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Figure 1: Air monitoring stations collect data from different pollutants. This opens up the possibility of modelling multiple
pollutants simultaneously using multi-task learning. We evaluate this approach using multilayer perceptron models. The
resulting multi-task learning models provide more accurate pollution maps than similar single task-learning models.

ABSTRACT
Air pollution has been linked to several health problems in-
cluding heart disease, stroke and lung cancer. Modelling and
analyzing this dependency requires reliable and accurate air
pollutant measurements collected by stationary air monitor-
ing stations. However, usually only a low number of such
stations are present within a single city. To retrieve pollution
concentrations for unmeasured locations, researchers rely on
land use regression (LUR) models. Those models are typi-
cally developed for one pollutant only. However, as results
in different areas have shown, modelling several related out-
put variables through multi-task learning can improve the
prediction results of the models significantly.

In this work, we compared prediction results from single-
task and multi-task learning multilayer perceptron models
on measurements taken from the OpenSense dataset and the
London Atmospheric Emissions Inventory dataset. LUR fea-
tures were generated from OpenStreetMap using OpenLUR
and used to train hard parameter sharing multilayer per-
ceptron models. The results show multi-task learning with
sufficient data significantly improves the performance of a
LUR model.

CCS Concepts
•Applied computing → Environmental sciences;
•Computing methodologies → Multi-task learning;
Neural networks; Supervised learning by regression;
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1. INTRODUCTION
Evidence suggests that air pollution has adverse effects

on health [1, 2, 3] and the environment [4]. In order to re-
search, assess and prevent these effects, availability of high
quality measurements of air pollutants is necessary. Offi-
cial authorities maintain stationary air quality monitoring
networks, mostly equipped with sensors for multiple pollu-
tants [5, 6]. However, such stations only offer data from a
limited number of locations, as usually only few stations are
present within a single city and land-use regression (LUR)
models have been used successfully to account for spatial
variability within cities and for epidemiological analyses [7].



While LUR models are trained on only one pollutant, sev-
eral research areas have shown the potential of training on
multiple related target variables, so called multi-task learn-
ing [8].

Air pollution monitoring stations often measure concen-
trations of more than one pollutant and the high spatial
and temporal correlation of air pollutant concentrations [9]
suggests that the emissions of different pollutants depend
on the same set of factors. Thus, the tasks of modelling
the pollutants should be highly related and modelling them
with a multi-task learning model might improve the accu-
racy of the predictions. However, this approach has not been
assessed yet in the context of modelling air pollution. To
evaluate it, the performance of a multilayer perceptron LUR
model is compared between single-task and multi-task learn-
ing on two different datasets - measurements taken from the
OpenSense project collected by low-cost, portable sensors in
the city of Zurich and modelled concentrations taken from
the London Atmospheric Emissions Inventory.

The contribution of this work is twofold: We (i) propose
a new approach to developing LUR models using concentra-
tion data from multiple pollutants, which takes advantage
of the available measurements as shown in Figure 1 and
(ii) demonstrate the potential of the multi-task learning ap-
proach compared to traditional single-task models for LUR.

The work is structured as follows: In Section 2 we summa-
rize the related work. Section 3 describes the air pollution
datasets and LUR features used to develop the models. The
selected multi-task learning framework is described in Sec-
tion 4 and the experimental approach and the models in Sec-
tion 5. In Section 6 we present our results and in Section 7
we discuss the advantages and limitations of the multi-task
learning approach. Section 8 provides a conclusion and out-
look for future work.

2. RELATED WORK

2.1 Land-Use Regression
LUR models are an active field of research as the public

awareness of the health and environmental effect of air pollu-
tion grows. Such models have been developed for numerous
large cities worldwide. A 2008 review collected models devel-
oped for several cities in Europe as well as the USA [10] and
a recent review from 2017 includes LUR models for 16 differ-
ent cities worldwide [11]. Within the European ESCAPE-
Project aimed at assessing the long-term effects of air pol-
lution on human health, models have been developed for
36 cities in Europe using a standardized approach of model
selection for a linear regression [1].

Traditionally, linear regression has been used for LUR [10,
11], however, several other machine learning models have
been proposed to increase the accuracy of the predictions
and model non-linear relationships between the variables.
Generalized additive models are one such example and they
have been used to improve prediction scores in LUR mod-
els of nitrogen oxides (NOx) in Southern California [12]
and PM2.5 models in Beijing-Tianjin-Hebei (BTH) region
in China [13]. Brokamp et al. used random forest regression
to improve concentration predictions of in the urban city of
Cincinnati, Ohio [14], and in [15] this approach is used to
model NO2 concentration in a metropolitan area of Japan.

