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ABSTRACT
Today, a variety of user interfaces exists for navigating information
spaces, including, for example, tag clouds, breadcrumbs, subcate-
gories and others. However, such navigational user interfaces are
only useful to the extent that they expose the underlying topology—
or network structure—of the information space. Yet, little is known
about which topological clues should be integrated in navigational
user interfaces. In detail, the aim of this paper is to identify what
kind of and how much topological information needs to be included
in user interfaces to facilitate efficient navigation. We model navi-
gation as a variation of a decentralized search process with partial
information and study its sensitivity to the quality and amount of
the structural information used for navigation. We experiment with
two strategies for node selection (quality of structural information
provided to the user) and different amount of information (amount
of structural information provided to the user). Our experiments on
four datasets from different domains show that efficient navigation
depends on the kind of structural information utilized. Additionally,
node properties differ in their quality for augmenting navigation and
intelligent pre-selection of which nodes to present in the interface
to the user can improve navigational efficiency. This suggests that
only a limited amount of high quality structural information needs
to be exposed through the navigational user interface.

Categories and Subject Descriptors: H.5.3 [Information Inter-
faces and Presentation]: Group and Organization Interfaces—Web-
based interaction H.5.4 [Information Interfaces and Presenta-
tion]: Hypertext/ Hypermedia—Navigation

Keywords: Navigation; Decentralized Search; Structure; Networks;
User Interfaces
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1. INTRODUCTION
With the increasing amount of information made available to

people on the Web every day, it has become increasingly difficult to
build information systems that can be navigated in an efficient way.
Information systems that deliver strong intuition about the choices
made available to their users through the interfaces are efficient at
guiding the user to the needed piece of information. Thus, they
are considered good at supporting activities such as navigation or
browsing. In order to improve navigability, new interfaces—e.g.,
tag clouds, breadcrumbs, subcategories—have been introduced. In
Figure 1, we see an example of a tag cloud. Besides other aspects
of tag cloud design [27], tag clouds—as well as all other kinds of
user interfaces—are only useful for augmenting navigation to the
extent to which they are able to expose the underlying structure of
the information space [10]. Yet, little is known about what kind of
and how many topological clues should be integrated in navigational
user interfaces.

Problem. Consequently, in this paper, we want to study the problem
of properly exposing the topological structure of the information
space through an interface. This problem has two dimensions: (i)
Which are the important structural properties that contribute to prop-
erly exposing the hidden structure of the information space and (ii)
how much should we know about them in order to navigate effi-
ciently? Knowing which nodes in a network are important and how
to identify them is crucial for navigation. Such knowledge could
reduce the amount and nature of information needed for improving
the users’ understanding about the information space resulting in
better navigational efficiency. Subsequently, we next derive and
discuss the two main research questions that we want to tackle in
this article.

Research questions. (i) What kind of and (ii) how much structural
information is needed for efficient navigation? Regarding the first re-
search question, we are specifically interested in deriving important
structural properties of the information space that should be exposed
through an interface in order to properly guide users’ navigation.
Related work [2] has suggested that the degree—as a proxy of a
node’s popularity—is a very good navigational feature in networks
with a power law degree distribution. Yet, little is known about the
effect of the clustering coefficient as a navigational feature on the
efficiency of navigation. The clustering coefficient may be feasible
as navigational feature due to its importance for the emergence of
the small world property of a network. Small world networks are

59

HT '15, September 1–4, 2015, Guzelyurt, Northern Cyprus. 



Figure 1: A tag cloud enabling navigation from The Rolling Stones page on last.fm. Exemplary user interface used for navigation in many
online information systems. The tag clouds among other web interfaces are useful to the extent that they expose the underlying structure of the
information space. Identifying the most important tags from a navigational perspective is crucial for providing efficient support.

known to be particularly navigable[18, 31]. In this paper, we inves-
tigate whether nodes with a specific clustering coefficient have an
impact on navigation and we study how the clustering coefficient
can be used to identify them. Furthermore, regarding the second
research question, we are interested in determining the amount of
structural information needed for navigation and if this depends on
the quality of the structural information.
Approach and methods. We approach the research questions by an-
alyzing the structural properties of four different networks. Initially,
we take a look at their shortest path distance, degree and cluster-
ing coefficient distributions, and classify them by their expected
navigability according to [4]. To model navigation, we use the
message-passing algorithm decentralized search which is inspired
by the small world experiment by Stanley Milgram [22]. Several
versions of the algorithm can be found in literature [21, 18, 19, 30, 2,
1]. Decentralized search has already been demonstrated to be useful
for modeling navigation in information networks [13]. For studying
which and how much information is needed for efficiently navigat-
ing a network, we utilize an adaption of the algorithm which we
call partially informed decentralized search. The partially informed
decentralized search models a user who is limited in her exposure
to the structure of the information space and thus, has just a weak
or limited understanding of the topology of the information space.
We study two strategies for selecting important nodes with regard to
their popularity and clustering coefficient. With both strategies, the
algorithm navigates by popularity. With simulations, we compare
the partially informed decentralized search with the random search
and the fully informed decentralized search. In our setting, random
search corresponds to a user who is clicking at random and has no
intuition. We also make a comparison between the two strategies
for node selection to test the importance of the exposure of the user
to the underlying structure of the information.
Findings and contributions. The most prominent finding is the
surprisingly small amount of structural information needed for ef-
ficient navigation and the supportive properties of the clustering
coefficient for identifying nodes important for navigation. By and
large, our findings suggest that only a limited amount of high quality
structural information needs to be exposed through the navigational
user interface. Additionally, we empirically demonstrate the sensi-
tivity of decentralized search as a navigational model on the kind
of structural information utilized. The navigational performance
of decentralized search appears to depend on the amount of high
quality structural information provided.
Structure. The rest of this paper is organized as follows. After
discussing related work in Section 2, we present an adaptation of

