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bstract

Social bookmarking tools are rapidly emerging on the Web. In such systems users are setting up lightweight conceptual structures called
olksonomies. Unlike ontologies, shared conceptualizations are not formalized, but rather implicit. We present a new data mining task, the mining

f all frequent tri-concepts, together with an efficient algorithm, for discovering these implicit shared conceptualizations. Our approach extends
he data mining task of discovering all closed itemsets to three-dimensional data structures to allow for mining folksonomies. We provide a formal
efinition of the problem, and present an efficient algorithm for its solution. Finally, we show the applicability of our approach on three large
eal-world examples.
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. Introduction

Social resource sharing systems on the web, such as
he shared photo gallery Flickr4 or the bookmarking system
el.icio.us,5 have acquired large numbers of users within a few
ears. Flickr is known to have more than 1.5 million users,6 while
el.icio.us has celebrated crossing the 1 million users threshold
n 2006.7 The reason for their immediate success is the fact that
o specific skills are needed for participating, and that these tools

ield immediate benefit for each individual user (e.g., organizing
nes bookmarks in a browser-independent, persistent fashion)
ithout too much overhead.

∗ Corresponding author.
E-mail addresses: jaeschke@cs.uni-kassel.de (R. Jäschke),

otho@cs.uni-kassel.de (A. Hotho), schmitz@cs.uni-kassel.de (C. Schmitz),
ernhard.ganter@tu-dresden.de (B. Ganter), stumme@cs.uni-kassel.de
G. Stumme).
1 http://www.kde.cs.uni-kassel.de
2 http://www.l3s.de
3 http://www.math.tu-dresden.de/∼ganter/
4 http://www.flickr.com
5 http://del.icio.us
6 http://money.cnn.com/magazines/business2/business2 archive/2005/12/01/
364623/
7 http://blog.del.icio.us/blog/2006/09/million.html
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The core data structure of a social resource sharing sys-
em is a folksonomy. It consists of assignments of arbitrary
eywords—called ‘tags’—to resources by users. Folksonomies
re thus a lightweight knowledge representation for sharing
nowledge on the web.

.1. Discovering shared conceptualizations

Unlike ontologies, folksonomies do not suffer from the
nowledge acquisition bottleneck, as the significant provision
f content by many people shows. On the other hand, folksono-
ies—unlike ontologies [29]—do not explicitly state shared

onceptualizations, nor do they force users to use the same tags.
owever, the usage of tags of users with similar interests tends

o converge to a shared vocabulary. Our intention is to discover
hese shared conceptualizations that are hidden in a folksonomy.
o this end, we present in this paper an algorithm, Trias, for dis-
overing subsets of folksonomy users who implicitly agree (on
ubsets of resources) on a common conceptualization.
Our algorithm will return a tri-ordered8 set of triples, where
ach triple (A, B, C) consists of a set A of users, a set B of tags,
nd a set C of resources. These triples—called tri-concepts in

8 See Section 2.4 for details.
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state of the art of the research areas relevant to this article: folk-
sonomies, Ontology Learning, Formal Concept Analysis and its
triadic version, and the mining of closed itemsets.
Fig. 1. History of iceberg tri-lattices.

he sequel—have the property that each user in A has tagged
ach resource in C with all tags from B, and that none of these
ets can be extended without shrinking one of the other two
imensions. Each retrieved triple indicates thus a set A of users
ho (implicitly) share a conceptualization, where the set B of

ags is the intension of the concept, and the set C of resources
s its extension. We can additionally impose minimum support
onstraints on each of the three dimensions ‘users’, ‘tags’, and
resources’, to retrieve the most significant shared concepts only.

.2. The problem of closed itemset mining in triadic data

From a data mining perspective, the discovery of shared con-
eptualizations opens a new research field which may prove
nteresting also outside the folksonomy domain: ‘Closed itemset

ining in triadic data’, which is located on the confluence of the
esearch areas of association rule mining and Formal Concept
nalysis.
Formal Concept Analysis (FCA) [74,25] is a mathematical

heory that formalizes the concept of ‘concept’, and allows for
omputing concept hierarchies out of data tables. At the end
f last century, one discovered that it also provides an elegant
ramework for significantly reducing the effort of mining asso-
iation rules [50,78,64]. A new research area emerged which
ecame known as closed itemset mining in the data mining
ommunity and as iceberg concept lattices [68] in FCA.

Independent of this development, Formal Concept Analysis
as been extended about ten years ago to deal with three-
imensional data [40]. This line of Triadic Concept Analysis
id not receive a broad attention up to now. With the rise of
olksonomies as core data structure of social resource shar-
ng systems, however, the interest in Triadic Concept Analysis
ncreased again.

With this paper, we initiate the confluence of both lines of
esearch, Triadic Concept Analysis and closed itemset mining
see Fig. 1). In particular, we give a formal definition of the

roblem of mining all frequent tri-concepts (in other terms: the
hree-dimensional version of mining all frequent closed item-
ets), and present our algorithm Trias for mining all frequent
ri-concepts of a given dataset. p
d Agents on the World Wide Web 6 (2008) 38–53 39

With its sets of users, tags, and resources, folksonomies
ave one additional dimension compared to typical basket anal-
sis datasets (which consist of the two dimensions ‘items’
nd ‘transactions’). Informally spoken, the task of mining all
requent tri-sets is to discover all triples of sets of users,
ags, and resources, resp., such that, for each triple of sets,
ll users in the first set have assigned all tags in the second
et to all resources in the third set, and that the cardinali-
ies of the three sets are above predefined minimum support
hresholds.9

As in the classical case, the resulting set of all frequent tri-
ets is usually too large, and can be condensed without any loss
f information. To this end, we adapt the notion of iceberg con-
ept lattices/closed itemsets to the three-dimensional nature of
olksonomies. With our Trias algorithm, we provide an efficient
ethod for computing all frequent tri-concepts.

