
Affordable Measurement Setups for Networking

Device Latency with Sub-Microsecond Accuracy

Alexej Grigorjew1, Philip Diederich2, Tobias Hoßfeld1, Wolfgang Kellerer2

1University of Würzburg 2Technical University of Munich

{alexej.grigorjew, tobias.hossfeld}@uni-wuerzburg.de

{philip.diederich, wolfgang.kellerer}@tum.de

Abstract—This document presents a networking latency mea-
surement setup that focuses on affordability and universal appli-
cability, and can provide sub-microsecond accuracy. It explains
the prerequisites, hardware choices, and considerations to respect
during measurement. In addition, it discusses the necessity
for exhaustive latency measurements when dealing with high
availability and low latency requirements. Preliminary results
show that the accuracy is within ±0.02 µs when used with the
Intel I350-T2 network adapter.

I. INTRODUCTION

As Time-Sensitive Networking (TSN) and similar efforts

for Quality of Service (QoS) have become more critical, the

need for accurate latency measurements is also advancing

to many new fields that were previously satisfied with raw

throughput or statistical properties. Real-Time stream reser-

vations are essentially requests for latency guarantees with a

100% certainty, which means that all sources of latency in

the network must be well known and understood. Similarly,

applications commit to a certain maximum burst size and

traffic rate during reservation, which they must keep with

a 100% certainty as well. This leads to a problem with

black-box systems, for both network switches and end device

equipment, as their manufacturers usually do not disclose their

architecture and performance characteristics in the necessary

detail. For a reliable implementation of hard QoS guarantees,

it is often necessary to measure the internal latency and

traffic characteristics of these components and to rely on these

measurements during stream reservation.

One challenge of these measurements is that, due to the

unknown underlying architecture, it is often unknown how

networking devices react to a change of the configuration

or traffic mix. Due to crowded lookup tables, new stream

reservations may suddenly trigger a slower path in the switch

fabric. A sudden population of high priority queues may come

with a short-term higher delay due to low internal sampling

rates of empty queues. Therefore, for each unique set of

parameters (including traffic patterns and switch configura-

tions), it is necessary to perform new, careful measurements

that reflect the actual utilization pattern in practice, rather

than being limited to artificial lab samples. New utilization

patterns require new measurements frequently, but dedicated

measurement hardware – as often used in literature – may

quickly become very expensive. In this paper, the contribution

is a general setup for latency and traffic measurements with

affordable components. This paper includes a short guide for

hardware selection, a few pointers on necessary considerations,

and helpful tools.

II. PREVIOUS MEASUREMENTS AND RELATED WORK

There are several works [1]–[6] that already take a look

at different aspects of hardware switch performance. They

consider different measurement and traffic scenarios. Further-

more, the measurements in the paper [1]–[6] mostly consider

OpenFlow [7] setups and OpenFlow capable hardware.

The works in [8], [9] already evaluate the performance of

different Openflow Hardware switches. The authors evaluate

the raw processing delay of these hardware switches with

different traffic loads and device configurations. Carefully

chosen traffic allows [9] to calculate internal delays and

parameters such as the overhead for the priority queueing

implementation or buffer sizes of the switches. Both works

[8], [9] use a measurement setup based on Layer 1 taps and

a purpose-built measurement card.

In contrast to [8], [9], we adapt the setup and do not rely

on purpose build measurement cards. Additionally, we plan to

extend the measurements with more devices and other device

types, such as TSN-capable switches and DPDK-based switch

implementations.

III. USE CASES

The existing measurement studies on the performance of

hardware switches [1]–[6], [8], [9], raise the question: Why

are new measurements still necessary?

First, it is crucial for real-time reservation applications to

exactly know what delays the hardware introduces. Only the

hardware developers know the interplay of firmware and hard-

ware to the necessary degree. Therefore, use-cases consider

switches and networking devices as black-box devices. Dif-

ferent combinations of actions and configurations can produce

vastly different performance results with black-box devices.

Second, manufacturers continuously release new devices

with different features. Whenever a use case considers a new

switch in a real-time network, performance benchmarks are

necessary.

Third, recent use cases reveal an interest in new performance

indicators other than maximum latency. For example, the

latency variance (delay jitter) can be more relevant than the

maximum value to some applications. Further, the influence of



Traffic Source Tap TapDUT Traffic Sink

Measurement Card

Fig. 1. Test setup to measure the delay that is added to packets by a Device
Under Test (DUT) on their path.