Models using neural networks for LUR have also been
proposed. For example, Alam and McNabola compare lin-

ear LUR models with multilayer perceptron models, achiev-
ing better results with the latter [16], while Adams and
Kanaroglou use multilayer perceptron LUR models to con-
struct real-time air pollution health risk maps [17].

Steininger et al. use a deep learning neural network to
model air pollutant concentrations directly from globally
available map images [18] and Lautenschlager et al. use fea-
tures generated from geographical information available in
the OpenStreetMap databank [20] to develop models per-
forming better than similar models using features from local
or closed sources [19].

In all of these studies, only one pollutant is predicted
with a single model. It has been shown that different air
pollutants show high temporal and spatial correlation pat-
terns [21] and thus, the tasks of modelling different air pol-
lutants can be highly related. The goal of this work is to
explore the possibility of achieving better prediction results
using a multi-task learning framework.

2.2 Multi-task Learning
Multi-task learning is a machine learning paradigm in

which several related tasks are modelled simultaneously. A
shared representation is used to guide the models to the most
relevant features, thus potentially improving generalization
and performance [8, 22]. It has been shown to increase ef-
fectiveness of machine learning models in a wide range of
fields.

Collobert and Weston proposed a multi-task learning ap-
proach for natural language processing, in which several
speech related predictions are made using a single neural
network [23]. Gibert et al. use a multi-task learning frame-
work to automatically detect anomalies for railway track in-
spections using machine vision. The multi-task model per-
forms with increased accuracy as compared to single-task
detectors [24].

Ramsundar et al. use a multi-task framework to develop
large-scale models in the field of drug discovery. The re-
sults show increasing prediction accuracy when additional
tasks are added to the model and the shared representation
learned by the models can be transferred to other tasks,
which were not used during training [25].

Caruana [8] explored the direct comparison of single-task
models and multi-task models, the latter achieving better
results on problems including autonomous driving simula-
tions, recognizing knobs on images of doors and predicting
the severity of pneumonia.

Multi-task learning has been applied in several fields where
multiple related tasks are modelled, performing better than
using single-task models separately. However, its applica-
tion in the context of air pollution modelling has not been
assessed. This work is aimed at filling this gap, by com-
paring single-task LUR models with models used to predict
several air pollutants at the same time.

We used a multilayer perceptron hard parameter sharing
model for multi-task learning, as it is the most commonly
used approach in other applications and because it allows
for a direct comparison within a single framework.

3. MATERIALS
In this section, the data sources used for the evaluation of

the multi-task learning approach are introduced: the Open-
Sense dataset collected during a mobile sensing campaign
in Zurich [26] and the London Atmospheric Emission In-



ventory [27], which contains a dataset developed using an
atmospheric dispersion model and is published by London
authorities. Furthermore, the LUR features which have been
used to develop single-task and multi-task learning models
are discussed in this section.

3.1 OpenSense Dataset
The OpenSense Project collected pollution data over the

period of several years between 2012 and 2016 from mobile,
low-cost sensing units equipped with an ultrafine particle
(UFP) sensor, carbonmonoxide (CO) sensor and ozone (O3)
sensor placed on top of ten street cars, travelling on regu-
lar routes within the city of Zurich. The particulate matter
pollution was sampled every 5 s and the O3 and CO con-
centrations every 20 s [28]. A GPS signal receiver provided
spatial information about the measurements. The gas sen-
sors were equipped with water and dust covers to minimize
possible interference [28].

3.1.1 Data selection
For creating the LUR models, measurements from the year

2014 have been selected from the dataset. Although there
are certainly LUR models being developed for smaller time
scales using additional weather information as features ([29],
[30]), the most common approach is to consider a long time
period for averaging the measurements. This removes any
possible seasonal trends, which have a considerable influence
on air pollution [31, 32]. Additionally, aggregated means are
important from a regulatory perspective, as for example the
European Commision enforces limits on annual averages for
emissions of air pollutants [33]. We used the concentration
data collected during the year 2014, with the exception of
CO, where measurements were not available for the first two
months of 2014. Instead, to maintain a comparable repre-
sentation of all seasons, CO was averaged using the period
of one year starting from 03/2014. Table 1 summarizes the
data that has been selected from the OpenSense dataset to
develop the models.

Table 1: Subset of the OpenSense dataset considered.