.3. Contribution and organization of the paper

In this paper, we present the following contributions:

a formal definition of the problem of mining frequent tri-
concepts,
Trias, an efficient algorithm for solving the problem,
and a conceptual analysis of two social bookmarking systems
and an IT security manual by means of this algorithm.

The paper is organized as follows. In the next section, we
ntroduce folksonomies and social resource sharing systems in

ore detail and motivate the need of a conceptual clustering
pproach for this kind of data. In Section 2, we discuss the state
f the art and related work in the research areas of folksonomies,
ntology learning, Formal Concept Analysis, and closed item-
et mining. In Section 3.1, we provide the formal definition
f the problem of mining all frequent tri-concepts; in Section
.2, we introduce our Trias algorithm; and in Section 3.3, we
valuate its performance. In Section 4, we apply our approach
n three large-scale real-world applications: the folksonomy of
he popular bookmark sharing system del.icio.us, the collec-
ion of publications in our social reference management system
ibSonomy, and a manual for protecting IT infrastructure.
ection 5 concludes with an outlook on future work. Parts of

his article have been presented as a short paper at the Intl. Conf.
n Data Mining 2006 [35] and at the Intl. Conf. on Conceptual
tructures 2007 [36].

. Basic notions and state of the art

In this section, we recall the basic notions and discuss the
9 In classical association rule mining, the thresholds equal the minimum sup-
ort and minimal length thresholds.
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Fig. 2. Bibsonomy displays bookmarks and (Bib

.1. Social resource sharing systems and folksonomies

Social resource sharing systems are web-based systems that
llow users to upload their resources, and to label them with
rbitrary words, so-called tags. Each system has a specific type
f resources it supports. Flickr, for instance, enables the sharing
f photos, del.icio.us the sharing of bookmarks, CiteULike10

nd Connotea11 the sharing of bibliographic references, and
3Things12 even the sharing of goals in private life. Our own
ystem, BibSonomy 13([33], see Fig. 2), allows the sharing of
ookmarks and BibTEX entries simultaneously.

In their core, these systems are all very similar. Once a user
s logged in, he can add a resource to the system, and assign
rbitrary tags to it. The collection of all his assignments is his
ersonomy, the collection of all personomies constitutes the folk-
onomy. The user can explore his personomy, as well as the
ersonomies of the other users, in all dimensions: for a given
ser one can see all resources he has uploaded, together with the
ags he has assigned to them (see Fig. 2); when clicking on a
esource one sees which other users have uploaded this resource
nd how they tagged it; and when clicking on a tag one sees who
ssigned it to which resources.

The word “folksonomy” is a blend of the words “taxonomy”
nd “folk”, and stands for conceptual structures created by the

eople [73]. Folksonomies are thus a bottom-up complement to
ore formalized Semantic Web technologies, as they rely on

mergent semantics [61,62] which result from the converging

10 http://www.citeulike.org
11 http://www.connotea.org
12 http://www.43things.com
13 http://www.bibsonomy.org
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based) bibliographic references simultaneously.

se of the same vocabulary. The main difference to “classical”
ntology engineering approaches is their aim to respect to the
argest possible extent the request of non-expert users not to be
othered with any formal modeling overhead. Intelligent tech-
iques may well be inside the system, but should be hidden from
he user.

A folksonomy describes the users, resources, and tags, and
he user-based assignment of tags to resources. We recall here
ur formal definition of folksonomies [34], which is also under-
ying our BibSonomy system.

efinition 1. A folksonomy is a tuple F := (U, T, R, Y, ≺)
here

U, T , and R are finite sets, whose elements are called users,
tags, and resources, resp.,
Y is a ternary relation between them, i.e., Y ⊆ U × T × R,
whose elements are called tag assignments (tas for short),
and
≺ is a user-specific subtag/supertag-relation, i.e., ≺ ⊆ U ×
T × T , called is-a relation.

The personomy Pu of a given user u ∈ U is the restric-
ion of F to u, i.e., Pu := (Tu, Ru, Iu, ≺u) with Iu :=
(t, r) ∈ T × R | (u, t, r) ∈ Y}, Tu := π1(Iu), Ru := π2(Iu), and
u := {(t1, t2) ∈ T × T | (u, t1, t2) ∈ ≺}, where πi denotes the

rojection on the ith dimension.

Users are typically described by their user ID, and tags may

e arbitrary strings. What is considered as a resource depends on
he type of system. For instance, in del.icio.us, the resources are
RLs, in flickr, the resources are pictures, and in BibSonomy

hey are either URLs or publication entries.

http://www.citeulike.org
http://www.connotea.org
http://www.43things.com
http://www.bibsonomy.org
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As the is-a relation ≺ was only implemented in a rudimen-
ary way (so-called ‘bundles’ in del.icio.us) in one of the systems
onsidered in our paper at the time of writing,14 we will ignore it
or the purpose of this paper. Therefore, we will consider a folk-
onomy as a four-tupleF := (U, T, R, Y ), without the ≺ relation.
elated work: While the scientific community has only begun to
xplore folksonomies as a knowledge representation mechanism
s well as a source of data which can be mined for different pur-
oses, there is a growing number of publications concerned with
he various aspects of this new phenomenon. Overviews of social
ookmarking tools with special emphasis on folksonomies are
rovided by [31,43], as well as [46,60] who discuss strengths
nd limitations of folksonomies. Recent papers include [28,21]
hich focus on analyzing and visualizing the structure of folk-

onomies. The knowledge discovery, information retrieval, and
nowledge engineering communities are currently becoming
nvolved in this development, e.g., by enhancing recommenda-
ions given by the systems, improving search and ranking, and
tructuring the knowledge in a systematic way.

