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Abstract—IP Addresses are a central part of packet- and
flow-based network data. However, visualization and similarity
computation of IP Addresses are challenging to due the missing
natural order. This paper presents a novel similarity measure
IP2Vec for IP Addresses that builds on ideas from Word2Vec, a
popular approach in text mining. The key idea is to learn simi-
larities by extracting available context information from network
data. IP Addresses are similar if they appear in similar contexts.
Thus, IP2Vec is automatically derived from the given network
data set. The proposed approach is evaluated experimentally on
two public flow-based data sets. In particular, we demonstrate
the effectiveness of clustering IP Addresses within a botnet data
set. In addition, we use visualization methods to analyse the
learned similarities in more detail. These experiments indicate
that IP2Vec is well suited to capture the similarity of IP Addresses
based on their network communications.

I. INTRODUCTION

The idea of detecting novel or obfuscated attacks using data

mining algorithms is followed by the community over decades.

An overview of the community effort with regard to this issue

can be found in [1], [2] and [3]. Yet, most of these approaches

do not operate successfully in real operational environments.

Sommer and Paxon [4] identified various reasons (e.g. the lack

of publicly available training data sets, the variability of input

data or the high cost of false positives) for the limited success

of anomaly-based intrusion detection systems. In this work,

we focus on a specific problem within that setting.

Problem. In particular, we focus on network-based data

and tackle the problem of calculating behavioral similarities

between IP Addresses. IP Addresses are typical features in

packet- and flow-based network data. Although these features

look like numbers at first sight, they need to be treated like

categorical features. Distance measures like the Minkowski dis-
tance cannot be applied easily. Consequently, many standard

data mining algorithms cannot be used for network-based data

since the data encompass continuous as well as categorical

features.

Objective. We endeavor to find continuous vector repre-

sentations (so called embeddings) for IP Addresses that carry

information about their behavior within the network. To that

end, we propose an approach - which we call IP2Vec -

that can derive such representations of IP Addresses from

contextual information given in flow-based data. These real-

valued vector representations define meaningful similarities

between IP Addresses with respect to their behaviour. Within

this space, similarity measures like the Cosine similarity (or

distance measures like the Minkowski distance) can be used

to calculate behavioral similarities (distances) between IP
Addresses. As a consequence, the vector representations of

IP Addresses can be used as features for data mining methods

and enable them to exploit the encoded behavioral information.

The IP Address representations can also be visualized to gain

further insights into the collected flow-based data.

Approach and Contributions. Processing of non-

continuous features is a well-known problem in text mining.

Word2Vec [5] is an algorithm which uses a text corpus as

input and creates real-valued vector representations of words

as output. Word2Vec has been proven highly successful in

natural language processing in different settings [6]. Since

the underlying constellation exhibits some similarities to the

domain of network data, we transfer this approach to flow-

based network data to learn real-valued vector representations

of IP Addresses. In our setting, we use the captured flow-

based data set as text corpus and the IP Addresses, Ports
and Protocols as the vocabulary. The main idea is to train

a fully connected neural network with a single hidden layer

which is much smaller than the input and output layer of the

network. The number of neurons in the input layer depends

on the size of the vocabulary within the given data set. The

size of the output layer is identical to the input layer. After

training, the neural network is not actually used. Instead, we

use the weights between the input and hidden layer of the

neural network as vector representations of the IP Addresses.

We experimentally illustrate our approach for clustering

hosts with similar behaviour on two public flow-based data

sets: CTU-13 [7] and CIDDS-001 [8]. Further, we use t-
SNE [9], a technique for visualizing high dimensional vector

spaces in two-dimensional spaces, to illustrate the learnt

similarities.

Our main contribution is the presentation of IP2Vec, an un-

supervised approach to learn vector representations of IP Ad-
dresses which can be used in order to assess the contextual

similarity of these IP Addresses. To that end, we build upon

ideas of Word2Vec and apply an analogous approach to IP
Addresses by defining a context based on flow-based network

data.

Structure. The rest of the paper is organized as follows:

Related work on handling IP Addresses in anomaly-based

network intrusion detection systems is discussed in the next
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section. Since our proposed approach is based on Word2Vec,

we provide a short description of Word2Vec in Section III.