Pollutant Start End Samples
UFP 01/2014 12/2014 11.9 Mio

O3 01/2014 12/2014 5.3 Mio
CO 03/2014 02/2015 19.7 Mio

3.1.2 Data preprocessing
The UFP dataset has been properly calibrated and filtered

and thus contains accurate measurements [34]. Reference
measurements and internal variables of the sensors are not
available for the ozone and carbonmonoxide datasets and
thus a null-offset calibration cannot be done. The concen-
tration measurements for those two pollutants are therefore
taken from the factory pre-calibrated sensors without ad-
ditional calibration. Following Hasenfratz et al., an initial
GPS-filter is applied to assure an accurate geo-tagging of the
concentrations, based on the horizontal dilution of precision
(HDOP) [29]. Hasenfratz et al. discarded all measurements
with a HDOP of smaller than 3. To obtain an even more
accurate positioning we used the threshold of 2. Addition-
ally, all measurements taken outside of the boundaries of the
routes taken by the street cars are also discarded. The re-

maining samples (97.1% of the UFP measurements, 96.8% of
the CO measurements and 96.9% of the O3 measurements)
were used for further processing.

3.1.3 Data aggregation
Following [29], where a 100 m×100 m grid was used to de-

velop a LUR model with the OpenSense UFP data, annual
averages for the same spatial resolution of 100 m were cal-
culated. Because the measurements were taken by mobile
sensors, there was a considerable variation in the number
of observations in each cell, ranging from 1 to over 300 000
for the 100 m grid. To ensure that the mean annual con-
centrations are reliable and to exclude possible outliers due
to positioning errors, cells with less than 50 measurements
were discarded.

3.1.4 Data evaluation
Data quality for air pollutants can be assessed using a

well established observation that the measurements of air
pollutants approximately follow a log-normal distribution
[35]. Figure 2 shows the empirical distribution of the raw
measurements in comparison to a theoretical log-normal dis-
tribution with the same mean and standard deviation. The
relatively close fit of both distributions for the UFP indi-
cates that the measurements are reliable. This does not hold
true for the CO and O3 data, where there are substantial
deviations from the log-normal distribution. The poor fit
of the log-normal distribution function to the concentration
measurements for CO and O3 indicates poor data quality,
which can be attributed to the sensors not being adequately
calibrated. A proper calibration would require accurate ref-
erence data for a wide range of humidity and weather condi-
tions, which is not available for this dataset. The variability
of atmospheric conditions in which the mobile sensors have
been used can thus result in the measurements not being
accurate [34].

(a) Ultrafine particles

(b) Ozone (c) Carbonmonoxide

Figure 2: Distribution of the concentrations of ultrafine par-
ticles, ozone and carbon monoxide in the year 2014 as com-
pared to a log-normal distribution. Based on the OpenSense
dataset.



3.1.5 Summary
The previous analysis of the OpenSense dataset suggests

that the measurements of CO and O3 might be noisy and
the question of whether an evaluation of multi-task learning
can be done on such a dataset should be addressed. While a
dataset containing measurements from well calibrated sens-
ing units would serve this purpose better, to our best knowl-
edge there is no such a dataset that also contains enough
samples to enable training multilayer perceptron models.
The measurements of UFP from the OpenSense dataset have
been used successfully to develop LUR models before [29, 19]
and for this reason, while accepting the limitations of using
noisy measurements of the other pollutants, we decided to
include the OpenSense dataset in our analysis.

The OpenSense datasets that have been used here can be
accessed online: [36] for the UFP dataset and [37] for the
CO and O3 datasets.

3.2 London Atmospheric Emissions Inventory
The London Atmospheric Emissions Inventory (LAEI) is

a data collection containing estimates of pollutant emissions
and their sources for a given year in the city of London.
The input factors include traffic data from road and rail
networks, domestic and commercial fuel consumption, avi-
ation, and pollution from individual industrial sites. The
emission data is used to model ground-level average yearly
concentrations of air pollutants on a 20 m× 20 m grid using
a atmospheric dispersion model.

In this work, we used the 2013 version of the inventory to
develop LUR models for multiple pollutants: nitrogen diox-
ide (NO2), nitrogen oxides (NOx), particulate matter of di-
ameter less than 10 µm (PM10), number of days with a daily
mean PM10 concentration greater than 50 µg m−3 (PM10d),
and particulate matter of diameter less than 2.5 µm (PM2.5).
It is important to stress that the LAEI contains modelled
annual mean concentrations and not measurements from
air monitoring stations. However, the inventory has been
used for LUR modelling, as for example Steininger et al. de-
veloped deep learning LUR models using the concentration
data for NO2 from the LAEI [18].

3.3 Features
LUR features where generated using the OpenLUR ap-

proach [19]. Starting from a given point, the total area
of commercial, industrial and residential buildings within
a pre-defined radius can be computed using geographical
information from OpenStreetMap. Additionally, the total
length of roads of any type and the distance to the closest
traffic signal, motorway, primary road and industrial area
can be computed using such data. In total 244 features
were generated this way, which are summarized in Table 2.