Cattuto et al. [17] investigate statistical properties of tagging
ystems and introduce a stochastic model of user behaviour;
30] analyses the dynamics and semantics of tagging systems,
nd [39] introduces further techniques to structure the tripartite
etwork of folksonomies. Recently, work on more specialized
opics such as structure mining on folksonomies, e.g., to visual-
ze trends [21] has been presented.

In Ref. [34], we presented FolkRank, a differential version
f the PageRank algorithm [11] for computing topic-specific
ankings of users, tags, and resources in a folksonomy. In Ref.
57], we computed association rules on del.ico.us data.

.2. Ontology learning

The term ontology learning was first introduced by Maedche
nd Staab in Ref. [44]. It stands for the task of (semi-) auto-
atically constructing an ontology or a domain model. Usually
achine learning or data mining algorithms are applied mostly

n textual data to extract the hidden conceptualization from the
ata and to make it explicit. Revealing the hidden conceptualiza-
ion of an author partially written in a text document can be seen
s a kind of reverse engineering task (cf. Ref. [18]). All ontology
earning approaches try to support the knowledge engineer by
etting up the ontology. Recent advances in ontology learning
re described in Ref. [12].

In this paper, we describe one step for learning ontologies
rom folksonomies. Other approaches are discussed in the next
aragraph.

Related work: Approaches trying to analyze the weakly
tructured information of folksonomies and use this to learn
onceptualization or ontologies are still rare. Among them is
he work of Mika [47], who defines a model of semantic-social

etworks for extracting lightweight ontologies from del.icio.us.
esides calculating measures like the clustering coefficient,

local) betweenness centrality or the network constraint on the

14 BibSonomy now provides the ≺ hierarchy as ‘relations’.
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xtracted one-mode network, Mika uses co-occurrence tech-
iques for clustering the folksonomy.

Heymann and Garcia-Molina [32] propose a new cluster-
ng algorithm to construct a tag hierarchy. Schmitz proposes
n Ref. [58] the construction of a subsumption tree consisting
f Flickr tags based on the tag co-occurrence network of tags.
oth approaches are showing ways to construct an ontology, but
oth are using only parts of the information of an folksonomy
s they are based on an aggregated graph rather than the full
olksonomy.

.3. Formal Concept Analysis

Formal Concept Analysis (FCA) is a conceptual clus-
ering technique that formalizes the concept of ‘concept’
s established in the international standard ISO 704—
concept is considered as a unit of thought constituted of two
arts: its extension and its intension [74,25]. This understand-
ng of ‘concept’ is first mentioned explicitly in the Logic of
ort Royal [4]. To allow a formal description of extensions and

ntensions, FCA starts with a (formal) context:

efinition 2 ([74]). A formal context is a tripleK := (G, M, I)
hich consists of a set G of objects [German: Gegenstände], a set
of attributes [Merkmale], and a binary relation I ⊆ G × M.

g, m) ∈ I is read as “object g has attribute m”.

This data structure equals the set of transactions used for
ssociation rule mining, if we consider M as the set of items and

as the set of transactions.

efinition 3 ([74]). For A ⊆ G, let

I := {m ∈ M | ∀g ∈ A : (g, m) ∈ I};
nd dually, for B ⊆ M, let

I := {g ∈ G | ∀m ∈ B : (g, m) ∈ I}.
ow, a formal concept is a pair (A, B) with A ⊆ G, B ⊆
, AI = B and BI = A. A is called extent and B is called intent

f the concept.

This is equivalent to saying that A × B ⊆ I such that neither
nor B be can be enlarged without violating this condition.

efinition 4 ([74]). The set B(K) of all concepts of a for-
al context K together with the partial order (A1, B1) ≤

A2, B2) :⇔ A1 ⊆ A2 (which is equivalent to B1 ⊇ B2) is a
omplete lattice, called the concept lattice of K.

The concept lattice is a hierarchical conceptual clustering
f the data which can be visualized by a Hasse diagram. This
isualization technique has been used in many applications for
ualitative data analysis [24]. An example of a Hasse diagram
s given in Fig. 6 and described in more detail in Section 4.1.

Related work: FCA has grown over the years to a powerful

heory for data analysis, information retrieval, and knowledge
iscovery [65]. In Artificial Intelligence (AI), FCA is used as
knowledge representation mechanism [66] and as conceptual

lustering method [63,15,48]. In database theory, FCA has been
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xtensively used for class hierarchy design and management
49,77,20,72,56,27].

The amount of publications on Formal Concept Analysis is
bundant. A good starting point for the lecture are the textbooks
25,16,24], the collection of FCA publications in BibSonomy,15

nd the proceedings of the Intl. Conference on Formal Concept
nalysis16 and the Intl. Conference on Conceptual Structures17

eries.

.4. Triadic Concept Analysis

Inspired by the pragmatic philosophy of Charles S. Peirce
ith its three universal categories [54], Rudolf Wille and Fritz
ehmann extended Formal Concept Analysis in 1995 with a

hird category:

efinition 5 ([40]). A triadic formal context is a quadruple
:= (G, M, B, Y ) where G, M, and B are sets, and Y is a ternary

elation between G, M, and B, i.e., Y ⊆ G × M × B. The ele-
ents of G, M, and B are called (formal) objects, attributes, and

onditions, resp., and (g, m, b) ∈ Y is read “object g has attribute
under condition b”.

A triadic formal context models exactly the structure of a
olksonomy F := (U, T, R, Y ) without tag hierarchy ≺.

efinition 6 ([40]). A triadic concept of F is a triple
A1, A2, A3) with A1 ⊆ G, A2 ⊆ M, and A3 ⊆ B with A1 ×

2 × A3 ⊆ Y such that none of its three components can be
nlarged without violating this condition.

