
QoE Analysis of Spotify Audio Streaming and App
Browsing

Anika Schwind, Lorenz Haberzettl, Florian Wamser, Tobias Hoßfeld
{anika.schwind|lorenz.haberzettl|florian.wamser|tobias.hossfeld}@informatik.uni-wuerzburg.de

University of Würzburg, Institute of Computer Science
Würzburg, Germany

ABSTRACT
Spotify is the most-listened audio streaming provider in 2019
with 217 million active users per month. Providers are there-
fore interested in the quality and functionality of Spotify in
order to provide their users with the best possible streaming
quality. While video streaming services such as Netflix and
their streaming approach have been extensively explored
in previous research, audio streaming services like Spotify
and their corresponding behavior at certain network condi-
tions have not been considered in detail yet. In this paper, we
perform a QoE analysis under various network conditions
and examine the app browsing performance of the audio
streaming platform Spotify using its native Android mobile
application. We have developed a measurement tool that
emulates a user listening to audio through Spotify. While
streaming, application and network layer parameters are
captured that have a high correlation to the user’s QoE. The
paper shows a baseline scenario including the streaming of a
single song as well as playlist streaming behavior. Next, the
effect of interruptions on the streaming behavior is evaluated
and finally, the influence of network impairments on QoE
key performance indicators such as initial delay is shown.

ACM Reference Format:
Anika Schwind, Lorenz Haberzettl, FlorianWamser, Tobias Hoßfeld.
2019. QoE Analysis of Spotify Audio Streaming and App Browsing.
In 4th Internet-QoE Workshop: QoE-based Analysis and Management
of Data Communication Networks (Internet-QoE’19), October 21, 2019,
Los Cabos, Mexico. ACM, New York, NY, USA, 6 pages. https://doi.
org/10.1145/3349611.3355546

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Internet-QoE’19, October 21, 2019, Los Cabos, Mexico
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6927-5/19/10. . . $15.00
https://doi.org/10.1145/3349611.3355546

1 INTRODUCTION
In the Android Google Play Store, the mobile Spotify applica-
tion is one of the three most used applications worldwide1. A
user spends about 25 hours a month on Spotify in case he or
she belongs to one of the 100million premium subscribers [1]
among 217 million active users per month [5]. With regard to
the global traffic mix on the Internet, Spotify alone accounts
for remarkable 0.34 % of the total downlink Internet traf-
fic [7]. Despite being one of the most popular apps, there is
still little research that sheds light on Spotify’s performance,
the streaming behavior, and other key performance factors
affecting the Quality of Experience (QoE).
Although the volume of data is not critical, functionality

of Spotify in different situations is of high interest to network
providers and operators. They seek for information about
the buffering strategy and the need for Internet access when
performing certain functions in order to optimize coverage
and network deployment to satisfy users and guarantee good
QoE. The streaming behavior when playing songs is different
depending on the software platform, which also has been al-
ready studied in [9] for the Spotify web player in the browser.
Overall, the connectivity of the Internet has a great impact
on the availability of features in the application and the play-
back of a song from a playlist on Spotify. In the following, we
give insight into our research on the behavior and operation
of Spotify in terms of user-relevant parameters that have a
high correlation with the actual QoE of a Spotify user.
The contribution of the work can be split into two main

parts: First, we developed a testbed to determine the QoE
of Spotify’s mobile application measuring different key per-
formance indicators (KPIs) for different network conditions
using the subjective QoE studies of [6]. Second, the measure-
ments allow extracting application and network layer data
to identify minimum network requirements. By utilizing the
findings of this work, ISPs can develop new techniques to
improve their traffic and network management.

The remainder of this work is structured as follows. First,
Section 2 provides background information and gives an
overview of related work in this field. Next, Section 3 de-
scribes the methodology used in this work, including the

1https://play.google.com/store/apps/top, visited 2019-07.

1

c ©
20

19
.

T
hi

s
is

th
e

au
th

or
’s

ve
rs

io
n

of
th

e
w

or
k.