3.3.1 Selection
Feature selection is a systematic method of selecting the

variables upon which to build the model. Selecting only
the relevant features ensures that the model is easily in-
terpretable and improves the performance of the model by
enhancing generalization [38]. We used a selection method
based on the best performing features on linear models, sim-
ilar to [1].

The features are selected iteratively from the pool of all
features based on the best improvement. First, a simple
linear regression model is fitted for every feature. The fea-

Table 2: Features generated for each dataset using the Open-
LUR approach.

Feature type Measurement Radii (in 50 m steps)
commercial area total area 50 m - 3000 m

industrial area total area 50 m - 3000 m
residential area total area 50 m - 3000 m

large road total length 50 m - 1500 m
small road total length 50 m - 1500 m

traffic signals distance -
motorway distance -

primary road distance -
industrial area distance -

ture with the best average R2 score over all pollutants is
selected. Next, for each of the remaining features, a mul-
tiple linear regression model containing this feature and all
previously chosen features is evaluated and the average R2

score is calculated. Following [1], the score is then compared
to the average R2 score of the linear model containing only
the previously selected features. If the score improvement
of the linear model by including the feature is larger than
1%, the feature with the biggest improvement is added to
the pool of selected features and the procedure is repeated.
If the condition is not met, the feature is not included and
the feature selection ends.

Features were selected separately for the OpenSense and
LAEI. In total 13 features have been selected for the Open-
Sense data at and 3 features for the London Atmospheric
Inventory as shown in Table 3. The order in which the
features are listed corresponds to the order in which features
have been selected by the procedure.

Table 3: Results of feature selection for both datasets in the
order in which features have been selected by the procedure.

(a) Features selected for the Open-
Sense data

Features selected
residential area within 1550 m
length of large roads within 1500 m
distance to the closest primary road
residential area within 700 m
length of large roads within 850 m
length of large roads within 100 m
distance to the closest industrial area
residential area within 3000 m
residential area within 2950 m
industrial area within 1750 m
industrial area within 3000 m
commercial area within 3000 m
industrial area within 2550 m

(b) Features selected for the LAEI
data

Features selected
length of large roads within 50 m
residential area within 2150 m
distance to the closest traffic signal



4. METHOD
In this work, a hard-parameter sharing multi-task learn-

ing approach is implemented using a multilayer perceptron
model with two hidden layers. Multilayer perceptron models
have been applied successfully in LUR to model single pollu-
tants [16]. It allows for a straightforward translation into a
multi-task learning framework by providing additional out-
puts and thus a relatively direct comparison. When hidden
layers are shared between outputs, the network is forced to
learn a shared representation between the tasks which re-
duces the risk of overfitting [39, 22], possibly improving the
performance of the model.

4.1 Network structure
For a direct comparison between multi-task learning and

single-task learning, the model’s overall structure is kept
constant while varying the number of shared layers. By
changing the number of shared layers, it is possible to manip-
ulate the degree of multi-task learning. This enables defining
a fully multi-task learning model when all of the hidden lay-
ers are shared between pollutants, as well as a single-task
model if all of the layers are task-specific. Additionally, a
model with one shared layer and one task-specific layer can
be defined. The structure of the three different models used
for the evaluation is displayed in Figure 3.

(a) 0 shared layers (b) 1 shared layer

(c) 2 shared layers

Figure 3: Models with different numbers of shared layers
considered for the comparison of multi-task learning and
single-task learning.

4.2 Training
All training of the multilayer perceptron models was per-

formed using the Keras library version 2.3.1 [40]. The Adam
optimizer was used for the weight updating with the default
learning rate of 0.001. The mean squared error is used as the
loss function and additionally the R2-score is monitored. An
early stopping condition is used to determine the end of the
training before the maximum number of epochs set to 2000.

After each epoch, the improvement of the mean squared er-
ror on the validation data is checked and if the score did not
improve during the last 20 epochs the training stops and the
best performing weights are restored. The final R2-score of
the model on the validation data is calculated and averaged
over all cross-validation sets. The same cross-validation di-
vision was used for training and scoring all models. This
score is then used to select the best performing model.

5. EXPERIMENTS
In order to evaluate the multi-task learning approach the

data is split into several training and evaluation sets and
used to train the baseline and experimental models. This
procedure and the baseline models are described in the fol-
lowing.