From each of the three dimensions one obtains a quasi-order

1, �2, and �3, resp., on the set of all tri-concepts: For i =
, 2, 3, let (A1, A2, A3)�i(B1, B2, B3) iff Ai ⊆ Bi.

The definition of a triadic concept is the natural extension of
he definition of a formal concept to the triadic case. Alterna-
ively the definition can be described with ·I operators similar to
he dyadic case, but as there are now three dimensions involved,
he notation (which we omit here, cf. Ref. [40]) becomes more
omplex.

emma 1 ([40]). For two tri-concepts a and b, and for i �= j �=
�= i, a�ib and a�jb implies b�ka.

This implication is the triadic version of the dyadic proposi-
ion that for two dyadic concepts (A1, A2) and (B1, B2) holds

1 ⊆ B1 iff B2 ⊆ A1. In the dyadic case, the two orders induced
y the concept extents and the concept intents, resp. are thus
ually isomorphic. This allows for visualizing the concept lattice
n just one diagram and is at the same time the justification for
he famous support pruning strategy in the Apriori algorithm. In
he triadic case, the relationship between the three quasi-orders
s unfortunately weaker (as seen above), which makes both the
ining (see Section 3.2) and the visualization (see Section 4.2)
ore complex. Figs. 7–9 show examples of diagrams of triadic

oncept lattices; they are discussed in detail in Section 4.

15 http://www.bibsonomy.org/tag/fca
16 http://www.informatik.uni-trier.de/∼ley/db/conf/icfca/
17 http://www.informatik.uni-trier.de/∼ley/db/conf/iccs/
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Lehmann and Wille present in Ref. [40] an extension of
he theory of ordered sets and (concept) lattices to the triadic
ase, and discuss structural properties. This approach initiated
esearch on the theory of concept tri-lattices.

Whereas there have been some significant publications on
he mathematical properties of tri-lattices (see below), this
pproach had no large impact on real-world applications up
o now. This is mainly due to its above-mentioned resistance
o scalable visualizations. With the rise of social resource
haring systems on the web, triadic data move again in
he focus of many researchers. In this setting, one needs—
eside a more scalable visualization paradigm—knowledge dis-
overy and information retrieval methods and algorithms that
re able to handle very large datasets.

Related work: Following the initial paper [40] by Lehmann
nd Wille, several researchers started to analyze the mathe-
atical properties of tri-lattices, e.g., [7–9,19,23,75,76]. Refs.

40,19] present several ways to project a triadic context to a
yadic one. Ref. [67] presents a model for navigating a triadic
ontext by visualizing concept lattices of such projections. In
ef. [57], we discussed how to compute association rules from
triadic context, based on these (and other) projections. A first

tep towards truly ‘triadic association rules’ has been done in
ef. [23].

.5. Closed itemset mining

In terms of Formal Concept Analysis, the task of mining
requent itemsets [1] can be described as follows: Given a for-
al context K = (G, M, I) and a threshold minsupp ∈ [0, 1],

etermine all subsets B of M where the support supp(B) :=
ard(BI )/card(G) (with BI as defined above) is larger than the
hreshold minsupp. In warehouse basket analysis, M is the set
f items and G is the set of transactions.

The set of these so-called frequent itemsets itself is usually
ot considered as a final result of the mining process, but rather
n intermediate step. Its most prominent use are association rules
1]. Association rules are for instance used in warehouse bas-
et analysis, where the warehouse management is interested in
earning about products that are frequently bought together.

Since determining the frequent itemsets is the computation-
lly most expensive part, most research has focused on this
spect. Most algorithms follow the way of the well-known
priori algorithm [2], which is traversing iteratively the set of

ll itemsets in a levelwise manner. Algorithms based on this
pproach have to extract the supports of all frequent itemsets
rom the database. However, this is by no means necessary.

It turned out that FCA can significantly improve both the
fficiency and the effectiveness of frequent itemset mining.
50,78,64] discovered independently that it is sufficient to con-
ider the intents of those concepts where the cardinality of their
xtent is above the minimum support threshold. These frequent
oncept intents are called closed itemsets in association rule min-

ng, because the set of all concept intents is a closure system (i.e.,
t is closed under set intersection). The corresponding closure
perator is the consecutive application of the two ·I operators
efined in the previous subsection, i.e., for an itemset B, the

http://www.bibsonomy.org/tag/fca
http://www.informatik.uni-trier.de/~ley/db/conf/icfca/
http://www.informatik.uni-trier.de/~ley/db/conf/iccs/
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et BII is the smallest concept intent containing B. This closure
perator will be used in the Trias algorithm in Section 3.2.

In FCA, the equivalent notion is that of an ice-
erg concept lattice [68], which is the

∨
-semi-lattice

(A, B) ∈B(K) | card(A)/card(G) ≥ minsupp} with the order
efined in Section 2.3. The iceberg concept lattice visualizes
he most frequent concepts of a dataset [68], and allows for an
fficient visualization of a basis (condensed set) of association
ules [69,52]. These bases allow to reduce the number of rules
ignificantly without losing any information.

Related Work: The problem of mining frequent itemsets arose
rst as a sub-problem of mining association rules [1], but it

hen turned out to be present in a variety of problems: min-
ng sequential patterns [3], episodes [45], association rules [2],
orrelations [59], multi-dimensional patterns [37,41], maximal
temsets [6,79,42], closed itemsets [71,50,51,53].

The first algorithm based on the combination of association
ule mining with FCA was Close [50], followed by A-Close
51], ChARM [78], Pascal [5], Closet [53], and Titanic [68],
ach having its own way to exploit the closure operator which is
idden in the data. Many algorithms can be found at the Frequent
temset Mining Implementations Repository.18

Beside closed itemsets, other condensed representations have
een studied: key sets [5]/free sets [10], δ-free sets [10], non-
erivable itemsets [14], disjunction free sets [13], and k-free sets
55]. Closed itemsets and other condensed representations can
e used for defining bases of association rules [69,52].