It
is

po
st

ed
he

re
fo

r
yo

ur
pe

rs
on

al
us

e.
N

ot
fo

r
re

di
st

ri
bu

tio
n.

T
he

de
fin

iti
ve

V
er

si
on

of
R

ec
or

d
w

as
pu

bl
is

he
d

in
In

te
rn

et
-Q

oE
’1

9,
O

ct
ob

er
21

,
20

19
,

L
os

C
ab

os
,

M
ex

ic
o,

ht
tp

://
dx

.d
oi

.o
rg

/1
0.

11
45

/3
34

96
11

.3
35

55
46

.

setup of the testbed, the measuring procedure, and the moni-
tored data. Afterward, Section 4 examines and interprets the
results. Finally, Section 5 concludes this work by summariz-
ing the findings and giving an outlook.

2 BACKGROUND AND RELATEDWORK
Today, Spotify is one of themost important streaming provider
as they offer applications to stream audio files on most mod-
ern devices, like Android and iOS Smartphones as well as
desktop computers. Using their service, Spotify provide ac-
cess to over 50 million tracks [4], which includes different
songs, full albums, pre-generated and custom playlists, and
podcasts.
When thinking about playing an audio file which has to

be transmitted over the Internet, the trivial approach would
be download-then-play. It requires the file to be transferred
entirely before the playback can be started, which results
in long waiting periods. Especially in mobile networks with
poor network conditions, a single song can contain over
10MB of data. In contrast to the aforementioned download-
then-play, streaming allows the user to consume the media
already when it has not been completely transferred yet.
Playback can already start when a given amount of data is
stored in the buffer. This buffer also smoothes playback by
overcoming network specific factors like latency and packet
loss which leads to a higher QoE.

Video streaming, especially YouTube, in conjunction with
QoE has already been analyzed in-depth. In [11] the stream-
ing behavior and the corresponding QoE of YouTube’s native
Android app is examined and compared to YouTube’s mobile
website. This approach utilizes a wrapper app, which gains
information about the YouTube app by interacting with its
GUI using UI Automator. In contrast to the passive measure-
ments, [8] conducted large scale active measurements to
quantify the impact of parameters from different layers on
YouTube’s QoE. [2] classifies the users’ QoE when watching
YouTube videos based on the monitored encrypted network
traffic. In addition to YouTube, [3] also analyses the network
characteristics of Netflix. In the above mentioned studies,
objective KPIs were monitored. Those KPIs provide detailed
information about the perceived video streaming quality and
can be mapped to QoE by means of QoE models [10].

In contrast to video streaming, there is a lack of research
for the QoE of audio streaming. Here, only few aspects were
evaluated, yet. In [6], the authors compared the impact of
temporal impairments between audio and video streaming
by conducting a subjective user study. They found that music
streaming users are less tolerant for both, initial delays as
well as stalling. In addition, they presented two QoE models
which allow tomapmeasured initial delay and stalling values
to mean opinion score (MOS) values. A first look into the

PC

Tablet

Spotify

App

Test App

Controlling GUI

Controlling Application

Test Scenario

USB

WLAN
WLANTC TCPDUMP

ADB

In
te

rn
e
t

Configuration

Data Transfer

Figure 1: Testbed setup

streaming behavior of Spotify’s web player was taken by [9].
Here, the authors presents a QoE measurement tool running
inside a Docker container, which simulates a user listening
to music. Using their tool, they monitored application layer
as well as network layer KPIs while streaming, and mapped
the measured values to the corresponding MOS.

Until now, authors heavily focused on video streaming and
analyzes specifically on audio streaming are rare, especially
for mobile applications. The opportunity of evaluating audio
streaming and its KPIs in a controlled environment over
a long period is missing. Thus, in this work, we present
an active measurement testbed, which allows to conduct
repeatable measurements under selected network conditions
for Spotify’s Android mobile Application.