5.1 Data selection
In total, 929 cells with annual mean concentrations were

available from the OpenSense dataset and 5 851 915 from
the LAEI. However, only 4500 cells were sampled from the
large dataset for training and evaluating the models and
the features have been calculated only for those measure-
ments. The decision to only include a limited number of
data points was made due to the high computational cost
of obtaining LUR features from OpenStreetMap and to in-
crease the generalizability of our evaluations, as datasets
usually used for LUR only contain limited number of sam-
ples [29]. For a comprehensive evaluation of the multi-task
learning approach, training sets of different sizes were in-
cluded. For the OpenSense dataset samples of 100, 300 and
500 measurements were sampled uniformly as training sets
to investigate the influence of the size of the training data
on the performance of the multi-task learning models. The
models for the London Atmospheric Emissions were trained
using sample sizes of 100, 300, 500 and 3000. The measure-
ments not included in the training set were used to evaluate
the resulting models to obtain the final score. All model
types (including the baseline models) were trained using the
same training set and evaluated using the same test set and
used the same cross-validation division for all models. In
total 7 training sets were created as summarized in Table 4.

Table 4: Training and test sets on which all models were
evaluated.

Source Training Samples Test Samples
OpenSense 100 829
OpenSense 300 629
OpenSense 500 429
LAEI 100 4400
LAEI 300 4200
LAEI 500 4000
LAEI 3000 1500

5.2 Baseline
In order to evaluate the multi-task learning model and

put the observed differences in context, the LUR models for
the available datasets are first developed using traditional
approaches - linear regression and random forest regression.
The details on how models were trained and evaluated using
both approaches are provided here.



5.2.1 Linear Model
Linear regression has been traditionally used in LUR mod-

els [41], it is therefore a good baseline to consider for the per-
formance of other models. For each dataset, a linear model
was fitted on the training set using the features selected with
the algorithm described in Section 3.3.1. Each of the pol-
lutants was modelled separately. The resulting models were
then evaluated on the available test samples.

5.2.2 Random Forest
Random forest regression has been used for LUR models

yielding good prediction results [14], which is the reason why
it was included as a baseline. For each dataset, a random hy-
perparameter search is performed to find the optimal model.
Table 5 shows the hyperparameters included in the search.
The remaining hyperparameter for the model use the default
values provided by the scikit-learn library in version 0.22.1.
The mean R2-score from a ten-fold cross-validation was used
to select the best performing model, which was then fitted
on the whole training set and evaluated using the test set.

Table 5: Hyperparameters searched for optimizing the ran-
dom forest model

Hyperparameter Min Max
Number of trees 10 2000

Fraction of features 0 1
Fraction of data 0 1

Minimum samples 2 21

5.3 Hyperparameters
To evaluate the multi-task learning models, a hyperpa-

rameter optimization procedure was implemented for each
of the training sets to find the best performing models of
each structure. All models have two hidden layers, each of
which contains the same number of neurons. They differ
only in the number of layers shared between the different
pollutants.

During each step of the hyperparameter optimization, a
set of hyperparameters was sampled from a predefined hy-
perparameter space shown in Table 6. For the other hy-
perparameters, the default values provided by the Keras li-
brary version 2.3.1 were used during the training [40]. All
three models with different degrees of multi-task learning
were trained using this set of hyperparameters and evalu-
ated using a ten-fold cross-validation method, similarily to
the training of the random forest regression models. The
subsample of the training set left-out by the given cross-
validation iteration is used as validation data for monitor-
ing the performance of the model during training and for
calculating the final score.

Table 6: Hyperparameters searched for optimizing the mul-
tilayer perceptron models

Hyperparameter Min Max Distribution

Neurons per layer 5 200 uniform
Dropout rate 0 0.8 uniform
L2-regularization 0.0001 1 log-uniform

6. RESULTS
In this chapter we present the results of the different LUR

models. This includes the results of the baseline models
and the comparison of different multi-task learning models
and single-task learning models. The models were trained
using the best found hyperparameters and evaluated using
the test dataset which was not used before. The same ten-
fold cross-validation division of the training set used during
hyperparameter search was applied to keep track of the R2-
score during training for the purpose of early stopping. Each
cross-validation was performed 30 times in total. This was a
compromise between the high computational cost of fitting
the models and the requirements for an accurate estimate of
the scores.

6.1 OpenSense dataset

6.1.1 Multi-task learning
Table 7 shows the average R2-scores of models using dif-

ferent degrees of multi-task learning and single-task learning
on the OpenSense dataset. Zero shared layers correspond to
single-task learning, while with two or one shared layers fea-
tures and activations of hidden layers are shared between
pollutants thus corresponding to multi-task learning.

The bold scores in Table 7 indicate the best model for
each training sample. The results show an improvement of
the R2-scores by using at least some shared representation
as compared to single-task learning for all training samples
considered.

Table 7: Average R2-scores on the test samples from the
OpenSense dataset using multilayer perceptron models with
different numbers of shared layers. The increase is calculated
between the single-task learning model (zero shared layers)
and the best performing multi-task learning model (at least
one shared layer).