. Mining all frequent tri-concepts of a folksonomy

In this section we formalize the problem of mining all fre-
uent tri-concepts of a folksonomy, present the Trias algorithm
or its efficient solution, and discuss its performance.

.1. The problem of mining all frequent tri-concepts

We will now formalize the problem of mining all frequent tri-
oncepts. We start with an adaptation of the notion of ‘frequent
temsets’ to the triadic case.

efinition 7. Let F := (U, T, R, Y ) be a folksonomy/triadic
ontext. A tri-set of F is a triple (A, B, C) with A ⊆ U, B ⊆ T ,
⊆ R such that A × B × C ⊆ Y .

As folksonomies have three dimensions which are completely
ymmetric, one can establish minimum support thresholds on all
f them. The general problem of mining frequent tri-sets is then
he following:

roblem 1 (Mining all frequent tri-sets). Let F :=
U, T, R, Y ) be a folksonomy/triadic context, and let
-minsupp,t-minsupp,r-minsupp ∈ [0, 1]. The task of mining

ll frequent tri-sets consists in determining all tri-sets (A, B, C)
f F with | A | / | U | ≥ u-minsupp, | B | / | T | ≥ t-minsupp,
nd | C | / | R | ≥ r-minsupp.

18 http://fimi.cs.helsinki.fi/
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This is actually a harder problem than the direct adaptation
f frequency to one more dimension: In classical frequent item-
et mining, one has a constraint—the frequency—only on one
imension (the number of transactions). Thus the equivalent
riadic version of the problem would need two minimum sup-
ort thresholds only (say u-minsupp and u-minsupp). However,
his seems not natural as it breaks the symmetry of the prob-
em. Hence we decided to go for the harder problem directly
which equals in the dyadic case the addition of a minimal
ength constraint on the itemsets). The lighter version with
nly two constraints is then just a special case (e.g., by letting
-minsupp := 0).

As in the dyadic case, our thresholds are mono-
onic/antimonotonic constraints: If (A1, B1, C1) with A1 being

aximal for A1 × B1 × C1 ⊆ Y 19 is not u-frequent, then all
A2, B2, C2) with B1 ⊆ B2 and C1 ⊆ C2 are not u-frequent
ither. The same holds symmetrically for the other two dimen-
ions.

With the step from two to three dimensions, however, the
irect symmetry between monotonicity and antimonotonicity
which results in the dyadic case from the dual order isomor-
hism between the set of concept extents and the set of concept
ntents) breaks. All we have in the triadic case is the following
emma which results (via the three quasi-orders defined in Sec-
ion 2.4) from the triadic Galois connection [8] induced by a
riadic context.

emma 2 (cf. Ref. [40]). Let both (A1, B1, C1) and
A2, B2, C2) be tri-sets with Ai being maximal for Ai × Bi ×
i ⊆ Y , for i = 1, 2.20If B1 ⊆ B2 and C1 ⊆ C2 then A2 ⊆ A1.
he same holds symmetrically for the other two directions.

As the set of all frequent tri-sets is highly redundant, we will
n particular consider a specific condensed representation, i.e.,
subset which contains the same information, namely the set of
ll frequent tri-concepts.

efinition 8. A tri-set is a frequent tri-concept if it is both a
ri-concept and a frequent tri-set.

roblem 2 (Mining all frequent tri-concepts). Let
:= (U, T, R, Y ) be a folksonomy/triadic context, and let

-minsupp,t-minsupp,r-minsupp ∈ [0, 1]. The task of min-
ng all frequent tri-concepts consists in determining all
ri-concepts (A, B, C) of F with |A|/|U | ≥ u-minsupp,
B|/|T | ≥ t-minsupp, and |C|/|R | ≥ r-minsupp.

Sometimes it is more convenient to use absolute rather than
elative thresholds. For this case we let τu := | U| · u-minsupp,
t := |T | · t-minsupp, and τr := |R| · r-minsupp.

Once Problem 2 is solved, we obtain the answer
o Problem 1 in a straightforward enumeration as
⊆ Ĉ, |A| ≥ τu, |B| ≥ τt, |C| ≥ τr}.

19 In the dyadic case this condition is implicitly covered by the use of BI in
he definition of the support since, for any given B ⊆ M, the set BI is always
aximal with BI × B ⊆ I.

20 This holds in particular if the tri-sets are tri-concepts, see Lemma 1.

http://fimi.cs.helsinki.fi/
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.2. The Trias algorithm for mining all frequent
ri-concepts

Our algorithm for mining all frequent tri-concepts of a folk-
onomy F := (U, T, R, Y ) is listed as Algorithm 1. A prior
ersion was used for analysing psychological studies [38]. That
pplication varied from Trias as it aimed at an iterative pruning
f the data set. Furthermore, it did not take into account any
requency constraints.

We let Ỹ := {(u, (t, r))|(u, t, r) ∈ Y}, and we identify the ele-
ents of U, T, and R with natural numbers, i. e. U = {1, . . . , |U|}

and symmetrically for T, R). In both its outer and its inner
oop, Trias calls the pairs of subroutines FirstFrequentConcept
(G, M, I), τ) and NextFrequentConcept ((A, B), (G, M, I), τ).
hese two routines provide an enumeration of all frequent dyadic
oncepts (A, B) of the formal (dyadic) context (G, M, I). The
ontext is passed over as input parameter. FirstFrequentConcept
eturns in (A, B) the first concept of the enumeration. NextFre-
uentConcept takes the current concept (A, B) and modifies it
o the next concept of the enumeration. This way, we compute
ll frequent maximal cuboids in the relation Y by consecutively
omputing maximal rectangles in the binary relations Ỹ and
, resp., where the condition in line 9 of Algorithm 1 checks
f the rectangle layers form a maximal cuboid. Note that A ⊆
B × C)Ỹ trivially holds, because of A = IỸ and (B × C) ⊆ I.
ence, only “⊇” has to be checked.