3 METHODOLOGY
To characterize a Spotify audio streaming session using their
mobile application and to quantify QoE related factors, a
testbed was designed, which collects data on application as
well as on network layer. Furthermore, a user is emulated,
who streams audio in mobile networks using Spotify’s mo-
bile app to be able to replay user interaction. The design of
the testbed was inspired by the testbed presented in [11].
As Spotify doesn’t provide statistics about the playback like
YouTube’s "stats for nerds", other possibility to collect play-
back informations had to be used. Tests were done on an
Android tablet, under various conditions, including user in-
teraction and bandwidth limitation. In the following, the
setup of the testbed is illustrated and the measurement pro-
cedure is explained. Afterwards, the monitored parameters
on application and network layer are presented.

3.1 Testbed Setup
The structure is presented in Figure 1, which consists of two
main components: The first one is a PC running Ubuntu 18.04
with the most current Linux Kernel available (version 4.20).
The PC operates a NodeJS application (further referenced
as controller), observing all tests and their components by
performing particular test scenarios. The second one is a

2

tablet, the Acer ICONIA Tab 10, with Android 7.0 running
the latest release of Spotify’s mobile app, downloaded via
the Google Play Store, which is currently version 8.4.88.150.
When starting a new test instance, the controller has to

interact with the Spotify app on the tablet, instructing it to
set specific options and start playback of a given song. As
direct communication between them is not possible, a helper
app is used. This app is an Android instrumented test, an
app to test Android apps and their functionality. It runs in
the background without any graphical user interface. Using
UI Automator, it can interact with Spotify’s GUI controls the
same way as if a human person would manually conduct the
test and press all the buttons and labels in the right order.
Amongst others, UI Automator allows extracting relevant
information from the GUI, like the current playback position
in seconds, which is needed to calculate the initial delay and
to detect stalling.

The Android Debug Bridge (adb) is used to deploy, to start
and to stop the test app. In the testbed, adb communicates
over USB. It also allows TCP port-forwarding over its USB
connection, here this feature is used to forward port 8765
on the tablet to port 8765 on the PC, enabling communi-
cation between the controller and the test app. Adb’s port
forwarding is set up and managed by the controller.

To communicate with the Spotify’s servers, a network con-
nection is necessary. Therefore, the PC, which is connected
to the Internet by a 250Mbps downstream and 40Mbps up-
stream connection, spins up a Wi-Fi network utilizing a
wireless adapter (TP-LINK TL-WDN3200) attached by USB,
bridged with its LAN interface allowing the tablet to access
the Internet. Because of the Wi-Fi adapter’s physical speed
limitation, maximum throughput is limited to 24Mbps down-
stream and 22Mbps upstream. In order to simulate conditions
prevailing in real mobile networks and to analyze the prereq-
uisites of the Spotify Android app regarding the network, the
network traffic has to be manipulated. This is the reason why
adb is used to forward port 8765 onto which the controller
and the test app communicate. For shaping the traffic flow-
ing through the wireless network, the PC employs Traffic
Control (tc) in conjunction with Network Emulator (netem).
This way the controller can manually apply specific rules,
affecting only the incoming traffic, like limiting the band-
width, adding latency and jitter. While UI Automator allows
extracting application layer data, in addition, the network
layer is monitored using tcpdump.

3.2 Measuring Procedure
First, the test app is deployed and started. Afterwards the
controller is started which handles the port forwarding, es-
tablishes a socket connection with the test app, starts impair-
ments on the Wi-Fi network and sends the test configuration

to the tablet. After receiving instructions for a new test, the
test app prepares the device. This preparation includes clos-
ing all open applications as well as force-stop Spotify and
deleting all data concerning the app to ensure that no in-
formation about the previous session remains, which could
distort the results. The test app now informs the controller
to start tcpdump.
To start the streaming, the Spotify app is opened and

a test user with premium account is logged in to the app.
Afterwards, the audio quality is entered, autoplay is disabled,
and all available playlists are deleted. For each measurement
run, a new playlist is created in which all songs concerning
the current test are added. Next, the first song in the playlist
is clicked to start playback and the playback view, where
the title’s cover and the current song position are visible, is
opened up. Here, application layer parameters are monitored
and manual interaction, like pressing the pause button, are
emulated.When all songs have been played, the pause button
transforms into a play button to repeat the playback, the test
has been finished and all gathered information is sent back to
the controller which stops collecting network information.
For the baseline measurements, we first used a playlist

with one single song2. Additionally, we also conducted mea-
surement runs focusing on the streaming behavior of a playlist
with five songs. Here, in addition to the first song, four other
songs3 are added to the playlist. Finally, we added differ-
ent bandwidth limitations to evaluate their influence on the
streaming behavior and thus, the perceived QoE of the end
users.