decentralized search and two strategies for selecting nodes with high
structural importance used in the experimental setup in Section 3.
In Section 4, we give detailed overview of the used datasets. In
Section 5, we present our results and formulate our findings. Next,
Section 6 discusses the findings and their implications for the design
of navigational user interfaces. Finally, we conclude the paper and
provide some directions for future work in Section 7.

2. RELATED WORK
The decentralized search algorithm is inspired by research con-

ducted in the 1970s by Stanley Milgram who studied the structure
of the American society and conducted the famous small world
experiment [22]. For this experiment, Milgram asked randomly
selected people from Nebraska to forward a packet to a stock bro-
ker in Boston. If participants did not know the target personally,
they were asked to forward the packet to personal contact that they
thought might know the target better. These persons then should
repeat this process. Even though there were quite some restrictions,
the experiment showed that the average chain length of letter trails
that reached the target was around six.

Motivated by this small world experiment, researchers [21, 18,
19, 30, 2, 1] have developed the so-called decentralized search algo-
rithm that tries to find a path between a start node and a target node
in a network by passing a message from a node to one of its imme-
diate neighbors also called candidate nodes. What information is
available and how it is used for selecting one of the candidate nodes
is decisive for the success of the search. For a detailed description
of the decentralized search algorithm, please refer to Section 3.1.
Next, we delve into related work and discuss navigation using ho-
mophily (Section 2.1), navigation using popularity (Section 2.2),
models for user navigation (Section 2.3) and the role of clustering
for navigation (Section 2.4).

2.1 Navigation Using Homophily
There are different models based on node similarity or homophily

for generating small world networks in which decentralized search is
very effective. The two main models are grid-based and hierarchy-
based. The first grid-based model was proposed by Watts and
Strogatz in [31]. This model places nodes on a two-dimensional
grid in a way that nodes with high similarity have small grid distance.
In order to assure the emergence of the small world property, the
model puts long links between the nodes that are similar, but still
locally far away on the grid. This model was improved by Kleinberg
in [19, 18] where he concentrated on the length of the long links. He
showed that efficient search is only possible for certain values of the
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clustering exponent of the model which is responsible for placing
the long link connections between the nodes.

The hierarchical model was proposed independently by Kleinberg
[20] and by Watts et al. [30]; these models are also generative. In
hierarchical models, similar nodes are placed near to each other
in a hierarchy. The probability of two nodes being connected in
the hierarchical model not only decreases with their hierarchical
distance but also it decreases exponentially. Another generative
model was proposed by Boguña et al. in [4] where they assumed
that nodes form a hidden metric space. The topology of the metric
space determines the distance between the nodes in the metric space
and models the probability of a link between them in the generated
network. The model also possesses a parameter that is responsible
for the clustering in the network. This clustering parameter, like the
clustering exponent in Kleinberg’s grid model, is also responsible
for expressing the homophily of the nodes in the network. The main
limitation of these models is the global information about the node’s
position on the grid or in the hierarchy.

2.2 Navigation Using Popularity
Since estimating similarity between nodes is not easy, Adamic et

al. [2] concentrated on the degree of nodes. They proposed an algo-
rithm for efficient search in power law networks which makes use
of the power law degree distribution to support the node selection.
The algorithm keeps track of a node’s identity and uses information
about the node’s degree and the node’s neighbors’ degree. The
biggest difference to the models elaborated in Section 2.1 is the
absence of global information about the target node and its position
in the network. Adamic et al. showed that degree-based naviga-
tion works fairly well in power law degree distributed networks in
comparison to Poisson degree distributed networks. Additionally,
in power law degree distributed networks, random walks tend to
select high degree nodes and achieve good results in those kinds of
networks.

2.3 Model for User Navigation
Decentralized search has a long tradition as a model for user nav-

igation in different types of networks. In [13], Helic et al. showed
that decentralized search can be used to model user navigation in
information networks. The differences and the similarities between
the click traces produced by decentralized search with hierarchi-
cal background knowledge and actual user navigation were studied
by Trattner et al. [29]. Research on the navigational efficiency
of different types (broad and narrow) of hierarchical background
knowledge conducted by the authors showed that both types are
useful. However, broader hierarchies performed better under the
limitations introduced by the user interface [11].