Shared layers

Samples 0 1 2 Increase
100 0.224 0.169 0.224 +0.41%
300 0.410 0.448 0.391 +9.23%
500 0.463 0.474 0.379 +2.26%

The optimal structure of the model varies with the train-
ing sample considered as does the amount of improvement
as shown in the increase percentage of the R2-scores in Ta-
ble 7. The one-way ANOVA performed for each training
set individually shows that the modelling approaches differ
significantly (p < .001).

6.1.2 Comparison
The comparison of the results of both baseline models,

single-task learning models and the best multi-task learning
models for the OpenSense dataset is shown in Table 8. The
best performing model with at least one shared layer has
been taken to represent the multi-task learning approach.

To check whether the resulting R2-scores were significantly
different, for each training sample the models were tested
pairwise using the Mann-Whitney U-test. The resulting p-
values are shown in Figure 4.

For 300 and 500 training samples, the random forest model
performs significantly better than any other model. The
linear models perform significantly worse than non-linear



Table 8: Average R2-scores on the test samples from the
OpenSense dataset using linear regression (LR), random
forest regression (RF), as well as single-task learning (ST)
and multi-task learning (MT) using a multilayer perceptron
(MLP).

MLP

Samples LR RF ST MT
100 0.131 0.262 0.224 0.224
300 0.250 0.475 0.410 0.448
500 0.264 0.566 0.463 0.474

(a) 100 training samples

(b) 300 training samples (c) 500 training samples

Figure 4: Pairwise Mann-Whitney U-tests between linear re-
gression models (LR), random forest models (RF) and mul-
tilayer perceptron models using single-task (ST) and multi-
task learning (MT) on the Opensense dataset.

models. For all considered samples, the multi-task learning
model performs better than a similar multilayer perceptron
single-task model. The difference is significant for the train-
ing samples of size 300 and 500. For the training sample of
size 100, the difference is not statistically significant.

6.2 LAEI dataset

6.2.1 Multi-task learning
Table 9 shows the average R2-scores of LUR models us-

ing different degrees of multi-task learning and single-task
learning on the LAEI dataset. The best performing model
for each training sample is in bold type.

Table 9: Average R2-scores on the test samples from the
LAEI dataset using multilayer perceptron models with dif-
ferent numbers of shared layers.

Shared layers

Samples 0 1 2 Increase
100 0.489 0.490 0.476 +0.32%
300 0.506 0.468 0.490 −3.09%
500 0.514 0.515 0.507 +0.18%

3000 0.522 0.528 0.534 +2.25%

The results show an increase of the R2-scores when using
multi-task learning for models trained with 100, 500 and
3000 samples, while for 300 samples the single-task model
performs better.

Similarly to the OpenSense dataset, the results show that
there is no one-fits-all optimal structure of the model, with
the optimal amount of shared layers varying with the train-
ing sample considered. A clear increase of the R2-score
with increasing degree of multi-task learning can however be
seen when using a large training set of 3000 samples. The
one-way ANOVA performed for each training set individu-
ally shows, that the modelling approaches differ significantly
(p < .001).

6.2.2 Comparison
The comparison between the different models for the LAEI

dataset can be seen in Table 10.

Table 10: Average R2-scores on the test samples from the
LAEI dataset using linear regression (LR), random forest re-
gression (RF), as well as single-task learning (ST) and multi-
task learning (MT) using a multilayer perceptron (MLP).

MLP

Samples LR RF ST MT
100 0.459 0.477 0.489 0.490
300 0.488 0.527 0.506 0.490
500 0.499 0.537 0.514 0.515

3000 0.505 0.572 0.522 0.534

Similarly to the OpenSense dataset, the models have been
compared using pairwise Mann-Whitney U-tests. The re-
sults are shown in Figure 5.

(a) 100 training samples (b) 300 training samples

(c) 500 training samples (d) 3000 training samples

Figure 5: Pairwise Mann-Whitney U-tests between linear re-
gression models (LR), random forest models (RF) and mul-
tilayer perceptron models using single-task (ST) and multi-
task learning (MT) on the London Atmospheric Emissions
Inventory dataset

The comparison shows that the random forest model per-
forms significantly better than other models and linear re-



gression offers the statistically significant worse fit.
When comparing single-task and multi-task learning mul-

tilayer perceptron models, the results show an increased fit
of the models using a multi-task learning approach compared
to single-task models when trained using 100, 500 and 3000
samples. However, the difference is only statistically sig-
nificant when trained with 3000 samples. When using 300
training samples, the multi-task learning model performs
worse than the single-task learning model.