3.3 Monitored Data
Each test has been conducted between 23 and 27 times. For
each measurement run, QoE KPIs on network as well as on
application layer are stored.

On application layer, the current playtime is logged during
the streaming of the audio file. In addition, the initial delay,
i.e. the time between the request of the audio playback (click
on the play button) and the start of the playback, is moni-
tored. Besides the streaming parameters, also all page load
times are logged from the login page of Spotify until the end
of the audio playback. The aggregation of all these loading
times from the start of the app until the start of the audio
playback is herein after referred as navigation time. This
includes starting and logging into the app, set settings, man-
age playlists, and search for songs. In addition, a network
dump is created which can be used, for example, to calculate

2"Diamond Heart" by Alan Walker (3:59 min)
3"Dreamer" by Axwell and Ingrosso (4:11 min), "Bad Moon Rising" by
Creedence Clearwater Revival (2:21 min), "Melody" by Lost Frequencies
and James Blunt (2:29 min), and "Jennie" by Felix Jaehn, R. City, and Bori
(3:04 min)

3

the packet arrival times and thus, calculate the download
strategy of the audio file.

4 RESULTS
In this section, the evaluation of the measurement results are
discussed. First, the baseline scenario is investigated, includ-
ing the streaming of one single song as well as the streaming
behavior of playlists. Next, the effect of interruptions on the
streaming behavior is evaluated and finally, the influence
of network impairments on QoE KPIs like initial delay is
shown.

4.1 Baseline Scenario
To investigate the streaming behavior of Spotify’s mobile ap-
plication under optimum conditions, we conducted baseline
measurements without limited bandwidth or user interac-
tion. Because of the Wi-Fi adapters physical speed limitation,
the bandwidth was up to 24Mbps downstream and 22Mbps
upstream. Here, the median initial delay was only 1.06s and
no stalling occurs. Furthermore, the median of the naviga-
tion time (time between starting the app and the actual start
of the audio playback) was 53.12s. The song was streamed
with a bitrate of about 96 kbps in the Ogg Vorbis format.

Looking at streaming only one single song, we found that
Spotify’s streaming policy tries to download the entire song
as fast as possible. In 50% of our measurements, the entire
song was downloaded in 1.6s or less. The maximum down-
load time was 2.01s. Focusing on the playback of playlists,
also a fail-safe approach is used. Like in the single song case,
the first song is completely downloaded in the beginning.
Shortly after the first download finishes, the second song is
downloaded while the first one is still playing. The buffer
then already contains the next upcoming song, allowing a
smooth transition without interruption. Subsequently, the
network is idle until the playback of the second song starts.
Here the third as well as the fourth songs are fetched. Now
the buffer contains the next two songs, instead of only one.
At the start of the third song, the fifth is downloaded to sus-
tain the buffer level of two songs. In summary, until the first
song has been finished, only the next one has been prepared,
by fetching it into the buffer, but after the start of the second
song, two future songs are present in the buffer.