2.4 The Role of Clustering
In [31], Watts and Strogatz used the characteristic path length and

the clustering coefficient to define the class of navigable networks.
The characteristic path length is the averaged shortest path length
over all nodes in the network. The clustering coefficient can be
interpreted as the probability of a link to exist between two randomly
picked neighbors of a node [23]. In a network G = (V,E), where V
is a set of nodes and E is a set of edges, E ⊆V ×V . Let N(u) be the
neighborhood of the node u and du the degree of the node u. The
local clustering coefficient C(u) is then defined as the fraction of
pairs of neighbors of the node u that are themselves neighbors:

C(u) =
|evw ∈ E : v,w ∈ N(u)|

du(du−1)/2
. (1)

An alternative definition of the class of navigable networks was
given by Boguña et al. [4] who showed how the navigability of a
network depends on its degree distribution and its clustering coeffi-
cient. In the models described in Section 2.1 and Section 2.2, the
clustering exponent plays an important role for the emergence of
the small world networks and it is crucial for navigation.

In [16, 17], the authors studied the impact of the clustering expo-
nent on the navigability of a network, i.e., they showed for different
network sizes how the change of the clustering exponent affects the
effectivity and the efficiency of four different decentralized search
versions. In the next Section 3, we will present an adaptation of
decentralized search—partially informed decentralized search—and
we will use the degree distribution and clustering coefficient of the
networks to identify the nodes for which the partially informed
decentralized search will be able to make an informed decision.

3. METHODOLOGY
Decentralized search is an established model for navigation. Our

goal is to estimate the amount and type of structural information that
allows efficient navigation. To this end, we extend the decentralized
search algorithm in a way that allows us to simulate navigation with
limited amount and different kinds of structural information. By
doing so, we can tackle the research questions posed in Section 1.
Next, we describe (partially informed) decentralized search in Sec-
tion 3.1 before we discuss strategies for node selection in Section 3.2
and conduct our experiments in Section 3.3.

3.1 Decentralized Search
In Figure 2, we see an example of both a fully informed as well

as a partially informed decentralized search in a network. The goal
is to find the path between node 1 (purple) and node 33 (yellow).
The fully informed version of decentralized search uses the degree
information as shown in the first row of the table presented in
Figure 2 and navigates greedy by degree. Let I be an informed set
of nodes for which the algorithm can take an informed decision
regarding the degree of the candidate nodes. In the case of fully
informed search I =V , this means that the algorithm possesses the
degree information about all nodes in the network. This allows it to
rank all candidate nodes by their degree and to select the node with
the highest degree. The green arrows show how navigation proceeds
for this version of the algorithm. The red arrows show a path
produced by the partially informed version of decentralized search.
In this version, we only have a fraction of the popularity information
as shown in the second row of the table in Figure 2 and the informed
set I is a proper subset of V . The partially informed decentralized
search ranks the nodes by their degree and selects the node with
the highest one only if the set of candidate nodes C contains nodes
whose popularity value is available in I∩C 6= /0; otherwise, it picks
one node at random. In both versions of the algorithm, we avoid
already visited nodes and we terminate the search if the target node
is in the set of candidate nodes. For completeness, Figure 2 also
highlights an example path of an uninformed random walker (blue
arrows) that simply picks adjacent nodes at random for navigating.

With the partially informed version of decentralized search, we
can estimate the amount of information really needed for navigation
in a network. By varying the fraction of the nodes where the popu-
larity is available, we can derive the sensitivity of the algorithm to
the amount of popularity information. Thus, this allows us to study
our research questions at interest regarding what kind of and how
much structural information is necessary for efficient navigation.

Using the methodological concepts explained, we conduct our
experiments in Section 3.3. We focus on using the degree of the
candidate nodes to model the popularity of nodes. Degree corre-
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Figure 2: Different versions of decentralized search. Green: The arrows show the path produced by a fully informed decentralized search.
Red: The arrows show the path produced by a partially informed decentralized search. Blue: The arrows represent the path produced by a
uninformed random walker. The table shows the information provided to the algorithm for selecting the next step. The first row of the bottom
table contains the popularity scores of all nodes I =V provided to the fully informed decentralized search and the second row contains only a
small portion of all popularity scores I ⊂V . Fully informed and partially informed decentralized search apply greedy neighbor selection. The
partially informed search selects a random node when no information is available. Although finding the shortest path between the nodes 1
(purple node) and 33 (yellow node) is possible with both versions of decentralized search, in general this is not the case because the algorithm
can take an informed decision only on the local level.

sponds to the number of links attached to the node [23] and it is a
local metric:

du = ∑
v∈V

auv (2)

Thus, when we speak about fully and partially informed decen-
tralized search, we speak about fully and partially informed on a
local level. If the algorithm was informed on the global level—in
other words, if we possessed the adjacency matrix A of the network
G—we would be able to calculate the shortest path, which is highly
unlikely for real user navigation in large information networks on
the web.

3.2 Strategies for Node Selection
In the following, we define two strategies for selecting structurally

important nodes: the popularity strategy and the clustering strategy.
The nodes selected by these two strategies are elements of the in-
formed set of nodes for which the partially informed decentralized
search is going to possess the information about their popularity
(i.e., degree) in the network. With these strategies, we can study
how the kind of structural information affects navigation.
Popularity Strategy. We sort the nodes by popularity in descending
order and take just the top k% of the sorted list. For these nodes, the
algorithm will make an informed decision regarding the popularity
of the nodes. The idea behind the popularity strategy for node
selection is the same as the idea to navigate by popularity, namely
highly popular nodes are very well connected. Selecting a highly
popular node increases the probability of finding the target node
under the nodes’ neighbors.
Clustering Strategy. We sort the nodes by clustering coefficient
in ascending order and take just the top k% of the sorted list. For
these nodes, we again provide the popularity value of the nodes to
the algorithm. Consider that with this strategy the algorithm also
navigates greedy by degree.