7. DISCUSSION
The comparison of all the single-task models, including

the baselines, shows a clear advantage of the random for-
est models over all other model types. This holds true for
both datasets and all examined sample sizes. It is not an
unexpected result, as previous comparisons have shown that
random forest models provide high accuracies in the context
of LUR [14, 42].

When comparing multi-task learning with the single-task
learning approach on the multilayer perceptron models the
results for both the OpenSense and LAEI datasets indicate
a possible increase in performance of the models when us-
ing a shared representation. However, the increase in per-
formance is not large enough to surpass the random forest
baseline model, which still outperforms the multi-task learn-
ing model.

In this section we discuss possible reasons for this limita-
tion, what can be done to increase the benefits of multi-task
learning and why it can still be a promising approach.

7.1 Task relatedness
Caruana [8] argues that multi-task learning helps improve

generalization when using related tasks. Two tasks are de-
fined to be related if they use the same variables to predict
the outcome and if they use those variables in the same way
[8].

Using this definition, it is possible to explore the related-
ness of the tasks by comparing the relative feature impor-
tance between different pollutants. If two tasks (modelling
two different pollutants) depend stronger on the same set of
features and less so on different features, the tasks is con-
sidered highly related.

We used the permutation variable importance measure in-
troduced by Fisher et al. [43] on the baseline random forest
regression models to calculate the feature importance for all
of the training samples. Figure 6 shows the feature impor-
tance calculated for the OpenSense dataset with 500 train-
ing samples and Figure 7 for the LAEI dataset with 3000
samples. For all the other training samples the calculations
show a very similar pattern of feature importance.

For the OpenSense dataset, the tasks appear to be less
related, as the feature importance values vary strongly be-
tween the pollutants (fig. 6). Figure 7 shows that all pollu-
tants, except PM2.5, depend similarly on the features. It is
therefore reasonable to assume that the tasks of modelling
different pollutants in this dataset are highly related.

The feature importance analysis does not paint a clear
picture of how task relatedness translates into performance
gain from shared representation. In our experiments, mod-
els on both datasets benefit from the multi-task approach
even though the task relatedness, as measured by feature
importance, is higher for the LAEI dataset.

Figure 6: Feature importance for the OpenSense dataset
with 500 samples.

Figure 7: Feature importance for the London Atmospheric
Emissions Inventory dataset with 3000 samples.

7.2 Feature selection
One possible explanation for this unclear relationship be-

tween task relatedness and the advantage of multi-task learn-
ing could be the used feature selection procedure. As de-
scribed in Section 3.3.1, variables used for training the mod-
els have been selected from a large pool of 244 features gen-
erated from OpenStreetMap. The selection procedure in-
volved comparing the R2-scores of linear models built using
each of the features and including the best one.

We used an average over all pollutants to calculate the
score for each feature. An alternative approach, which can
be explored in further research, would be to select important
features for each pollutant individually and then consider
an aggregate of those features for the multi-task learning.
However, because a shared metric was used only features
that could on average predict all pollutant concentrations
reasonably well were included in the pool of variables to be
used for the multi-task learning models.

This selection procedure had two important consequences:
First, it introduced a bias to the feature importance metric
as calculated in Section 7.1. All features that would offer
very accurate models for only one of the pollutants, but not
for the others, are not selected. Since only those features
were selected that on average predicted concentrations for
all pollutants reasonably well, the tasks are more related
when comparing their feature importance than if a different



feature selection method was used.
Second, selecting features that on average predict all pol-

lutants well is in itself a form of multi-task learning. In
fact, sparsity-enforcing regularization techniques have been
used for linear models in the context of multi-task learn-
ing [22, 44]. Arguably feature selection is also one of the
core mechanisms how multi-task learning improves predic-
tion scores in multilayer perceptron models [8]. While the
multi-task learning models considered for modelling pollu-
tants still benefit from a shared hidden representation, the
single-task models are not truly independent, as they all de-
pend on features that have been selected using a multi-task
method, possibly decreasing the observed difference.

7.3 Data quality
As discussed in Section 3.1.4 measurements for two of the

pollutants within the OpenSense dataset are possibly noisy
and only one pollutant offers high quality measurements. In
contrast, the LAEI offers estimated concentrations of air pol-
lutants which are not directly measured, but instead mod-
elled using a atmospheric dispersion model.

As neither of the datasets offers high-quality data from
physical monitoring stations of air pollutant concentrations,
the question arises of how well the findings would generalize
to such a hypothetical dataset. While a definitive answer
can only be given by examining multi-task learning on such
a dataset, there are some arguments that can be made on
why our approach would still work.