The baseline scenario identifies a clear difference in stream-
ing behavior of the Android app compared to the Spotify web
player [9]. The app downloads the entire songs as fast as pos-
sible and pre-buffers the following two songs to overcome
eventual network disturbances. Unfortunately, the service
cannot know for sure, which song the user wants to listen
to next, even if he is listening to a playlist. He could skip
one or two songs or also jump to another position in the list.
Fetching too many future songs would generate potentially

none 500 450 400 350 300 250 200 150
bandwidth limitation [kbps]

0

20

40

60

80

100

120

in
iti

al
de

la
y

[s
]

1

2

3

4

5

M
O

S

Figure 2: Initial delay

wasted traffic, which can have a substantial impact if mil-
lions of users utilize the service, as it is the case with Spotify.
Moreover, each downloaded song has to be stored at the end
device, even though it is only temporarily, not all devices
may be able to provide sufficient space. Developers have
to weight these against one another, before opting for one
solution. In contrast, according to [9], the web player only
provisions between 10 and 20 seconds of playtime within
the buffer. Every time the buffer level hits 10 seconds of re-
maining song content, the next 10 seconds are requested and
downloaded. The web player is mainly used on devices con-
nected to a reliable Wi-Fi or LAN, which includes desktop
PCs and laptops. Here the connection is fairly stable, hence
planning ahead is not necessary.

4.2 Bandwidth Limitation Scenario
To analyze the influence of the given network capacity on
the streaming behavior, measurements were run under dif-
ferent bandwidth limitations. Here, the focus was set on
most important influence factors affecting the QoE of au-
dio streaming, according to [6, 10]: initial delay and stalling
time. Furthermore, we evaluated the impact of the bandwidth
limitation on the navigation time, as this impacts the user
satisfaction as well. In addition to the actual measured delays,
the perceived user experience is evaluated by mapping the
values to a MOS value according to the model of [6].

Initial Delay. Figure 2 shows the initial delay for different
bandwidth limitations. The x-axis describes the limitation of
bandwidth in kbps from no limitation up to only 150 kbps
for each test series. The y-axis represents the initial delay
in seconds, ranging from 0 to 120s. Having no limitation, a
comparably low initial delay between 0.51s and 1.20s, with
a median of 1.06 seconds is measured. Looking at the limi-
tation of 500 kbps, a relatively huge jump, compared to no
restriction, is visible. Here, the median of all iterations of this
test series is 11.00s. From a value lower that 200 kbps, the

4

none 500 450 400 350 300 250 200 150
bandwidth limitation [kbps]

0

20

40

60

80

100

120

st
al

lin
g

[s
]

1

2

3

4

5

M
O

S

Figure 3: Stalling length

delays drastically increase to a mean of 42.01s for 200 kbps)
and 61.47 kbps for 150 kbps. As expected, the initial delays
increases for increasing limitations. The Pearson correlation
coefficient (PCC) of the medians and the bandwidth limita-
tions emphasize this statement, showing a negative linear
correlation of -0.874.

As mentioned before, we used [6] to calculate MOS values
from the initial delay and the total stalling time. The result
ranges from 5, not annoying, to 1, very annoying and are
presented in red in Figure 2. To calculate the MOS value
per limitation, each measured value is mapped to its MOS
value and afterwards the mean per bandwidth limitation is
calculated. Applying their suggested function, no limitation
of the bandwidth leads to a MOS value of 4.53, thus a high
user satisfaction. Limitations between 500 kbps and 250 kbps
result in MOS values between 3.53 and 3.07, which indicates
still a fair user experience. For 200 and 150 kbps, the values
drop below 3, to 2.86 and 2.66. This concludes that a available
bandwidth of 200 kbps or less is unacceptable for the user.

Stalling. The available bandwidth in relation to the total
stalling time is shown in Figure 3. Here, again the x-axis
displays the bandwidth limitation in kbps and the y-axis the
total stalling time in seconds. If multiple stalling occurred in
one test, their respective lengths are added together.
For unlimited bandwidth, no stalling occurs at all. The

same applies to an available bandwidth of at least 300 kbps.
Here, the median of each test series is 0s, thus, in more
than half of all iterations, no stalling occur. Limiting the
bandwidth to 250 kbps, stalling occur more often and the
median stalling time is 4.97s. Increasing the limitation further,
also the total stalling time increases. For a bandwidth of up
to 200 kbps, the median heavily increases to 15.62s. Having a
bandwidth of only up to 150 kbps, the median stalling time is
34.25s. Here again, the PCC of the median of the total stalling
time and the bandwidth limitation indicate a negative linear

none 500 450 400 350 300 250 200 150
bandwidth limitation [kbps]

0

50

100

150

200

na
vi

ga
tio

n
tim

e
[s

]

Figure 4: Navigation time

correlation (-0.786). Thus, reduction of the bandwidth results
in longer total stalling times.