Traffic Source Tap DUT

Measurement Device 
+ Traffic Sink

Fig. 2. Adjusted test setup where measurement is performed by the traffic
sink device. This allows to use only a single tap.

higher priority real-time transmissions on lower priority Best-

Effort traffic is an interesting new research opportunity, as

converged networks with both types of traffic become more

common.

In addition to latency measurements of switches, resource

allocation requires accurate information about the traffic spec-

ification of each stream. The burst size and data rate typically

determine a stream’s traffic specification. While many appli-

cations can configure the burst and data rate of a stream, the

end device equipment, e.g., network interface cards (NICs),

can be just as intransparent as switches, and operating systems

can add further delays. For example, the NIC could perform

batch processing and change the burstiness of the traffic [8].

The resulting traffic specification after leaving the device is

essential to know for resource reservation.

Finally, measurements are essential during the development

of new types of forwarding devices. For example, there is

still no hardware available that supports Asynchronous Traf-

fic Shaping (ATS). A careful software implementation with

network acceleration techniques such as DPDK can bridge

this gap and enable flexible prototyping – which must also be

measured accurately. Further, Linux’s kernel Traffic Control

(TC) module can be used for traffic shaping of end devices and

prototype switches. The TC module supports many algorithms

already, such as priority queuing (tc-prio, tc-mqprio) and

token bucket shaping (tc-htb). Furthermore, the TC module

can offload some operations to capable NICs for significant

performance improvements. Software implementations can

present viable alternatives, especially in cloud environments,

but only after their performance and accuracy were evaluated

thoroughly.

IV. MEASUREMENT SETUP

This section describes the measurement setup commonly

used for latency measurements, as illustrated in Figure 1. In

general, a traffic source sends packets towards a traffic sink.

These packets traverse the Device Under Test (DUT, e.g., a

switch) on their path. The setup uses network taps before and

after the DUT to mirror traversing packets to a measurement

card. The measurement card receives the packets from both

taps and notes their time stamps. Their accuracy is improved

by leveraging the hardware time stamping capabilities of the

measurement card. Note that Figure 1 shows two different

devices for traffic source and traffic sink, but a single device

can also be used for both.

Figure 2 illustrates a second measurement setup that re-

quires only one network tap. The second setup colocates the

traffic sink with the measurement device. Since hardware time

stamping is independent of the underlying software, it is pos-

sible to use the same device for measuring and sinking traffic

without losing accuracy. However, note that hardware time

stamping is commonly only available for received packets.

Therefore, the network tap before the DUT is necessary to

achieve full accuracy. Without the first tap, the measurement

would rely on the accuracy of the TX time stamp of an

outgoing packet, which usually references the system clock in

software. Dedicated measurement equipment may overcome

this limitation but at a much higher cost.

In addition to device latency, it is important to measure

the traffic specification (i.e., burst size and data rate) for

traffic sources. Here, the traffic source is connected directly

to the measurement card, which records the arrival times

of the packets with hardware time stamps. Accurate results

are essential to calculate the true rate and burstiness of the

observed traffic.

V. HARDWARE SELECTION

In this section, important considerations during hardware

selection are discussed, as well as some example devices, and

useful workarounds.

In general, the traffic source, traffic sink, DUT, and the mea-

surement computer can be chosen almost arbitrarily. The only

restriction here is that the motherboard of the measurement

device must be able to host the selected measurement NIC,

e.g., it needs a free PCI-E slot and must have enough PCI-E

lanes available on the CPU. During measurements, dedicated

load generators can be used as the traffic source, such as

MoonGen [10], iperf [11], and sockperf [12]. However, as

mentioned earlier, the traffic characteristics can influence the

performance of the black-box DUT. It is encouraged to use

the actual applications or traffic traces from real deployments

for measurements, if they are already available during testing.

A. Measurement Card (NIC)

While the measurement computer itself can be chosen

almost freely, the measurement card on that computer must be

chosen carefully to include certain characteristics. In general,

we require a NIC with hardware time stamping capabilities to

ensure that the operating system and the measurement software

have no influence on the measured timings.

Typically, NICs that are advertised to support the Preci-

sion Time Protocol (PTP, IEEE 1588 and IEEE 802.1AS)

generally support hardware time stamping as a prerequisite.

However, time stamping is generally applied together with a



TABLE I
EXAMPLE NICS AND THEIR TIME STAMPING CAPABILITIES.