As can be seen on the OpenSense dataset, multi-task
learning increases the fit of the model compared to a similar
single-task learning model for all pollutants, including ultra-
fine particles for which high-quality measurements are avail-
able. Thus, since including noisy measurements can improve
the prediction accuracy of high-quality data when modelling
in a multi-task learning context, it is reasonable to believe
that a similar effect would be observed if high-quality data
was used as the additional tasks.

The LAEI dataset, on the other hand, offers only modelled
concentrations. While air dispersion models will always offer
a simplified model of the emissions and spread of air pollu-
tion, they generate accurate general trends, especially when
only long averaging periods of one year or more are consid-
ered. Thus, a similar benefit of multi-task learning can be
expected when accurately measured data is used.

Both single- and multi-task models are trained on equal
data quality. The results show that multi-task learning mod-
els offer better prediction performance than similar multi-
layer perceptron single-task models. It is, however, unclear
how the difference would manifest when comparing the pre-
dictions from models trained on accurate air pollution data
from high-end monitoring stations. Especially when the
sources of error are not independent, the multi-task models
might only learn the noise patterns in the data. While the
findings on the OpenSense data indicate this not to be the
case, additional experiments using poor-quality data with
independent sources of error could rule out this possibility.

7.4 Sample size
It is a known observation in machine learning that small

sample sizes often lead to overfitting, especially when using
complex models like artificial neural networks as compared
to traditional models (e.g. linear regression) [45, 46]. This
limitation makes applying complex models in the context of

LUR difficult, since high-quality measurements are often a
limited resource as mentioned in Section 1.

Our results clearly confirm this pattern, as more training
samples lead to better prediction scores for both datasets
and all considered model types. When comparing multi-task
and single-task learning models, the advantage of a shared
representation approach only becomes apparent with suffi-
cient training data. For the LAEI dataset the largest pos-
itive effect appears for 3000 training samples, while with
less data single-task models do not differ significantly from
multi-task models or perform even better. Multi-task learn-
ing shows a significant advantage for the 300 and 500 sam-
ples subset of the OpenSense dataset.

Large data requirements make the application of multi-
task learning models for LUR difficult, as datasets contain-
ing air pollutant concentrations usually contain limited num-
bers of samples.

8. CONCLUSIONS AND FUTURE WORK
In this work, we assessed multi-task learning for LUR.

As pollutants are often monitored together, the potential
dependence on the same set of factors makes modelling sev-
eral pollutants simultaneously an attractive possibility. The
results do indeed show that multi-task learning models per-
form significantly better than similar multilayer perceptron
single-task learning models when using a large enough train-
ing set.

However, for both datasets that have been considered -
the London Atmospheric Emissions Inventory and the Open-
Sense dataset, random forest regression still outperforms the
multi-task learning models for all training samples. A possi-
ble direction for future research is the application of multi-
task learning using tree-based ensemble methods [47]. Non-
parametric ensemble models might overcome the large data
requirements of multilayer perceptron models while still ben-
efiting from shared information between different pollutants.

In order to decrease the data requirements for multilayer
perceptron models it might be worthwhile to explore pre-
training with weak labels. Interpolation methods may be
used to produce dense maps of pollution estimates from
measurements which can be used as weak labels. These la-
bels can be used to train the model. Thereafter, the model
can be fine-tuned using only labels from real measurements.
This training procedure might improve multi-layer percep-
tron model performance for LUR, where there are often rel-
atively few data points.

Another promising research direction is the application of
multi-task learning for deep-learning based LUR models like
MapLUR [18]. This model has shown better performance
than random forests on the dataset of the London Atmo-
spheric Emissions Inventory for single-task learning and our
results suggest that multi-task learning can further increase
performance.

Future work should also explore different feature selection
methods, as more liberal selection procedures might allow
for higher variability in feature dependence between differ-
ent pollutants and consequently multi-task learning might
benefit even more from a shared representation. Especially
sparsity-enforcing regularization techniques used for multi-
variate linear regression [22, 44] might be a promising ap-
proach to building LUR models using multi-task learning.

As high-quality air pollution datasets mostly contain only
a limited number of measurement locations, the experiments



have been performed on data obtained from low-cost sensors
in the case of the OpenSense dataset and modelled air con-
centrations using an atmospheric dispersion model in the
case of the London Atmospheric Emissions Inventory. An
important direction for future research would be to compare
multi-task learning and single-task learning on a large-scale
dataset containing high-quality measurements.

Overall, the multi-task learning method using multilayer
perceptrons shows better performance than similar single-
task models, while still being outperformed by Random For-
est models. However, this work demonstrates the potential
of learning shared representations for better air pollution
prediction performance, which can be explored in further
research using different model types.
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