Having a look at the QoE, the results are more critical than
those for the initial delay. When applying the MOS calcula-
tion model from [6] on the measured values and calculate
the averages per limitation, it becomes clear, that a band-
width below or equal to 250 kbps is seen as annoying by the
users. Having a network capacity of a least 500 kbps, the user
satisfaction is close to excellent (MOS of 4.86 for unlimited,
4.70 for 500 kbps). Ranging between 400 kbps and 300 kbps,
the users are still satisfied with the service (MOS > 3). For
a bandwidth of 250 kbps or less, the total stalling time rises
drastically which results in bad QoE values (MOS of 2.85 for
250kbps, 2.39 for 200 kbps, and 2.38 for 150 kbps). Therefore
a bandwidth of at least 300 kbps is necessary to keep the
users satisfied with the streaming.

Navigation Time. Browsing through the app, which means
opening the Spotify app, logging in, adjusting settings, man-
aging playlists, and searching the music database, takes a
certain amount of time. Since some interactions require a
network connection, they are also directly dependent on the
prevailing network quality. An obvious example is using the
search bar to find the right song. An unapparent function
which requires an Internet connection is, for example, the
context menu of an existing playlist. The context menu al-
lows downloading, editing, deleting, sharing, and adding the
playlist to the home screen. Additional options are making
it secret or collaborative. Intriguingly, when being offline,
the context menu also works, without delays, but no cover
and no Spotify Code is shown. A Spotify Code is a unique
representation of a song, artist, or playlist, which can be
scanned by another device using the camera. It seems like
the app first attempts to fetch the cover and the Spotify Code,
before showing the context menu, which could be the cause
for the delay.

5

Figure 4 shows themeasured navigation times for different
bandwidth limitations. The y-axis displays the navigation
time in seconds. No bandwidth limitation corresponds to a
median of 53.12s, which can be seen as an optimum for the
navigation time. For a network capacity between 350 kbps
and 500 kbps, the median navigation times was 67.38s or
lower, and thus, at most only 14.26s (26.84%) slower than
the optimal case. Having a look at the navigation time for a
limitation of 300 kbps, the value increase drastically, having
a median of 71.42s, which is 34.43% slower than the optimal
case. This trend continues for increasing limitation, resulting
in median navigation times of up to 111.25s for 150 kbps and
thus, more than twice as slow as the optimal case.

Unfortunately, to the best of our knowledge, no subjective
studies about the navigation times an app are published yet.
Nevertheless, it is expected that navigation time of more
than one and a half of the required time in the optimal case
leads to drastically decrease in the user satisfaction.

5 CONCLUSION
Many studies have already addressed video streaming in
great detail. Audio streaming, in contrast, has widely been
neglected. Thus, in this work, a measurement methodology
has been presented, which allows conducting measurements
on Spotify’s mobile Android application. The testbed allows
extracting relevant application data, like the initial delay,
stalling incidents, and the navigation time as well as record-
ing all network activity. To simulate real-world conditions,
automatic interactions can be performed and network im-
pairments can be applied. In order to investigate the stream-
ing behavior for suboptimal network conditions, we added
different bandwidth limitations to the network.
Considering streaming and buffering characteristics of