Hardware BW Driver HWTSTAMP FILTER ALL

Intel i210 1 Gbit/s igb yes
Intel I350-T2 1 Gbit/s igb yes

Intel X520-DA2 10 Gbit/s ixgbe no (only PTP)
Intel X710 10 Gbit/s i40e no (only PTP)

Chelsio BT-520 10 Gbit/s cxgb4 no (only PTP)
Mellanox ConnectX-4 Lx 10 Gbit/s mlx5 yes

filter in the NIC drivers. Some devices are only capable of

hardware-receive time stamps for PTP packets, most likely

due to performance limitations. Table I lists six tested cards

and their capabilites, as reported by the respective drivers.

It can be difficult to identify cards that are capable of

HWTSTAMP_FILTER_ALL a priori. In general, the safest

approach is to check the respective driver’s source code for

hardware limitations. For example, for ixgbe, the supported

controllers are explicitly stated in the source for ethtool’s

info1 and when actually setting the time stamp modes2. If

the cards are already physically available, Section VI in-

cludes pointers to test for time stamping capabilities without

looking at source codes. Note that, at the time of writing,

the information is inconsistent in the cxgb4 driver source.

HWTSTAMP_FILTER_ALL is not listed as a capability, but

still accepted as a socket option.

In addition to the general time stamping capabilities, it

is important that both measurement points are based on the

same time reference. This means that both interfaces of the

measurement card must either be synchronized, or they must

be controlled by the same local clock. The latter is preferred

here, as using the same clock for both measurements gives

more accurate results, and it avoids the necessity for time

synchronization altogether. With most NICs, this is the case

when two interfaces are controlled by the same controller chip

on the card. For example, the I350-T2 can have up to four ports

with two controllers on the card. For delay measurements, it

is necessary that both network taps are connected to the ports

of the same controller.

Onboard NICs: In contrast to the full measurement setup

with taps, the traffic specification (burst, rate) of an application

can be measured by a single interface that is connected directly

to the traffic source. It is important to note that the accuracy of

such measurements can be improved significantly if hardware

time stamping is used. Note that no additional hardware must

be purchased for this measurement. Many onboard Ethernet

interfaces already support hardware time stamping out of the

box, especially motherboards with Intel chips.

B. Network Taps

Network taps are used to replicate all packets going out of

one (net) port to a second (tap) port. This is mostly used for

monitoring purposes, including latency measurements. Unlike

1https://github.com/torvalds/linux/blob/a32e7ea362356af8e89e67600432b
ad83d2325da/drivers/net/ethernet/intel/ixgbe/ixgbe ethtool.c#L3152

2https://github.com/torvalds/linux/blob/a32e7ea362356af8e89e67600432b
ad83d2325da/drivers/net/ethernet/intel/ixgbe/ixgbe ptp.c#L1041

mirror ports in Ethernet switches, fast network taps save

some latency either (i) by physically replicating the electrical

signals on layer 1, or (ii) by performing cut through switching

instead of store and forward switching, essentially beginning

to forward packets already before they are fully received by

the ingress. In that regard, having consistent delays (i.e., no

jitter) is more important than having the lowest delay taps, as

measurements can be calibrated to adjust their results to a con-

stant delay. In that regard, we successfully tested Dualcomm’s

ETAP-XG, providing constant latencies after start-up.

Compared to hardware time stamping NICs, network taps

can be more expensive and are less often already available.

However, building your own 100 Mbit/s Ethernet tap is rather

simple. Unlike 1G and 10G Ethernet which operate all phases

in full duplex, 10Base-T and 100Base-T Ethernet use dedi-

cated receive (RX) and transmit (TX) wires inside the RJ45

connector. Using RJ45 breadboard adapters and some resistors,

it becomes simple to connect the RX wires of one interface to

a second interface for mirroring. It is possible to implement a

100 Mbit/s tap using breadboard equipment worth less than

20e. Note that such a setup may require some tinkering

until the signal quality is sufficiently robust for 100 Mbit/s.

In addition, note that it might be possible to build your own

1G tap by implementing the telephone hybrid circuit for all

four wire pairs, but this has not been attempted yet.

VI. USEFUL TOOLS AND COMMANDS

This section includes useful tools to check the capabilities

of available hardware, and it describes how to start a measure-

ment by very simple means.