Section IV describes the proposed IP2Vec approach in detail.

An experimental evaluation is given in Section V. Section VI

discusses the results as well as advantages, disadvantages and

open issues of IP2Vec. The last section summarizes the paper.

II. RELATED WORK

This section reviews related work on processing IP Ad-
dresses within anomaly-based network intrusion detection

systems. A comprehensive review of distance measures used

for network intrusion anomaly detection is given in [10].

Weller-Fahy et al. [10] discuss various types of distance

measures and their theoretical background as well as their

use on packet- and flow-based network data. In the following,

we concentrate on the different approaches of processing IP
Addresses within network data. We categorize them into (I)

ignoring IP Addresses for distance calculation, (II) extracting

meaningful features from IP Addresses, and (III) defining

metrics on IP Addresses.

Tran et al. [11] proposed a real-time flow-based intrusion

detection system (IDS) which falls within category (I). The

authors use a block-based neural network and integrate it

within a high-frequency FPGA. They extract only four features

(Packets, Bytes, Duration and Flags) from the available flow-

based features and use them as input for their IDS. Najafabadi

et al. [12] analyse the detection of RUDY attacks based on

flow-based network data using classification algorithms. RUDY
attacks are application layer DoS attacks and generate much

less network traffic than traditional DoS attacks. For the detec-

tion of this type of attack, the authors extract several features

from flow-based data, but they do not include IP Addresses in

their feature list. Similarly, Najafabadi et al. [13] analyse the

detection of SSH Brute Force Attacks on flow-based network

data. Different classification algorithms are evaluated with two

different subsets of features. IP Addresses appear in neither

of these subsets. DISCLOSURE is a flow-based approach for

botnet command and control server detection [14]. Bilge et

al. [14] use IP Addresses and Ports to distinguish between

client and server, but for distance calculation IP Addresses
are ignored. Beigi et al. [15] evaluate different flow-based

features for botnet detection. However, they do not consider IP
Addresses in their selected feature subsets. Further anomaly-

based approaches which do not consider IP Addresses are [16],

[17], or [18].

The second category includes anomaly-based approaches

that extract features from IP Addresses. One approach is to

binarize the IP Address and extract 32 binary features from

each IP Addresses [19]. More common approaches aggregate

flows over time windows and calculate features out of these

aggregations. Garcia et al. [7] presented such an approach

for behavioural-based botnet detection. Their method BClus

partitions the flow-based data stream in time windows and

aggregates the flows with respect to their Source IP Address
in each time window. Then, new features (e.g. the number

of unique Destination IP Addresses contacted by this Source

IP Address) are calculated for each aggregation and machine

learning methods are applied on these aggregations for botnet

detection. A similar approach is presented by Mathur et

al. [21]. The authors aggregate all flows from the same IP
Address within a time window and calculate features such

as the arithmetic mean of Destination IP Addresses (treating

IP Addresses as integers) or the entropy of the distribution

of these Destination IP Addresses. The same idea is used in

the intrusion and insider threat detection toolset CUF [20].

CUF [20] aggregates all flows from the same Source IP Ad-
dress within a time window and calculates new features based

on these aggregations. In [22], machine learning approaches

are used to classify host roles on flow-based data. Here, the

authors also aggregate the flows over time windows and extract

features (e.g. sum of first byte of other parties’ IP Addresses)

out of the IP Addresses.

Approaches from category (III) define metrics based on

IP Addresses. A simple metric is used in [23]. The authors

interpret IP Addresses as 32 bit integers and calculate distances

using the Minkowski distance on these integers. Another

popular approach is the transformation of IP Addresses to

geographical locations [24] or [25]. One advantage of this

transformation is that geographical locations are real numbers

and standard distances measures can be applied. A more

sophisticated approach is developed by Coull et al. [26].