The rationale behind the clustering strategy for node selection is
that nodes with low clustering reduce the probability of a link to
exist between two random neighbors of a node. This means that
selecting a node with low clustering will provide nodes where the
neighbors are not connected. The absence of a link between two
neighbors of a node can be interpreted in the way that the neighbors
are just too different. This would imply that selecting nodes with
low clustering would provide nodes whose similarity between the
neighbors is very small and this would allow navigation between
clusters in the network. On the other hand, low clustering means
that in this network region there is a structural hole as defined by
Burt in [5]. The absence of connections between the nodes in these
regions of the network will give even a higher importance to the
existing connections resulting in a higher importance of the nodes
in these regions.

3.3 Evaluating Navigational Efficiency
As emphasized, we conduct experiments with two distinct strate-

gies for selecting the node members of the informed set having also
different informed set sizes. With the popularity and clustering strat-
egy (see Section 3.2), we examine how the exposure of the structure
of the information space through the interface affects the efficiency
of navigation. Furthermore, with the size of the informed set, we
investigate how much structural information is needed for efficient
navigation.

We conduct experiments on four different networks (see Sec-
tion 4): (i) Wikipedia for schools (topological link network), (ii)
Facebook (ego network), Twitter (ego network) and (iv) DBLP
(co-authorship network). The four datasets can be seen as represen-
tatives of popular networks in information system on the web. For
each network, we generate thousand navigational missions contain-
ing of one start node and one target node chosen randomly with
at least one path between them. The goal for the algorithm is to
reach the target nodes. We break up the search after 20 iterations
on the small networks (Wikipedia for schools and Facebook) and
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Figure 3: Degree distributions on log scaled axes. We see that all networks have a power law like degree distributions. This implies that
degree greedy navigation will be very successful. For α-values cf. Table 2.

50 iterations on the big networks (Twitter and DBLP). We conduct
experiments with degree as local popularity metric.

Note that for a set of size 0% of all nodes in the network, we
navigate without any structural information. With this setting, the
partially informed decentralized search reduces to a uninformed
random walker (cf. Figure 2) which can serve as a baseline for
our experiments as it corresponds to a third (random) strategy for
selecting important nodes. For a set size of 100%, we navigate with
all available information. This means that the partially informed
search upgrades to a fully informed decentralized search.

As we are interested in examining the impact of the amount and
kind of structural information provided to the partially informed de-
centralized search algorithm, we also need to evaluate the efficiency
of the algorithm. To that end, we focus on two metrics: the success
rate and the stretch. Success rate and stretch respectively measure
the effectivity and efficiency of the search. We calculate the success
rate as:

s =
|W |
|P|

(3)

It is the fraction of the set of successful missions W and the set
of all missions in the simulation P. The success rate measures the
percentage of cases in which the algorithm was able to find the
target node. Thus, the success rate measures the effectivity of the
algorithm. To measure the efficiency of the algorithm, we consider
the stretch defined as:

τ =
1
|W | ∑

s,t∈W

h(s, t)
l(s, t)

. (4)

Technically, the stretch is calculated by dividing the length of
the path produced by the algorithms h(s, t) with the length of the
shortest path l(s, t) between the start and the target nodes and then
averaging over all nodes.

4. DATASET DESCRIPTION
In this section, we give a thorough description of the studied

datasets and their structural properties. We analyze four different
networks (cf. Table 1) taken from the Stanford Large Network

Table 1: Datasets collection. The table shows the network type and
the number of nodes and edges. Two networks are directed and two
undirected. For each network type there is a small and a big network
regarding the nodes and the edges.

Name Type Nodes Edges
Wikifs directed 4,604 119,882

Facebook undirected 4,039 88,234
Twitter directed 81,306 1,768,149
DBLP undirected 317,080 1,049,866

Dataset Collection1. The Wikipedia for schools network represents
the topological hyperlink network derived from Wikipedia articles
for teaching purposes referred to as Wikipedia for schools (Wikifs).
The Facebook and Twitter datasets are ego-networks. Finally, the
DBLP dataset represents a co-authorship network.

Navigability of networks. In Figure 3, we see the degree distribu-
tions of the different datasets. All networks exhibit power law like
degree distributions at least for the tail. To get an initial idea of the
navigability of these networks, we apply the method presented by
Boguña et al. [4] who studied navigability of networks by looking
at their clustering coefficients and power law exponents. In Table 2,
we see that the values of the clustering coefficient of all networks
are in the range defined in [4]. Additionally, we determine the power
law exponent of the degree distributions with the methods presented
in [6, 3]. We see that if we try to fit the power law distribution for
the whole range of data points (xmin = 1), all networks are navigable
according to Boguña et al. [4]. This is not the case, if we try to find
the best power law fit and let the method estimate the best xmin. In
this case, only the Facebook network is efficiently navigable.