lgorithm 1. The Trias algorithm for mining all frequent tri-
oncepts

lgorithm 2. The FirstFreqentConcept function of the Trias
lgorithm
lgorithm 3. The NextFreqentConcept function of the Trias
lgorithm

w
o
g
i

d Agents on the World Wide Web 6 (2008) 38–53

For computing all (frequent) maximal rectangles in a binary
elation, one can resort to any algorithm for computing (iceberg)
oncept lattices. The enumeration can be done in any convenient
ay. For the inner and the outer loop, one could use different

lgorithms for that task.
In our implementation we equipped the NextClosure algo-

ithm [22,25] of the fourth author with frequency pruning for
mplementing the FirstFrequentConcept and NextFrequentCon-
ept routines (see Algorithms 2 and 3, resp.) for both the outer
nd the inner loop. This algorithm has the advantage that it needs
lmost no space in main memory.

NextClosure computes the concepts of a dyadic formal con-
ext (G, M, I) in a particular order, starting with the concept
∅I , ∅II ). For a given concept (A, B), NextClosure computes the
oncept (C, D) whose intent D is the next set after B in the so-
alled lectic order. The lectic order on sets is a total order and is
quivalent to the lexicographic order of bit vectors representing
hose sets.

To find the next concept we define, for B ⊆ M and i ∈ M,

⊕ i := (B ∩ {1, . . . , i − 1}) ∪ {i}.

y applying the closure operator X �→ XII to B ⊕ i, the algo-
ithm computes, for a given B, the set D := (B ⊕ i)II . This is
he lectically next intent, if B<iD holds, meaning that i is the
mallest element in which B and D differ, and i ∈ D.

The method NextFrequentConcept adopts this idea and addi-
ionally checks if the computed extent A := (B ⊕ i)I fulfills the
inimal support criterion before computing the intent D := AI .
his is done in line 4 of Algorithm 3 by considering the extent
only if it is large enough.
Taking a closer look on the function ·I revealed that it

emands the computation of several set intersections at a time.
ince profiling showed that this is the main bottleneck of the
lgorithm, we optimized this by first ordering the sets to be inter-
ected by size (with the smallest set first). Then the algorithm
ecursively intersects them with a procedure used for merge-
ort. This is possible, since every itemset of the binary context
an be accessed as ordered list in the data structure described in
he following.

Because two sortings of Y are needed, instead of storing both,

e just store the permutations for every order and an additional
ffset table which allows constant time access to the triples of a
iven tag, user, or resource. The chosen approach is exemplified
n Fig. 3. The table on the left contains the unsorted triples Y
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the Trias algorithm for directly mining frequent tri-concepts is
shown in Fig. 5. The logarithmically scaled y-axis depicts the
runtime of the algorithms in seconds while the x-axis shows
again the size of the Y relation. One can see that computing

Table 1
Examples of frequent tri-concepts of del.icio.us

A bibi poppy
B women cinema film

C http://www.reelwomen.org/
http://www.people.virginia.edu/∼pm9k/libsci/womFilm.html
http://www.lib.berkeley.edu/MRC/womenbib.html
http://www.beaconcinema.com/womfest/
http://www.widc.org/
http://www.wftv.org.uk/home.asp
http://www.feminist.com/resources/artspeech/media/femfilm.htm
http://www.duke.edu/web/film/pioneers/
http://www.womenfilmnet.org/index.htm#top
http://208.55.250.228/

A fischer gnat
B css design web

C http://www.quirksmode.org/
http://webhost.bridgew.edu/etribou/layouts/
http://www.picment.com/articles/css/funwithforms/
http://www.alistapart.com/articles/sprites/

A angusf carlomazza
B css design web

C http://www.positioniseverything.net/index.php
Fig. 3. Accessing triples in sorted order.

f which only the values from U are shown here. The table in
he middle describes the permutation which allows to access the
riples in lexicographic order. Finally, the right table contains,
or every element u ∈ U, an offset which points to the position
n the second table, which points to the first triple of that user
n the Y list. Together, all this allows constant time access to the
orted tag-resource set of every user.

.3. Performance of the Trias algorithm

As in the dyadic case, the number of (frequent) tri-concepts
ay grow exponentially in the worst case. Biedermann has

hown in Ref. [9] that the concept tri-lattice of the triadic context
f size n × n × n where only the main diagonal is empty has size
n. In typical applications, however, one is far from this theoret-
cal boundary. Therefore we focus on empirical evaluations on
large-scale real-world dataset.

For measuring the runtime and the number of frequent con-
epts we have evaluated the performance of Trias on a snapshot
f the del.icio.us system (which is described in more detail in
ection 4.1). It consists of all users, tags, resources and tag
ssignments we could download that were entered to the sys-
em on or before June 15, 2004. From this base set we created

onthly snapshots as follows. F0 contains all tag assignments
erformed on or before December 15, 2003, together with the
nvolved users, tags, and resources; F1 all tag assignments per-
ormed on or before January 15, 2004, together with the involved
sers, tags, and resources; and so on until F6 which contains all
ag assignments performed on or before June 15, 2004, together
ith the involved tags, users, and resources. This represents

even monotonously growing contexts describing the del.icio.us
olksonomy at different points in time. For mining frequent tri-
ets and frequent tri-concepts we used minimum support values
f τu := τt := τr := 2 and measured the run-time of our Java
mplementations on a dual-core Opteron system with 2 GHz
nd 8 GB RAM.