First of all, ethtool can be used to display many capabili-

ties of a NIC. Most notably, ethtool -T <interface>

shows all supported time stamping capabilities as reported by

the driver. If this list includes hardware-receive, the

device should be able to perform hardware measurements.

The output of ethtool also includes the section Hardware

Receive Filter Modes with two interesting values.

First, HWTIMESTAMP_FILTER_ALL indicates that the card

can time stamp every packet it receives. This is the desired

filter value, which is also used by tcpdump and libpcap.

Second, there can be many different HWTIMESTAMP_PTP_*
filters. If the output only includes PTP filters, the driver will

most likely not accept the ALL filter as socket option. For

some notable examples, please refer to Table I.

Hardware time stamping can be enabled by setting socket

options3 in C/C++. But instead of writing your own program,

tcpdump can be used to capture hardware time stamps

as well, by adding the arguments --time-stamp-type

adapter_unsynced and --time-stamp-precision

nano to the command. The output of tcpdump can directly

be processed further, or the resulting pcap file can be read

and analyzed afterwards, for example by python/scapy.

As mentioned earlier, it should be verified that both inter-

faces used for measurement belong to the same controller.

3SIOCSHWTSTAMP and SOF_TIMESTAMPING_RX_HARDWARE



Software TS Hardware TS, wrong ports Hardware TS

0 50 100 150 0 50 100 150 0 50 100 150

1.020

1.025

1.030

1.035

1.040

25000

30000

35000

40000

−40

−20

0

20

40

Ping sequence ID

T
im

e
 s

ta
m

p
 d

if
f 
[µ

s
]

Run

1

2

Fig. 3. Time difference of packet arrivals between the two taps for different time stamping modes.

For a PCI-E connected NIC, this can be verified directly with

the interface name. For example, enp5s0f0 and enp5s0f1

belong to the same controller, as both have the same major

ID 5, while enp3s0f0 would be a different controller.

In addition, lspci can be used to check the IDs of the

PCI-E entries directly. Major IDs indicate the controller, while

the minor IDs typically represent ports connected to those

controllers.

Finally, the code snippets that have been used for the testing

and results in this paper are available on GitHub4.

VII. PRELIMINARY RESULTS

This section describes preliminary measurement results to

show the difference between the time stamping options. The

setup is similar to the measurement setup in Fig. 1. The only

change is that there is no DUT, only a cable connecting two

Dualcomm ETAP-XG network taps. The taps connect to two

ports of an Intel I350-T2, working as the measurement device.

During the measurement, the traffic source sends ICMP pings

to the sink. Since there is a direct cable between the two

taps, the measurement card should receive both tapped packets

nearly at the same time. This way, the general accuracy of the

setup can be measured for calibration.

The evaluation includes three time stamping modes: soft-

ware time stamps, hardware time stamps with interfaces con-

nected to different controllers, and hardware time stamps with

both interfaces connected to the same controller on the Intel

I350-T2. Figure 3 shows the measured differences between

both receive time stamps for 150 consecutive measurements

from two different runs for each case.

First, the plot on the left illustrates the difference between

the packet arrival times with software time stamps. Most

packets have a difference of approx. ±20 ns. When the reported

delay is this low, the packets were likely dequeued in the same

batch and time stamped immediately after each other, but their

true delay may be higher. Further, the results include both

positive and negative numbers, which is caused by the jitter

introduced by the NIC and the operating system. Sometimes,

the delay varies up to ±40 µs. The high variance in the

measurements renders this time stamping method useless for

precise delay measurements of DUTs.

4https://github.com/lsinfo3/hwtstamp-snippets

Second, the plot in the middle shows the results for hard-

ware time stamps with different controllers. In this test case,

the network taps connect to interfaces on the same card.

However, two different controllers on the I350 serve these

interfaces. The resulting slope represents the relative drift of

the two clocks in the controllers. The offset between runs 1

and 2 supports this thesis since the second run was measured

afterwards, and the clocks drifted further apart. By comparing

the absolute time stamps for an extended period of time, it

was apparent that one clock was slightly slower than intended,

while the other one was slightly faster. Both clocks drifted by

approx. ±20 µs per second, which is an inaccuracy of 0.002%.

Third, the plot on the right visualizes the time stamp

difference with hardware time stamps on the same controller.

This plot shows a small and constant delay of approx. 1.03 µs.