Inequality of degree distributions. The Gini index is a metric that
reviews the inequality in the degree distributions. A Gini index of
zero means that the degree is equally distributed over the network,
whereas a Gini index of one means that one node of the network
possesses all links. In Table 3, we highlight the Gini index and
the corresponding functions generating distributions with such in-
equality for the four datasets at hand. The corresponding generating
functions support the results of the estimated first data point. We
see that Wikipedia for schools, Facebook and DBLP possess Gini
indices of 0.54. The inequality in the degree distribution is more
explicit in the Twitter network. Inequality in the degree distribution
is important for achieving good results with greedy navigation since
it assures easy decision making.

1http://snap.stanford.edu/data/index.html

Table 2: Small world classification of the datasets. Depending on
the point from where we try to fit the power law in the distribution
(from the first data point or xmin estimated automatically), we see
that either all of the networks are efficiently navigable (the clustering
coefficient C and the power law exponent α are in the range defined
by Boguña et al. [4]) or just the Facebook network. Table 3 suggests
that we have higher trust in the results of the second row where the
xmin is placed automatically.

Network C α , xmin SW? α , xmin SW?
Wikifs 0.27 1.25, 1 3 3.05, 142 7

Facebook 0.61 1.26, 1 3 2.51, 47 3

Twitter 0.57 1.30, 1 3 3.27, 188 7

DBLP 0.63 1.48, 1 3 3.26, 29 7
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Figure 4: Clustering coefficient distribution. Most nodes in Wikipedia for school have clustering around 0.2 meaning that the network has
no clearly defined clusters. Facebook and Twitter exhibit similar distributions despite the different network size; there is a fraction of nodes
with clustering near zero and a bigger fraction of nodes with very high clustering near one. All other nodes have clustering coefficient nearly
uniformly distributed between zero and one. Very characteristic for the DBLP network is the high clustering coefficient; around half of the
nodes have a clustering coefficient of around one.

 0

 2x10
6

 4x10
6

 6x10
6

 8x10
6

 1x10
7

 1.2x10
7

 0  1  2  3  4  5

N
u
m

b
e
r 

o
f 
n
o
d
e
 p

a
ir
s

Distance

Wikifs

(a) Wikifs

 0

 1x10
6

 2x10
6

 3x10
6

 4x10
6

 5x10
6

 6x10
6

 0  1  2  3  4  5  6  7  8

N
u
m

b
e
r 

o
f 
n
o
d
e
 p

a
ir
s

Distance

Facebook

(b) Facebook

 0

 5x10
8

 1x10
9

 1.5x10
9

 2x10
9

 2.5x10
9

 3x10
9

 3.5x10
9

 0  1  2  3  4  5  6  7

N
u
m

b
e
r 

o
f 
n
o
d
e
 p

a
ir
s

Distance

Twitter

(c) Twitter

 0

 5x10
9

 1x10
10

 1.5x10
10

 2x10
10

 2.5x10
10

 3x10
10

 0  5  10  15  20  25

N
u
m

b
e
r 

o
f 
n
o
d
e
 p

a
ir
s

Distance

DBLP

(d) DBLP

Figure 5: Shortest distance distributions. Most of the node pairs in Wikipedia for schools have very short shortest paths; this makes this
network very efficiently navigable. We see that the Facebook and Twitter networks have very similar distributions despite the different network
size. Also, in these networks most of the node pairs have very short shortest paths. DBLP is the most difficult to navigate considering the
fraction of node pairs with relatively long shortest paths.

Pareto principle. Since all networks possess power law like degree
distributions, the Pareto principle suggests that we will need at least
20% of the nodes to achieve similar success rates and stretches for
the networks with the popularity strategy and partially informed
decentralized search as with a fully informed decentralized search.
Additionally, we see that only one network is navigable according to
the classification of Boguña et al.[4] (if we use higher xmin values),
thus, we cannot necessarily expect the popularity strategy with
smaller amounts of nodes to perform well in these networks. The
results presented in Section 5 contradict this intuition. We believe
that this is tightly related to the clustering coefficient distributions
for the four networks.

Differences in clustering coefficient distributions. In Figure 4,
we see that the networks possess very different profiles regarding
the clustering coefficient distributions. We see that the Facebook and
Twitter networks exhibit similar clustering coefficient distributions,
despite the different network size. In these networks, most of the
nodes have a clustering coefficient between 0.3 and 0.7. Nodes
in DBLP exhibit very high clustering coefficients and most of the
nodes in Wikipedia for schools have a clustering coefficient between
0.1 and 0.5. Thus, we also expect to see differences in the results
produced by the clustering strategy for node selection.

Shortest path distributions. Beside the clustering coefficient and
the degree distribution of a network, the shortest distance distribu-
tion is also important for the emergence of the small world property

Table 3: Gini Index. The table shows the Gini index of the used
networks and the corresponding distribution functions.

Network Wikifs Facebook Twitter DBLP
Gini Index 0.54 0.54 0.64 0.54

f (x) x2 x2 x3 x2

of a network [31] which significantly increases its navigability. The
shortest distance distribution also provides insight into how dif-
ficult it generally is to navigate a network. In Figure 5, we can
see the shortest distance distributions of studied networks. For the
Wikipedia for schools network, we see that most of the node pairs
have a shortest distance of three. The Facebook and Twitter network
exhibit a bit longer shortest distance, whereas DBLP has the longest
shortest distance distribution.