The authors used domain knowledge to define a hierarchy

among IP Addresses. The distance between two IP Addresses
is determined by the level of the hierarchy at which the

values differ. Coull et al. use the categorization Unicast,
Multicast, Broadcast, Public or Private IP Address to build

their hierarchy. However, such a metric considers only the

network structure and not the behaviour of the hosts. Recently,

Jakalan et al. [27] proposed another approach that falls within

category (III). In their work, the authors divide IP Addresses
in two categories: inside and outside the network. Then, the

authors define the similarity between inside IP Addresses by

considering the number of common outside Destination IP
Addresses.

Another approach of processing IP Addresses could be the

use of categorical distance measures like ConDist [28], [29],

DILCA [30], or the distance measure from Jia and Cheung

[31]. These distance measures use correlated context attributes

to determine distances between categorical values.

In addition to these approaches, Henry [32] uses Word2Vec
for calculating similarities between network flows. Our ap-

proach is similar in spirit, but we adopt Word2Vec to learn

similarities between IP Addresses based on network flows.

This allows us to calculate similarities between IP Addresses
and not between concrete flows. Further, the size of the input

vocabulary is reduced significantly.

Our approach belongs to category (III) and defines a metric

for IP Addresses. However, we do not use additional domain

knowledge like [26]. Instead, we learn the similarity between

IP Addresses by extracting information from the observed

network data like [27]. In contrast to [27], we use the default

five tuple of flow-based data and transfer the embedding idea
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of Word2Vec - which works well for word similarities - to IP
Addresses.

III. WORD2VEC

Our approach is based on Word2Vec [5], [33]. Word2Vec
aims at embedding words into a lower-dimensional feature

space based on the context in which they frequently occur,

such that words with similar contexts are near each other in

feature space. Recently, this approach has been successfully

applied to derive lower-dimensional feature vectors for nodes

in large graphs, by adapting the notion of context [34], [35].

Since we propose a similar adaptation for flow-based data,

we provide a short description of the underlying idea of

Word2Vec based on [5], [33] and [36].

A. Model

The basis of Word2Vec is a neural network with a single

hidden layer. Since neural networks cannot be fed with words,

each word is represented as a one-hot vector and the length

of this vector is equal to the size of the vocabulary. Let us

assume a vocabulary of 20,000 words. Then, the one-hot vector

has 20,000 components (one for each word) and only one

component is 1, while all the others are 0. The number of

input and output neurons of the neural network is equal to the

size of the vocabulary. Further, the output layer uses a softmax

classifier and indicates the probabilities that a particular word

appears in a specific context. The number of neurons in the

hidden layer is much smaller than in the input layer. Mikolov

et al. [5] used 300 neurons in their hidden layer.

B. Training

The neural network is trained using a large text corpus. In

the following, the training process will be explained based

on an example. Let us assume that Computers are subject to
security attacks is a training sentence. Figure 1 illustrates the

generation of training samples from this sentence.

Initially, a so-called input word is selected from the training

sentence. Next, words from the surrounding window (we refer

to them as context words) of the input word are chosen for

building training samples. In Figure 1, window size of 2 is

used.

In Word2Vec, the neural network is fed with the input word
and tries to predict the probability of the context word. For

our training samples (see Figure 1), the probability is 1 for

the context word and 0 for all other words. The output layer

of the neural network indicates how likely each word of the

vocabulary may be found in the context of the input word [36].

C. Negative Sampling

A vocabulary size of 20,000 and 300 hidden neurons would

lead to 60 million weights each in the hidden and the output

layers in a fully connected neural network. Further, we use a

large text corpus for training which leads to a huge number

of training samples. As a consequence, the training process of

the neuronal network is very time-consuming.

Therefore, Mikolov et al. [5] introduced negative sampling

for training. When using negative sampling, only a small part

Fig. 1. Generation of training samples. The input words are highlighted in
blue colour and the context words are highlighted in black frames with white
background. The right side of the figure shows the generated training samples
for the corresponding combinations of input word and context words.

of the weights of the neural network is updated for each

training sample. Instead of updating all weights of the neural

network, only the weights of the correct output and a few

randomly selected wrong output neurons are updated.

D. Usage

After training the neural network, the network as such is

not used for the task for which it has been trained. Instead,

we use only the weights at the hidden layer as feature vectors

of the words. Generally, this approach is a well-known trick

from unsupervised learning and amongst others it is used

by Autoencoders for dimensionality reduction. Through this

training, the neural network is able to learn similarities of

words.

