1200 2400 3600 4800
PCR [cells/s]

Figure 2: Source traffic descriptors for CDMA traffic

Figure 2 shows the spacing delay for the multiplexed traffic of 18, 36, 54, and 72 voice
sources under the constraint of not exceeding a packet loss probability of 1075, The time-
out was set to 4 ms. The horizontal axis shows the PCR and the vertical axis gives the
expected spacing delay. The average cell rates being 409, 818, 1226, and 1636 cells/ s for
18, 36, 54, and 72 sources, resp., approximately 1.5 times the average cell rate must be
declared the PCR if 2 ms delay are allowed for spacing.

4 CONCLUSIONS AND OUTLOOK

This paper presented a numerical framework for solving large discrete Markov models
efficiently. The application of the framework was shown by a performance analysis of the
AAL-2 protocol.

The new numerical framework implements a computationally efficient sparse power
iteration without computing the iteration matrix explicitly. To this end the method re-
quires the description of the model behavior by a recursive transition function. Devising
the transition function is not too difficult even for complex models and may be eased by
decomposing the transition function in a couple of functions. Decomposing the transition
function has the additional benefit of reducing the numerical complexity of the iteration.
The method lends itself to parallelization: the contribution of the various realizations of
the influencing variables can be computed in parallel; simply summing obtains the overall
solution. Since storing the transition matrix is not required the framework is efficient with
respect to both the storage consumption and the running time.

The latter may be improved by incorporating techniques that accelerate the conver-
gence of the iteration, e.g., by replacing the forward iteration by a Gauss-Seidel iteration.

REFERENCES

[1] M. Diimmler and A. Schémig, “Using discrete-time analysis in the performance eval-
uation of manufacturing systems,” in SMOMS’99, (San Francisco, CA, USA), 1999.

[2] N. Gerlich and M. Menth, “The performance of AAL-2 carrying CDMA voice traffic,”
in Proc. 11th ITC Seminar, (Yokohama, Japan), 1998.

[3] M. Ritter, “Discrete-time modeling of the frame-based generic cell rate algorithm,”
Research Report Series No. 190, Universitat Wiirzburg, Institut fir Informatik, Jan.
1998.

[4] O. Rose, “Interdeparture time correlations of the discrete-time GI/GI/1 queue,” Re-
search Report Series No. 204, Universitat Wiirzburg, Institut fiir Informatik, Apr.
1998.

[5] N. Vicari and R. Schedel, “Performance of the GFR-service with constant available
bandwidth,” Research Report Series No. 207, Universitit Wiirzburg, Institut fiir
Informatik, July 1998.

6] N. Gerlich, P. Tran-Gia, K. Elsayed, and N. Jain, “Performance analysis of link
carrying capacity in CDMA systems,” in Proc. ITC-15, (Washington DC, USA),
pp- 1159-1168, June 1997.

[7] M. Ritter, “Analysis of a queueing model with delayed feedback and its application
to the ABR flow control,” Submitted to Computer Networks and ISDN Systems.

[8] O. Rose, “Discrete-time analysis of a finite buffer with VBR MPEG video traffic
input,” in Proc. ITC 15, (Washington DC, USA), pp. 413-422, 1997.

9] F. Hiibner, “Dimensioning of a peak cell rate monitor algorithm using discrete-time
analysis,” in Proc. ITC 14, (Antibes Juan-les-Pins), pp. 1415-1424, 1994.

[10] M. Ritter and P. Tran-Gia, “Performance analysis of cell rate monitoring mechanisms
in ATM systems,” in Proc. 3rd International Conference on Local and Metropolitan
Communication Systems, (Kyoto, Japan), pp. 129-149, 1994.

[11] P. Tran-Gia, “Discrete-time analysis technique and application to usage parameter
control modelling in ATM systems,” in Proc. 8th Australian Teletraffic Research
Seminar, 1993.

[12] P. Tran-Gia and R. Dittmann, “A discrete-time analysis of the cyclic reservation
multiple access protocol,” Performance Evaluation, vol. 16, pp. 185200, 1992.

[13] P. Tran-Gia, “Analysis of a load-driven overload control mechanism in discrete-time
domain,” in Proc. ITC 12, (Torino, Italy), 1988.

[14] P. Tran-Gia and H. Ahmadi, “Analysis of a discrete-time G*/D/1 — S queueing
system with applications in packet-switching systems,” in Proc. IEEE Infocom 88,
(New Orleans), pp. 0861-0870, 1988.

[15] P. Tran-Gia and E. Rathgeb, “Performance analysis of semidynamic scheduling
strategies in discrete-time domain,” in Proc. IEEE Infocom ’87, (San Francisco, CA,
USA), pp. 962-970, 1987.

[16] M. H. Ackroyd, “Computing the waiting time distribution for the G/G/1 queue by
signal processing methods,” IFEE Transactions on Communications, vol. COM-28,
pp- 52-58, January 1980.

[17] M. H. Ackroyd, “Iterative computation of the M/G/1 queue length distribution via
the discrete fourier transform,” IEEE Transactions on Communications, vol. COM-
28, pp. 1929-1932, November 1980.

[18] L. Kleinrock, Queueing Systems, vol. 1: Theory. New York: Wiley, 1975.
[19] B. Huppert, Angewandte Lineare Algebra. Berlin: de Gruyter, 1990.

[20] W. J. Stewart, Introduction to the Numerical Solution of Markov Chains. Princeton:
Princeton University Press, 1994.

[21] W. Feller, An Introduction to Probability Theory and Its Applications, vol. I. New
York: Wiley, 3rd ed., 1968.

[22] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. Cam-
bridge: MIT Press, 5th ed., 1991.

[23] ITU-T, “Recommendation 1.363.2. B-ISDN ATM adaptation layer type 2 specifica-
tion.” International Telecommunication Union, February 1997.

[24] TIA/EIA/IS-95A, “Mobile station — base station compatibility standard for dual
mode wideband spread spectrum cellular systems.” Telecommunications Industry
Association, 1995.