Spotify’s mobile app, we found that for playing one single
song, the whole file is directly downloaded into the buffer
to overcome network disturbances. Looking at playlists, we
found that the mobile app downloads the songs of the playlist
in advance to ensure smooth transitions between two songs.
Focusing on KPIs for audio streaming, especially initial de-
lay and stalling, the available bandwidth capacity highly
influences the user satisfaction. Here, we found that Spotify
streaming using the mobile app needs a bandwidth capacity
of more than 200 kbps to guarantee at least a fair user satis-
faction. Having a look beyond the streaming itself, we also
evaluated the user satisfaction by using the app and navi-
gate through it. Therefore, we measured the total navigation
time from starting the app until the start of the actual audio
playback for different bandwidth limitations and set it in
relation to the navigation time with unlimited bandwidth.
We found, that for an available bandwidth of 300 kbps or less,
the navigation time increase drastically, having a median

which is at least 34.43% slower than the optimal case, which
presumably leads to a drastic decrease in user satisfaction.
Thus, an available bandwidth of at least 300 kbps (3G) is
required to make good use of Spotify.

In futurework, additionalmeasurementswill be conducted
using the testbed focusing on other network impairments
which can occur in mobile networks, like packet loss or jitter.
In addition, as the streaming is not decoupled from the app,
it would be interesting to also conduct subjective studies in
order to investigate the influence of the navigation time on
the perceived user experience.

ACKNOWLEDGMENT
This work is supported by Deutsche Forschungsgemein-
schaft (DFG) under the Grant "SDN-enabled Application-
aware Network Control Architectures and their Performance
Assessment" (project number: 316878574). The authors alone
are responsible for the content.

REFERENCES
[1] Goodwater. 2018. Understanding Spotify: Making Music Through

Innovation.
[2] Irena Orsolic, Dario Pevec, Mirko Suznjevic, and Lea Skorin-Kapov.

2017. A machine learning approach to classifying YouTube QoE based
on encrypted network traffic. Multimedia tools and applications 76, 21
(2017), 22267–22301.

[3] Ashwin Rao, Arnaud Legout, Yeon-sup Lim, Don Towsley, Chadi
Barakat, and Walid Dabbous. 2011. Network characteristics of video
streaming traffic. In Proceedings of the Seventh COnference on emerging
Networking EXperiments and Technologies. ACM, 25.

[4] Spotify Technology S.A. 2019. Spotify Company Info. https:
//newsroom.spotify.com/company-info/ Accessed July 4, 2019.

[5] Spotify Technology S.A. 2019. Spotify Reports First Quarter 2019
Earnings, Shareholder Letter. https://s22.q4cdn.com/540910603/files/
doc_financials/quarterly/2019/Shareholder-Letter-Q1-2019.pdf

[6] Andreas Sackl, Sebastian Egger, and Raimund Schatz. 2013. Where’s
the music? comparing the QoE impact of temporal impairments be-
tween music and video streaming. In Quality of Multimedia Experience
(QoMEX), 2013 Fifth International Workshop on. IEEE, 64–69.

[7] Sandvine. 2018. The Global Internet Phenomena Report, October 2018.
(2018).

[8] Anika Schwind, Cise Midoglu, Özgü Alay, Carsten Griwodz, and Flo-
rian Wamser. [n.d.]. Dissecting the performance of YouTube video
streaming in mobile networks. International Journal of Network Man-
agement ([n. d.]), e2058.

[9] Anika Schwind, Florian Wamser, Thomas Gensler, Phuoc Tran-Gia,
Michael Seufert, and Pedro Casas. 2018. Streaming Characteristics of
Spotify Sessions. In 2018 Tenth International Conference on Quality of
Multimedia Experience (QoMEX). IEEE, 1–6.

[10] Michael Seufert, Sebastian Egger, Martin Slanina, Thomas Zinner,
Tobias Hoßfeld, and Phuoc Tran-Gia. 2014. A survey on quality of
experience of HTTP adaptive streaming. IEEE Communications Surveys
& Tutorials 17, 1 (2014), 469–492.

[11] Michael Seufert, Bernd Zeidler, Florian Wamser, Theodoros
Karagkioules, Dimitrios Tsilimantos, Frank Loh, Phuoc Tran-Gia, and
Stefan Valentin. 2018. A wrapper for automatic measurements with
YouTube’s native Android app. In 2018 Network Traffic Measurement
and Analysis Conference (TMA). IEEE, 1–8.

6