For two different words (e.g. computer and notebook) with

similar contexts, the neural network needs to generate similar

output values [36]. As a consequence, the weights of computer
and notebook must be similar.

IV. IP2VEC

This section presents the proposed method IP2Vec in more

detail. We start with the problem setting and outline the

651659



0

0

0

1

0

0

0

0

1.1.1.1

2.2.2.2

3.3.3.3

4.4.4.4

21

80

465

TCP

0

0

0

0

1

0

0

0

21

w1

w2

w3

w4

input layer hidden layer output layer

V
o
ca
b
u
la
ry

Fig. 2. Architecture of the neural network used by IP2Vec. For reasons of
clarity, only the weights of one input and one ouput neuron are drawn. In
this figure, the neural network is trained with the sample (4.4.4.4 , 21). The
vector with the components w1, w2, w3 and w4 is the vector representation
of the IP Address 4.4.4.4.

underlying ideas of IP2Vec. Then, we describe how we define

a context for flow-based data and how training samples are

generated.

A. Problem Definition and Approach

Packet- and flow-based network data consist of continuous

(e.g. number of transferred Bytes) and categorical (e.g. Source
IP Address) features. This mixture and especially the presence

of categorical features complicates the application of many

data mining methods. This work transforms IP Addresses into

vectors from a vector spaces Rd such that we are in a position

to calculate meaningful similarities between IP Addresses.

The proposed approach follows the idea of Word2Vec (see

Section III), but adapts it to network data. We extract IP
Address contexts from flow-based data and build training

samples for training the neural network. Similar to Word2Vec,

the weights of the hidden layer can then be used as a contextual

feature representation for the IP Addresses. Figure 2 shows

the neural network architecture of IP2Vec. In the following,

the structure and training of the neural network is explained

in more detail.

B. Selection of Context

A core issue in the proposed approach is a proper definition

of context. This work relies on unidirectional flow-based data.

Flows describe meta information about connections between

endpoint devices and typically encompass Source IP Address,

TABLE I
INPUT DATA SET.

# Source IP Addr. Dest. IP Addr. Dest. Port Proto.
1 192.168.100.5 192.168.220.9 51479 TCP
2 192.168.220.9 192.168.100.5 445 TCP
3 216.58.210.19 192.168.200.8 44444 TCP
4 192.168.200.8 216.58.210.19 80 TCP
5 192.168.220.14 53.53.53.53 53 UDP

Source Port, Destination IP Address, Destination Port, Pro-
tocol, Bytes, Packets, TCP-Flags, Timestamp and Duration as

features.

Since each flow describes one network connection, the

features within a flow are content-related. Therefore, each

flow in our data set can be viewed as analog to a sentence
in Word2Vec.

Another issue is the selection of features which are then

used in further computations. The choice of features deter-

mines how similarities between IP Addresses are defined. In

our setting, we aim at identifying hosts with similar behaviour.

Therefore, we only choose features which describe the type

and target of the connections. Specifically, we use Source
IP Address, Destination IP Address, Destination Port and

Protocol as features. Table I shows five flows with these

features.

If the goal would be to distinguish real user behaviour from

scripted behaviour, it would make sense to include also the

Duration or the number of transferred Bytes in set of selected

features. Our experience shows that continuous features of

flow-based data (e.g. Duration, Bytes, or Packets) should be

discretized before processing in order reduce the possible value

range.

C. Generation of Training Samples

Each flow in Table I is considered a ”sentence” in the

training process.

Rather than using all features as input words, we only use

the Source IP Address, Destination Port and Protocol as input
words. Further, we use for each input word a specific subset of

context words. For instance, when using the Source IP Address
as input word, the Destination IP Address, Destination Port
and Proto are used as context words. In contrast to that, when

we use the Destination Port as input word, we only choose

the Destination IP Address as context word. Generally, the

complete generation process of training samples is illustrated

in Figure 3.

We do not use the Destination IP Address as input word
since we build upon unidirectional flow-based data. Responses

from the Destination IP Address are captured in a separate

flow where the roles of Source IP Address and Destination
IP Address are swapped (see flow #1 and #2 in Table I).