5. RESULTS
In the following, we provide the results of our empirical evalu-

ation. For both node selection strategies presented in Section 3.2,
the decentralized search algorithm navigates greedy by degree. The
amount of information needed for efficient navigation depends on
the type of the structural information used and differs in the distinct
networks.

Popularity strategy results. First, the popularity strategy tries to
identify important nodes based on their popularity. Figure 6 shows
the success rate and stretch for this strategy in all networks. In
this case, the algorithm achieves with just 1% of the nodes sim-
ilar efficiency results as with 100%. For Facebook, the partially
informed decentralized search achieves slightly worse results than
the fully informed search already with 2% for navigation by degree
and the same or even a bit better results with 25% of the nodes.
For this setting, the algorithm achieves similar performance as the
fully informed decentralized search for Wikipedia for schools and
Twitter also already with 1% of the nodes. We see that navigation in
DBLP is very difficult in general. The best results in this network
are realized with 2-3%.

Clustering strategy results. The clustering strategy tries to identify
structurally important nodes based on their clustering coefficient.
Figure 7 shows the success rate and stretch for greedy navigation
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Figure 6: Success rate (s) and stretch (τ) for popularity strategy for different amount of information. Left (a): The success rate achieved
for the popularity strategy and degree as popularity metric—the higher the better. To improve readability, we added one to all values and
logarithmically scaled the x axis which shows the amount of information used. Right (b): The stretch achieved for the popularity strategy and
degree as popularity metric—the lower the better. To improve readability, we added one to all values and scaled the axes logarithmically. We
can see that we can achieve the success rate and stretch levels of fully informed search already with very small amount of information—about
1-2%. Strongly outperforming the fully informed search is not possible with this strategy.

by degree. We see that for Wikipedia for schools and Twitter the
success rate initially falls with increasing amount of information,
and then it jumps to the level of the fully informed search at 2%
and 6% for Wikipedia for schools and Twitter, respectively. For
Facebook, we observe very interesting success rate values since we
are able to achieve considerably better results with less structural
information. The success rate grows from 1% to 6% of the nodes
to a value higher than the value achieved by the fully informed
search (100%). After a drawback between 6% and 9% of the nodes,
the success rate achieves even better results than for 6% with 15%
of the nodes. Using more than the top 15% of the nodes worsens
the success rate to the level of fully informed search. As before,
we can see that navigation in DBLP is also very difficult with this
strategy. The best results in this network are realized with 30% of
the structural information.

Findings. Next, we summarize the results in the following two
main findings answering the research questions tackled throughout
this work as proposed in Section 1.

(i) What kind of structural information is needed for efficient
navigation? Strongly outperforming the fully informed search with
the popularity strategy is not possible. With increasing amount of
information about the popularity, the success rate and the stretch
improves continuously. With the clustering strategy, it is partly
possible to substantially outperform the fully informed search. There
is an initial drawback in success rate and stretch in all networks with
the clustering strategy. After this initial drawback the success rate
and the stretch increase until the levels of the fully informed search
or even outperform the fully informed search.

Finding 1: Our results suggest that nodes with high popularity
and low clustering are very important and can guide navigation
very well and thus, should be exposed to the user through the
interface.

(ii) How much structural information is needed for efficient nav-
igation? With the popularity strategy, the levels of success rate
and stretch produced by the fully informed decentralized search are
achieved already with 1% of the popularity information. With the

clustering strategy, the levels of success rate and stretch produced by
the fully informed search are achieved with a bit more information
than with the popularity strategy, depending on the network.

Finding 2: Our results suggest that with intelligent selection of
nodes based on their structural properties, we can significantly
reduce the amount of information that is needed to be pre-
sented to the user in navigational interfaces without reducing
the efficiency of navigation.

6. DISCUSSION
In Section 6.1, we start with a discussion and interpretation of our

results (cf. Section 5) tailored around the research questions posed
in Section 1. In Section 6.2, we discuss the implications followed
by an elaboration of the advantages and limitations of our approach
in Section 6.3.

6.1 Discussion and Interpretation of Results
Quality of Structural Information—Popularity vs.
Clustering. Ranking the nodes by popularity and clustering is
a good way to identify structurally important nodes. Furthermore,
if the popularity information is combined with small amounts of
clustering information which is a local metric, we can navigate even
more efficiently. Nodes with high popularity and low clustering are
very important and can guide navigation very well and should be
exposed to the user through the interface. Knowing the important
nodes on the local level regarding popularity and clustering can
result in reducing the amount of nodes that need to be exposed to the
user. This way we would be able to relax constraints of the screen
size [12]. The initial drawback in the performance of the algorithm
for this strategy can be explained by the degree distributions of the
informed set of nodes. If the set is too small, there are not enough
nodes with high popularity. Once the informed set has a sufficient
amount of nodes for which the user has an intuition not only about
the popularity but also about the clustering coefficient of the nodes,
the user can navigate more confidently towards the target.
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Figure 7: Success rate (s) and stretch (τ) for clustering strategy for different amount of information. Left (a): The success rate achieved
for the clustering strategy and degree as popularity metric—the higher the better. To improve readability, we added one to all values and
logarithmically scaled the x axis which shows the amount of information used. Right (b): The stretch achieved for the clustering strategy and
degree as popularity metric—the lower the better. To improve readability, we added one to all values and scaled the axes logarithmically. We
can see that for achieving the success rate and stretch levels of fully informed search (100%) we need slightly more information with the
clustering strategy compared to the popularity strategy presented in Figure 6. Nonetheless, with this strategy, we are also able to outperform
the fully informed search in some networks by only utilizing a low amount of clustering information.