The results vary up to ±16 ns in discrete steps of 8 ns. Power-

cycling the taps changes the delay randomly, but afterwards, it

remains within ±16 ns during the measurements. This means

that prior to measuring the latency of the DUT, a calibration

measurement is always necessary with directly connected taps

in order to assess this random offset and adjust the measure-

ment accordingly. Note that, when measuring with 100 Mbit/s,

the observed jitter increased to a discrete ±80 ns, most likely

due to adjusted internal polling rates in the NIC. The results

show that accurate delay measurements are possible with

commercial NICs instead of dedicated measurement cards.

VIII. CONCLUSION

This document presented a short overview of affordable

network latency measurement setups by using hardware time

stamping NICs instead of dedicated measurement cards. It

explained the relevant hardware considerations and useful

tools to test and select measurement hardware. In addition, it

emphasized the necessity of exhaustive latency measurements

in the field of hard QoS guarantees and stream reservation.

The preliminary results indicate that, after a short calibration

phase, accurate one-way latency measurements of black-box

devices are possible within ±0.02 µs accuracy.

ACKNOWLEDGMENT

This work was partly funded by the Deutsche Forschungs-

gesellschaft DFG (German Reasearch Agency) under Grant

No 316878574.



REFERENCES

[1] M. Appelman, M. De Boer, and R. Van Der Pol, “Performance Analysis
of OpenFlow Hardware,” University of Amsterdam, Tech. Rep., Feb.
2012.

[2] D. Chefrour, “One-Way Delay Measurement From Traditional Networks
to SDN: A Survey,” ACM Computing Surveys, vol. 54, no. 7, pp. 156:1–
156:35, Jul. 2021. [Online]. Available: http://doi.org/10.1145/3466167

[3] L. C. Costa, A. B. Vieira, E. De Britto e Silva, D. F. Macedo, G. Gomes,
L. H. Correia, and L. F. Vieira, “Performance evaluation of OpenFlow
data planes,” in 2017 IFIP/IEEE Symposium on Integrated Network and

Service Management (IM), May 2017, pp. 470–475.
[4] R. Durner, A. Blenk, and W. Kellerer, “Performance study of dynamic

QoS management for OpenFlow-enabled SDN switches,” in 2015 IEEE

23rd International Symposium on Quality of Service (IWQoS), Jun. 2015,
pp. 177–182.

[5] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia,
“Modeling and performance evaluation of an OpenFlow architecture,”
in 2011 23rd International Teletraffic Congress (ITC), Sep. 2011, pp.
1–7.

[6] P. Rygielski, M. Seliuchenko, S. Kounev, and M. Klymash,
“Performance Analysis of SDN Switches with Hardware and
Software Flow Tables,” in proceedings of the 10th EAI International

Conference on Performance Evaluation Methodologies and Tools

on 10th EAI International Conference on Performance Evaluation

Methodologies and Tools, ser. VALUETOOLS’16. Brussels, BEL:
ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), May 2017, pp. 80–87. [Online].
Available: https://doi.org/10.4108/eai.25-10-2016.2266540

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” ACM SIGCOMM Computer Communication

Review, vol. 38, no. 2, pp. 69–74, Mar. 2008. [Online]. Available:
http://doi.org/10.1145/1355734.1355746

[8] N. Derić, A. Varasteh, A. Van Bemten, C. Mas-Machuca, and
W. Kellerer, “Towards Understanding the Performance of Traffic Polic-
ing in Programmable Hardware Switches,” in 2021 IEEE 7th Interna-

tional Conference on Network Softwarization (NetSoft), Jun. 2021, pp.
70–78, iSSN: 2693-9789.

[9] A. van Bemten, N. Derić, A. Varasteh, A. Blenk, S. Schmid, and
W. Kellerer, “Empirical Predictability Study of SDN Switches,” in 2019

ACM/IEEE Symposium on Architectures for Networking and Communi-

cations Systems (ANCS), Sep. 2019, pp. 1–13.
[10] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,

“MoonGen: A Scriptable High-Speed Packet Generator,” in Proceedings

of the 2015 Internet Measurement Conference, ser. IMC ’15. New
York, NY, USA: Association for Computing Machinery, Oct. 2015, pp.
275–287. [Online]. Available: http://doi.org/10.1145/2815675.2815692

[11] iperf3: A tcp, udp, and sctp network bandwidth measurement tool. https:
//github.com/esnet/iperf. Accessed: 2022-06-01.

[12] Mellanox: Network benchmarking utility. https://github.com/Mellanox/
sockperf. Accessed: 2022-06-01.