Therefore, considering both IP Addresses as input words

would create duplicate training samples. For the same reason,

we use only the Destination IP Address as context word for

the input words Proto and Destination Port.
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Fig. 3. Generation of training samples. The upper part of the figure shows
general process of training sample generation. Input words are highlighted
in blue colour and context words are highlighted in black frames with white
background. The right side of the figure shows the generated training samples
for the corresponding combinations of input word and context words. The
lower part of the figure provides an example and shows the generated training
samples for flow #2 from Table I.

D. Vocabulary

The values of our vocabulary depend on the training data

set and the selected features. In our setting, we select Source
IP Address, Destination IP Address, Destination Port and

Protocol. As a consequence, our vocabulary contains not only

IP Addresses, it also contains Port and Protocol values (see

Figure 2).

Consequently, we can not only calculate similarities be-

tween IP Addresses, we are also able to calculate similarities

between IP Address and Port or between two Ports.

E. Differences to Word2Vec

Word2Vec and IP2Vec differ in several aspects. First and

foremost, there is a fundamental difference between the un-

derlying data. Word2Vec uses a text corpus as input data

and extracts relationships through surrounding words while

IP2Vec relies on data from unidirectional flows. In contrast to

Word2Vec, IP2Vec does not use each selected feature as input
word and the surrounding features as context words. Rather,

we use only a subset of features as input word and individual

adapted subsets of features as context words.

Another fundamental difference between Word2Vec and

IP2Vec is that the similarity between words is constant over

time, while the similarity between IP Addresses varies over

time. The latter is due to the fact that similarities between

IP Addresses are computed on the basis of their network

connections. Network connections, however, are likely to

change, e.g. if a server provides additional services or a client

is infected with a virus. In order to exclude this effect, we

evaluate IP2Vec in the next section only on offline scenarios.

V. EXPERIMENTS

This section presents an experimental evaluation of IP2Vec.

IP2Vec aims to transform IP Addresses to vector represen-

tations such that IP Addresses with similar behaviour have

similar vector representations. For evaluating this transfor-

mation, we use the derived vector representations as input

for a clustering algorithm and a qualitative analysis based

on t-SNE visualizations. Evaluation of IP2Vec is successful,

when IP Addresses with similar behaviour are in the same

cluster and appear nearby in the visualization method. Further,

IP Addresses with different behaviour should be assigned to

different clusters and be far away in the visualization. We

compare IP2Vec with a graph-based similarity measure [26]

which is explained in Section V-A1.

A. Evaluation Methodology

1) Definition of a Baseline: We use the graph-based metric

proposed in [26] as baseline and refer to it as GRAPH. Figure 4

gives an overview of this metric.

Fig. 4. Graph-based metric for IP Addresses [26].

In the first step, GRAPH distinguishes the different cat-

egories of IP Addresses. IP Addresses are categorized

into Private, Public, Multicast, Broadcast, Link Local, De-
fault Network. Figure 4 indicates that the distance be-

tween a Private IP Address and a Multicast IP Address is

d(Private,Multicast) = 128. The distance between two

IP Addresses from the same category is calculated with the

Hamming distance on the binary representation of the IP
Addresses.

2) Evaluation Data Sets: For evaluation, we use two flow-

based benchmark data sets. The first data set is CTU-13 [7]

which contains normal and malicious network traffic. Different

malware scenarios are used to create the malicious network

traffic. Overall, the data set is split into 13 scenarios. In

this work, we use the split Scenario-50 because it contains

(like Scenario-51) the largest number of infected hosts. Host

identification is based on the Source IP Address. This scenario

contains more than 400000 different IP Addresses. We train

IP2Vec and GRAPH on the whole data set, but to reduce

the number of IP Addresses, especially for visualization,

we consider only IP Addresses from the recorded subnet

(147.34.X.X) in following visualization and clustering pro-

cesses. We label the IP Addresses according to infected and

normal.
The second data set in our evaluation is CIDDS-001 [8]

which comes with labelled flow-based data along with a

technical report with detailed information about hosts and their
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activities. From the CIDDS-001 data set, we use only week3
from the OpenStack part which is free of attacks. Again,

we use all IP Addresses for training IP2Vec and GRAPH,

but we consider only the internal hosts for visualization and

clustering. We label these IP Addresses according to server
and client.