Amount of Structural Information—Partially vs. Fully
Informed Search. Surprisingly low amount of structural infor-
mation is needed to achieve the same or even better results than
with all information. This finding is really surprising if we consider
the level of inequality in the degree distributions suggested by the
Gini index and the exponent of the power law degree distribution (cf.
Table 2 and Table 3). For the popularity strategy, outperforming
the fully informed search is not possible, whereas for the clustering
strategy we are able to top the results produced by the fully informed
decentralized search.

6.2 Implications
Navigation in online networks is supported by smart user in-

terfaces like tag clouds, breadcrumbs, subcategories and related
categories. Normally, these navigational user interfaces make use
of algorithmically preprocessed information about the content of
the network. Our results have direct implications for these algo-
rithms and for the ways data is presented to the user through the
navigational interfaces.

Rethinking algorithms. Our findings suggest to reorganize the way
we build hierarchies and to rethink algorithms creating hierarchies
like [15, 12, 26, 7, 32]. In [12], the authors showed that the ability
of hierarchies to guide navigation is significantly reduced through
the restrictions introduced by the user interfaces. The main problem
identified by the authors was that the top level of the hierarchies
produced by the algorithms have too many subcategories—i.e., a too
high branching factor. To tackle this problem, they adapted one of
the best known algorithms for hierarchy induction proposed by Hey-
mann and Garcia-Molina [15]. This algorithm creates a hierarchy by
producing a similarity network. The hierarchy is then developed by
ranking the nodes in the similarity network by popularity. Nodes are
then placed in the hierarchy in a descending order of their popularity
and their similarity to nodes that are already in the hierarchy. This
way, nodes with high popularity are placed in the top of the hierarchy
and nodes with low popularity at the bottom. Our results suggest
an alternative ranking for the nodes of the similarity network. The
results of the popularity strategy suggest that we should concentrate
on the top 1% of the nodes in the network and try to produce a

hierarchy with a well structured top. In contrast, the order of the
bottom levels of the hierarchy is not really important, since we are
able to achieve the same efficiency in navigation with only 1% of the
nodes. This result also suggests that even if we break the semantics
in the low levels of the hierarchy, we still will be able to navigate
efficiently. Hints of how we should reorganize the top levels of the
hierarchy are given by the clustering strategy we presented. We can
re-rank the nodes of the similarity network considering not only
their popularity, but also their clustering coefficient.

Our result could also be applied to the adapted version of the
algorithm by Heymann and Garcia-Molina [15] proposed by Helic
and Strohmaier [12] which generates a hierarchy in two stages. First,
it produces hierarchies with a given branching factor. The largest
hierarchy is called the main tree and all other hierarchies are then
added to the main tree. After sorting the hierarchies by size, they
are attached to the main tree in a way that preserves the branching
factor of the hierarchy. Here, we could again try to re-rank the most
popular nodes also by their clustering and put them in the main tree
as suggested by the clustering strategy.

Presentation and information scent. Our results suggest that for
efficient navigation, only a very small amount of local popularity
and clustering information is necessary. Thus, we can derive that
for efficient navigation, the user needs to have a good intuition
only about the most important nodes in the network. Exposing the
nodes with high structural importance through the user interface
does not ensure that the user is going to select them. If the user has
no sufficient knowledge and understanding of the most important
nodes, the system has to deliver the explanation and in this way
strengthen the information scent of the user for these specific nodes
[24, 25]. By providing additional information about the important
nodes regarding popularity and clustering, the information system
would help the user to create an intuition about the presented choices.
Assuring that a user has a high understanding about the topology
of the information space—high exposure to the structurally most
important nodes—would allow us to reduce the actual amount of
nodes that are presented to the user though the interfaces. Without
such information, random navigation performs well, which is con-
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Figure 8: Informed sets overlap. The intersection size in per-
centage for the popularity and clustering strategy for the different
informed sets sizes (except for 100%, I =V ) of nodes used in the
experiments in Section 3.3. For the datasets at hand, there is no big
overlap in the informed sets selected by the two strategies. Addi-
tionally, with increasing set size the overlap does not necessarily
increase as so the efficiency of navigation (cf. Figure 6 and Fig-
ure 7).

sistent with previous results for navigation by popularity in power
law networks [2].

Helic et al. [14] studied the navigability of social tagging systems
and showed that the tagging networks are power law networks.
They showed that limiting the tag cloud size to practically feasible
sizes (e.g., 5%,10%) does not affect the navigability. Our results
suggest that we can reduce the tag cloud size even further to 1%
of the nodes, according to the popularity strategy. In the same
work, the authors also provided theoretical and empirical arguments
against existing approaches of tag cloud construction. Possible
improvements of these approaches can be achieved for instance
with alternative rankings considering the clustering of the tagging
network as the results of the clustering strategy presented.