Fig. 4 shows the number of frequent tri-concepts versus the
umber of frequent tri-sets on the logarithmically scaled y-axis,
hereas the x-axis depicts the number of triples in Y which
rows from 98,870 triples in December 2003 to 616,819 in June

004. It shows a massive increase of frequent tri-sets in June
004 with only a modest growth of the number of frequent tri-
oncepts. This difference results from the fact that more and
ore users appear and start to agree on a common vocabulary,
Fig. 4. Number of frequent tri-sets vs. number of frequent tri-concepts.

hich leads to more frequent tri-concepts with larger volumes
rom June 2004 on. Such large concepts (like those shown in
able 1) contain many frequent tri-sets.

One can observe that the number of frequent tri-sets of every
napshot is always at least one magnitude of size larger than the
umber of frequent tri-concepts. Consequently, computing fre-
uent tri-sets is much more demanding than computing frequent
ri-concepts—without providing any additional information.

A comparison of the speed improvement gained from not
omputing all tri-concepts with an algorithm like Next Clo-
ure and afterwards pruning the non-frequent concepts but using
http://www.fu2k.org/alex/css/layouts/3Col NN4 FMFM.mhtml
http://glish.com/css/home.asp
http://www.maxdesign.com.au/presentation/process/index.cfm
http://unraveled.com/projects/css tabs/

http://www.reelwomen.org/
http://www.people.virginia.edu/~pm9k/libsci/womFilm.html
http://www.lib.berkeley.edu/MRC/womenbib.html
http://www.beaconcinema.com/womfest/
http://www.widc.org/
http://www.wftv.org.uk/home.asp
http://www.feminist.com/resources/artspeech/media/femfilm.htm
http://www.duke.edu/web/film/pioneers/
http://www.womenfilmnet.org/index.htm#top
http://208.55.250.228/
http://www.quirksmode.org/
http://webhost.bridgew.edu/etribou/layouts/
http://www.picment.com/articles/css/funwithforms/
http://www.alistapart.com/articles/sprites/
http://www.positioniseverything.net/index.php
http://www.fu2k.org/alex/css/layouts/3Col_NN4_FMFM.mhtml
http://glish.com/css/home.asp
http://www.maxdesign.com.au/presentation/process/index.cfm
http://unraveled.com/projects/css_tabs/
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ig. 5. Runtime of triadic Next Closure and Trias algorithm on del.icio.us
atasets.

ll tri-concepts is more than one magnitude more expensive
han mining only the frequent tri-concepts one is interested
n.

With these observations we conclude that the Trias algorithm
rovides an efficient method to mine frequent tri-concepts in
arge-scale conceptual structures.

. Applications

We have applied the algorithm on three real-world data
ets: the social bookmarking system del.icio.us, the IT Baseline
ecurity Manual of the German Federal Office for Informa-

ion Security, and the collection of publications in our social
eference management system BibSonomy.

.1. The social bookmarking system del.icio.us

First, we have analyzed the popular social bookmarking
ytem del.icio.us with our approach. Del.icio.us is a server-based
ystem with a simple-to-use interface that allows users to orga-
ize and share bookmarks on the internet. It is able to store for
ach URL, in addition to the tags assigned to it, a description
nd a note.

For detecting communities of users which have the same tag-
ing behaviour (an thus share their conceptualizations), we ran
he Trias algorithm on a del.icio.us snapshot consisting of all
sers, resources, tags and tag assignments we could download
hat were entered to the system on or before June 15, 2004
34]. The resulting folksonomy consists of |U| = 3, 301 users,
T | = 30, 416 different tags, |R| = 220, 366 resources (URLs),
hich are linked by |Y | = 616, 819 triples.
As a first step, we ran Trias on the dataset without restricting

he minimum supports (i.e., τu := τt := τr := 0). The result-
ng concept tri-lattice consists of 246, 167 tri-concepts. We then

nvestigated the concepts which contain two or more users, tags
nd resources, i.e., with τu := τt := τr := 2. There were 1,062
uch tri-concepts.21

21 Larger thresholds did not provide any results any more. This comes from
he fact that we took a rather early snapshot of del.icio.us, where the numbers
f users, tags, and resources were still rather small. See also Section 3.3.
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Table 1 shows three examples. The first of them shows that
he two users bibi and poppy have assigned the three tags women,
inema, and film to all the ten listed web pages, which are all
bout women in movies or women in the movie industry.

The two lower tri-concepts show that different tri-concepts
ith the same extent can co-exist.22 The first of them shows

hat the two users fischer and gnat agree (implicitly) in their
ssignments of the tags css, web, and design to the four listed
RLs, while the users angusf and carlomazza agree in assigning

he same tags to five completely different URLs. When inspect-
ng the corresponding web pages, one finds out that the content
f all resources is indeed very much related. These two related
ri-concepts may be exploited further for extracting relations
etween tags or for recommending to all of the four users to
tudy the posts of the other three.

Next, we wanted to study in more detail shared conceptual-
zations around the tags css, web, and design. To this end, we
omputed the concept lattice that is shown in Fig. 6. Its for-
al context (G, M, I) was constructed as follows. Its set G of

bjects was extracted from the set of all resources by select-
ng all those resources which were tagged with at least one of
hese three tags by at least k1 ∈N users. The set M contains all
ags. A tag t ∈ M is defined to be related to a resource r ∈ G

i.e., (r, t) ∈ I) iff ((|{u ∈ U | (u, t, r) ∈ Y}|)/(|{u ∈ U | ∃r′ ∈ R :
u, t, r′) ∈ Y}|)) ≥ k2, for a given k2 ∈ [0, 1].

In this analysis, we have set k1 = 5. This means that a
esource was considered only if at least five users assigned it
o at least one of the tags css, web, and design. This resulted
n 575 resources. The second pruning parameter was set to
2 = 0.5, i.e., at least half of the users who considered a
esource had to use a particular tag, otherwise the tag was not
ssigned to the resource. This resulted in a relatively sparse
ssignment which reflects only rather strong shared conceptu-
lizations. This way, only 22 tags were assigned to at least one
esource; and only 297 out of the 575 resources received at least
ne tag.