3) Visualization: We use t-SNE [9] to visualize the similari-

ties between IP Addresses. t-SNE is a nonlinear dimensionality

reduction method for high-dimensional data. It reduces high-

dimensional data to two-dimensional spaces in such a way that

similar objects have small distances in two-dimensional space.

4) Clustering: After learning similarities between IP Ad-
dresses within the data sets, we want to cluster the vector

representations of IP Addresses. The choice of the clustering

algorithm depends on the following considerations: Normal

user behaviour can be very different (e.g. the behaviour

of a system administrator compared to the behaviour of a

recruitment consultant). The same applies to servers that offer

different services. Since we expect that IP2Vec learns also

these differences, we do not use a clustering algorithm which

groups all IP Addresses to a predefined number of clusters.

Instead, we require a clustering algorithm which groups only

IP Addresses with high similarities together.

Therfore, we use DBScan [37] in our experimental evalua-

tion. For all experiments, we set the parameter min sample
of DBScan to 3. The parameter epsilon is experimentally

determined in each experiment. We evaluate the clustering

result with three standard evaluation measures: accuracy,

homogeneity and completeness. All three evaluation measures

are scaled to the interval [0, 1] with higher values representing

better scores.

5) Configuration of IP2Vec: For IP2Vec, we use the fol-

lowing parameters. We define the size of the hidden layer to

32 neurons and we train the neural network with 10 epochs.

B. Experiment 1 - Identification of Botnets

In the first experiment, we trained IP2Vec on Scenario
50 of the CTU-13 [7] data set. After learning the vector

representations of the IP Addresses we use the IP Addresses
of the subnet (147.34.X.X) and visualized them with t-SNE.

Figure 5 illustrates the visualization for IP2Vec.

Figure 5 shows that infected hosts can be visually sep-

arated from normal clients. Blue crosses represent infected

hosts whereas red circles illustrate normal clients. Further,

it is observable that the behaviour of normal clients is very

different.

Figure 6 illustrates the visualization of the same IP Ad-
dresses using the GRAPH similarity measure. In this visu-

alization, infected hosts can not be visually separated from

normal hosts.

Then, we use both similarity measures to cluster the IP
Addresses with respect to their behaviour in two groups:

infected and normal. The assignment matrix for IP2Vec is

given in Table II and for GRAPH in Table III. Evaluation

measures for both are shown in Table IV.

TABLE II
ASSIGNMENT MATRIX FOR THE CTU-13 DATA SET USING IP2Vec AS

SIMILARITY MEASURE FOR DBScan.

Class Cluster 1 Cluster 2 Cluster 3 Num. Outliers
normal 1015 0 3 156
infected 0 10 0 0

TABLE III
ASSIGNMENT MATRIX FOR THE CTU-13 DATA SET USING GRAPH AS

SIMILARITY MEASURE FOR DBScan.

Class Cluster 1 Cluster 2 Cluster 3 Num. Outliers
normal 1017 3 3 151
infected 10 0 0 0

Table II shows that DBScan was able to separate the normal

and infected IP Addresses in different clusters for IP2Vec.

Further, IP2Vec and GRAPH generate a similar number of

outliers. Using GRAPH, DBScan was not able to create

homogeneous clusters. Cluster 1 contains normal and infected

IP Addresses (see Table III). Table IV shows that DBScan is

in combination with IP2Vec able to generate more accurate,

homogeneous and complete clusters than with GRAPH.

C. Experiment 2 - Server-Client Identification

In the second experiment, we used the above described part

of the CIDDS-001 data set for training IP2Vec. After learning

the vector representations of all IP Addresses, we visualized

only the internal IP Addresses with t-SNE. Figure 7 illustrates

the visualization for IP2Vec.

Figure 7 shows that clients and servers can be visually

separated from each other. Further, it is observable that linux

clients are more similar to each other than to windows clients.

In contrast to that, similarities between servers are smaller and

they have higher distances in the visualization.