6.3 Advantages and Limitations
In the following, we would like to address some limitations and

advantages of our work.

Correlation between strategies. It has been shown that networks
might exhibit a negative correlation between the degree and the
clustering coefficient of nodes based on the formal definition of the
clustering coefficient [28]. Due to this negative correlation, it is
possible that there is big overlap in the informed sets created by
the popularity and clustering strategy in this work. That is why it
is important to quantify up to which extent the two strategies for
important node selection differ in the experiments conducted in
Section 3.3. In Figure 8, we illustrate the size of the intersection of
the popularity and clustering strategies for all datasets for different
sizes of the informed sets of nodes. Overall, we can see that the
overlap of nodes between the two strategies is considerably low
for smaller set sizes. Not surprisingly, with increasing set size,
the overlap is generally rising as the chance of overlapping node
selection increases. However, as it can be seen in Figure 6 and
Figure 7, an increasing overlap does not reflect an increase in the
performance of the partially informed decentralized search. By and
large, these observations support the importance of the findings from
Section 5 and give a confirmation that both strategies select mostly

different nodes and structurally important nodes that could support
navigation.

However, there might exist some few nodes that are highly bene-
ficial to be included in an informed set for efficient navigation. Both
strategies might select them early on and as soon as they include
these nodes, efficiency increases drastically. Thus, in future work,
we plan on further investigating the overlaps between both strategies
which might also help us to find even better (potentially smaller)
informed sets that can guide navigation well.

Alternative strategies for node selection. With our experiments,
we have concentrated on the degree and clustering coefficient as
metrics for measuring the structural importance of nodes. Above,
we have discussed the potential correlation between both strategies
but have also shown that the overlap is low for small informed sets.
Nonetheless, other strategies might be amendable. For example,
previous work [28] has suggested an alternative way to calculate the
clustering coefficient by removing the degree bias (cf. Equation 1).
By utilizing this method, we might be able to further investigate the
differences of both strategies for finding important nodes for navi-
gation. Also, we could simply try to implement strategies for node
selection that produce mostly distinct sets of nodes. By doing so, we
might be able to further improve our approach potentially leading
to even better results in terms of success rate and stretch. Nodes of
the distinct sets selected by the strategies can then be exposed to
the user through the navigational interfaces. Also, there exist other
thinkable metrics (e.g., k-core and link irregularity) describing the
structure of a network that can be applied in straightforward fashion
[8, 9]. We leave these investigations open for future work.

Alternative user models. In our experiments we utilized a greedy
neighbor selection if at least one of the candidate nodes is in the
informed set of nodes otherwise we selected one at random. This
models a user who always follows her intuition if it has one. Al-
though this is a valid user model it is a very simple one. In future
work we plan to experiment with alternative neighbor selection
mechanisms that model a user who is greedy or stochastic to differ-
ent extents in following her intuition [13]. Additionally, it is also
thinkable to use different informed sets at different stages of the
search e.g., the informed set created with the popularity strategy can
be used in the beginning of the search where the user is interested in
exploring the information space, whereas the informed set created
with the clustering strategy can be applied in stages of the search
where bridging a gap between two clusters is needed.

Global information. One limitation of the decentralized search is
the amount of global information used for navigation. The models
presented by Watts et al. [30], Kleinberg [18, 19] and Boguña et al.
[4] make use of the global position of the target node. One could
argue that partially informed decentralized search is using to much
global information in the sense that it uses the information about the
distribution of the degree and clustering coefficient. A way to tackle
the problem would be to make a random sample of n% (i.e., 30%)
of the nodes and apply the popularity and the clustering strategies
only at these n% of the nodes in the network.

7. CONCLUSION
Navigational interfaces are only useful for augmenting navigation

to the extent to which they are able to expose the underlying struc-
ture of the information space. In this paper, we have been interested
in studying (i) which and (ii) how much structural information is
necessary for properly exposing the hidden structure of the informa-
tion space. To that end, we have utilized an adapted version—i.e.,
partially informed—of the message passing decentralized search
algorithm. This adaption allows to model a user that is limited in
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her exposure to the structure of the information space having only
limited knowledge about the topology of the information space. In
detail, we have focused on two strategies for selecting important
nodes based on their (i) popularity and (ii) clustering coefficient.

With simulations on four distinct datasets, we have observed that
a surprisingly low amount of structural information is needed by
the partially informed version of decentralized search in order to
achieve the same or even better performance than the fully informed
decentralized search. Besides the popularity, for choosing struc-
turally important nodes, also the clustering coefficient has turned
out to be a good indicator for this task. The clustering strategy
would expose nodes of high structural importance to the user which
can be used to reduce the amount of information offered to the user
and relax constraints posed by the limited size of the screen. Our
results have implications on the algorithms used for the structuring
of the information space. These algorithms should take into account
the supportive properties of the clustering coefficient for navigation.

In future work, we would like to propose and evaluate another
version of decentralized search that models exploitation on the local
level. In this version, we plan on combining centrality metrics
as proxies for popularity and clustering information as a proxy of
homophily. With this extended version, we would like to study how
the clustering coefficient can be used to jump from one network
region to another or to stay in the same cluster and explore it.
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