Figure 8 illustrates the visualization of the same IP Ad-
dresses using GRAPH similarity measure.

In Figure 8, servers and clients can not be visually separated

from each other.

Then, we used DBScan to cluster the IP Addresses. The

assignment matrix for IP2Vec is given in Table V and for

GRAPH in Table VI.

Table V shows that DBScan was able to separate the clients

and servers in two different cluster. Further, one of the servers

is an outlier which could not be assigned to any cluster.

In contrast to that, using GRAPH as similarity measure for

DBScan, the resulting clusters are mixed with servers and

clients (see Table VI). However, all IP Addresses could be

TABLE IV
COMPARISON OF IP2Vec AND GRAPH FOR CLUSTERING THE IP Addresses

WITHIN THE CTU-13 DATA SET.

Similarity
Measure

Accuracy Homogeneity Completeness Num. Out-
liers

IP2Vec 0.8657 1.0 0.1072 156
GRAPH 0.8590 0.0248 0.0029 151
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Fig. 5. t-SNE visualization of the IP Addresses using the similarity measure IP2Vec for Scenario 50 of the CTU-13 data set.

Fig. 6. t-SNE visualization of the IP Addresses using the similarity measure GRAPH for Scenario 50 of the CTU-13 data set.

assigned to a cluster. Evaluation measures for both results are

shown in Table VII. It shows that DBScan is in combination

with IP2Vec able to generate more accurate, homogeneous and

complete clusters than with GRAPH.

VI. DISCUSSION

A. Experiment 1 - Identification of Botnets

In the first experiment, we evaluated IP2Vec and GRAPH
for the detection of infected IP Addresses within a botnet data
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Fig. 7. t-SNE visualization of the IP Addresses using the similarity measure
IP2Vec for the CIDDS-001 data set.

Fig. 8. t-SNE visualization of the IP Addresses using the similarity measure
GRAPH for the CIDDS-001 data set.

set. Infected hosts are characterized by the same activities (e.g.

try to infect further hosts or communicate with their botnet

master). Therefore, we assume that infected hosts are more

similar to each other than normal hosts. This assumption is

confirmed in Figure 5. Figure 5 shows that the infected hosts

represent a group with very high similarities to each other and

that they have smaller similarities to normal hosts. Using the

similarities of IP2Vec, we are able to separate the infected

hosts from normal hosts in the visualization as well as in the

TABLE V
ASSIGNMENT MATRIX FOR THE CIDDS-001 DATA SET USING IP2Vec AS

SIMILARITY MEASURE FOR DBScan.

Class Cluster 1 Cluster 2 Num.
Outliers

server 0 6 1
client 19 0 0

TABLE VI
ASSIGNMENT MATRIX FOR THE CIDDS-001 DATA SET USING GRAPH AS

SIMILARITY MEASURE FOR DBScan.

Class Cluster 1 Cluster 2 Cluster 3
server 2 1 4
client 17 2 0

TABLE VII
COMPARISON OF IP2Vec AND GRAPH FOR CLUSTERING THE IP Addresses

WITHIN THE CIDDS-001 DATA SET.

Similarity
Measure

Accuracy Homogeneity Completeness Num.
Outliers

IP2Vec 0.9615 1.0 0.8406 1
GRAPH 0.6923 0.4518 0.3434 0

clustering scenario. Since the normal behaviour of the hosts

differs more, DBScan was not able to group all normal hosts

to one cluster. In contrast to that, the infected hosts have a

very high similarity and are already integrated into the same

cluster at small epsilon values for DBScan.

If we use GRAPH as similarity measure, we are not able

to separate the IP Addresses into normal and infected. This is

observable in Figure 6. Normal and infected hosts are nearly

evenly distributed in the two-dimensional representation. The

reason for that is the similarity measure GRAPH which only

considers the given network information and does not consider

the behaviour of the hosts.

B. Experiment 2 - Server Client Identification

In the second experiment, we used IP2Vec and GRAPH to

learn similarities between IP Addresses within week 3 of the

CIDDS-001 data set. Then, we evaluated similarities between

IP Addresses through visualization and clustering.

Using the similarities of IP2Vec, we are able to separate

clients from servers in the visualization as well as in the

clustering scenario. The CIDDS-001 data set contains seven

servers: file, http, e-mail, backup and three printers. Since

these servers offer different services, the similarities between

them are smaller compared to the similarities between the

clients. Consequently, DBScan grouped not all servers to the

same cluster. The outlier in the clustering and visualization

(see Figure 7) is the file server.

In contrast to that, using GRAPH as similarity measure, we

are not able to separate the IP Addresses into two classes

(server and client). The reason is that GRAPH uses only

the given structural information and has no additional infor-

mation about the behaviour of the hosts. To fulfil this task

with GRAPH correctly, we would have to add a layer with

information about clients and servers in the hierarchy of the

similarity measure.

C. Advantages and Disadvantages

IP2Vec comes with advantages and disadvantages compared

to previous work. The disadvantages are primarily that the

behaviour of IP Addresses can change over time. This could

lead to problems in classification settings. Assume host A is

656664



a normal client in the training data set and host A is infected

with a virus in the test data set. If we include the vector

representations of IP Addresses from IP2Vec in the list of

classification features, then this feature would reinforce the

classification of flows from host A in the test data set as

normal and not infected. Therefore, vector representations of

IP Addresses should not be used as features in classification

tasks when behavioural changes of IP Addresses are expected.

However, there are two obvious solutions to that problem.

First, we could update the vector representations (embedding)

using new incoming flows. Second, we could calculate new

features based on the vector representations (e.g. the similarity

between Source IP Address and Destination IP Address or the

similarity between Source IP Address and Destination Port)
instead of using them directly. If the IP Address changes its

behaviour over time, then the IP Address establishes more

flows with smaller similarities in above mentioned features.

Especially this idea can be used to apply IP2Vec for change

detection.

Another challenge may be the occurrence of new IP Ad-
dresses. For IP Addresses which do not occur in the training

data set, no vector representations are available. A solution

to that problem could be to update and enlarge the neuronal

network with incoming flows or to relearn the vector represen-

tations. Another approach might be to learn a default vector

representation for unknown IP Addresses which is calculated

by means of the known IP Addresses.

The biggest advantage of IP2Vec is the transformation of IP
Addresses to continuous vectors. These vectors can be used

as input values for data mining methods and visualization

techniques. In our setting, we used the features Source IP Ad-
dress, Destination IP Address, Destination Port and Protocol
from the given flow-based data set. This has the additional

benefit that we learn not only vector representations for IP
Addresses but also for Ports and Protocols. Thus allows us

to calculate similarities between Ports and IP Addresses and

so on. Consequently, we learn vector representations for all

categorical features within a flow.

Another advantage of IP2Vec is that the selected context

features can be customized according to the desired target. If

someone wants to group IP Addresses with respect to their

traffic volume (e.g. for estimating bandwidth requirements),

the feature Bytes could be included in the set of context

features.

VII. SUMMARY

IP Addresses appear in packet- and flow-based network data.

The fact that IP Addresses are categorical attributes without

natural order complicates their treatment in data mining meth-

ods as well as their visualization.

We proposed IP2Vec, an unsupervised method to learn

similarities between IP Addresses. IP2Vec aims to compensate

the lack of inherent order within IP Addresses by learning

similarities between them using available context information

from flow-based data. Therefore, like Word2Vec, the proposed

approach uses a skip-gram neural network architecture to train

a fully connected neuronal network with a single hidden layer.

After training the neuronal network, the weights from input to

the hidden layer can be used as vector representations of IP
Addresses.

Preliminary results indicate the suitability of IP2Vec. For

the CTU-13 data set, IP2Vec was able to identify infected

IP Addresses by assigning very high similarities to them.

After learning similarities within the CIDDS-001 data set, the

clustering algorithm DBScan was able to assign all clients to

the same cluster.
In the future, we want to spend more effort in the evaluation

of IP2Vec in order to strengthen its general suitability. How-

ever, design of appropriate evaluation scenarios is challenging.

Further, we want to study the above mentioned open issues

of IP2Vec such that we are able to use this approach for

classification tasks and streaming scenarios.
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