The resulting concept lattice is displayed in Fig. 6. Because of
pace restrictions, we pruned from it the tags rest, cms, wiki, xml,
onts, wordpress, google, search, colour, art, and music. These
ags formed singletons (i.e., separate nodes that were connected
nly to the top and to the bottom element of the lattice) with one
r two resources each.

Each node in the diagram is a formal concept according to
he definition in Section 2.3, i.e., a pair (A, B) where A is its
xtent (all resources belonging to it), and B is its intent (all
ags belonging to it). In the diagram, the extent of a concept
onsists of all resources attached to the concepts or to any of
ts sub-concepts; and the intent consists of all tags that are
ttached to the concept or to any of its super-concepts. The
eft-most concept, for instance, has the two URLs starting with

http://www.fiftyfoureleven. . .” as extent, and the set {php,css}
f tags as intent. The top node represents the concept (G, GI ),
nd the bottom node the concept (MI, M).

22 This is in contrast to the situation in the dyadic case, where equality in one
imension implies equality in the other one.

http://www.fiftyfoureleven
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Fig. 6. Most relevant tags and resources related to css, web, and design.
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attributes T the 377 listed threats, and as conditions R the 912
safeguards. They are related by 5,680 triples.24
Fig. 7. All frequent tri-concepts of the IT B

The diagram shows that most agreement exists for the usage
f the tag css, as it was assigned (according to our majority vote
ith the k2 threshold) to 235 resources, while web was assigned

o only 14 resources, and design to 31 resources. Apparently,
he latter are too general or polysemous terms to reach a large
greement about their usage.

The resulting concept lattice could now be used for
uilding a concept hierarchy. It suggests to the ontology engi-
eer, e.g., to model architecture as a sub-concept of design.
nother use of the concept lattice is a collaborative filter-

ng approach to web search. When a user is for instance
earching for “web design”, the system could recommend him
he web pages http://www.alistapart.com/articles/elastic and
ttp://9rules.com/version2/.

.2. IT baseline protection manual

To illustrate another use of iceberg tri-lattices, we focus

ow on a non-folksonomy application. The IT Baseline
ecurity Manual [26] of the German Federal Office for
nformation Security provides a description of a threat sce-
ario and standard security measures for typical IT systems,
ne Security Manual for τu = τt = τr = 3.

nd detailed descriptions of safeguards to assist with their
mplementation.23

Unlike a folksonomy, this manual has not been set up by
n open group of users, but by a closed group of experts of
he federal office. The manual has thus carefully been designed
y domain specialists, and can be considered as an ontology
a formal specification of the shared conceptualization of the
xperts of the federal office)—structured in form of a triadic
ontext. Here, we use our knowledge discovery approach not
or discovering a shared conceptualization, but for analysing it.
ven though the manual is smaller than a typical folksonomy

esulting from a social bookmarking system, it is still by far too
arge to be analyzed without technical support.

The core data of the manual forms a triadic context
U, T, R, Y ). We consider as objects U the 66 IT components, as
23 The online version of the manual is available at http://www.bsi.de/gshb/
24 See Refs. [19,70,76] for other analyses of this dataset.

http://www.alistapart.com/articles/elastic
http://9rules.com/version2/
http://www.bsi.de/gshb/


4 es an

l
t
m
u
o
d
S
o
c
e
t
h
t
T

c
l
C
t
V
C

t
(
s

l
a
t
t
h
c

o
s
fi
f
t
t
n

a
n
s
o
e
t
g
a

h
r
a
o
t
T

t
t
o
f

c
τ

4
d

r
p
&
s
t
f
B
s
g
e
m
l
c

p
o
u
w
s
a
(
t
a
p
i
i
t
1
t

O
d
c
i
c
remaining 1,333 tri-concepts thus all contain at least two users
and therefore represent shared concepts. To further analyze these
concepts, we next take a closer look on the tri-concepts which
contain at least three users, two tags and two publication entries
8 R. Jäschke et al. / Web Semantics: Science, Servic

From this dataset, we have computed the iceberg concept
attice for τu = τt = τr = 3. Its visualization in Fig. 7 follows
he conventions introduced in Ref. [40]. The five nodes in the

iddle are the five resulting frequent tri-concepts. The sets of
sers, tags, and resources composing a tri-concept can be read
ff the three sides of the triangle. There, three Hasse diagrams
isplay the three quasi-orders �1, �2, and �3 as introduced in
ection 2.4. The arrows guide the reader to the larger elements
f each quasi-order. Each node in a hierarchy represents the set
ontaining the labels attached to it plus all labels below. The
mpty nodes are not part of the quasi-order. They are just used
o be able to place each label once only. In the IT components
ierarchy on the right, for instance, the leftmost node represents
he set {Computer Centres, Data Media Archives, Server Room,
echnical Infrastructure Room}.

A node in the middle of the diagram represents then the tri-
oncept consisting of the three components it projects to. The
eft-most tri-concept, for instance, is the tri-concept ({Computer
entres, Server Room, Data Media Archives, Technical Infras-

ructure Room}, {Unauthorized entry into a building, Theft,
andalism}, {Locked doors, Entry regulations and controls,
losed windows and doors}).

The three corners of the inner triangle are not realized (as
here are no nodes on them). They stand for the tri-sets (∅, T, R),
U, ∅, R), and (U, T, ∅), resp., and are only realized if the first,
econd, or third threshold is set to zero.

The manual distinguishes seven classes of IT components,
ike Networked Systems and Telecommunications. The fact that
ll components that occur in the most frequent tri-concepts (i.e.,
he six components in the right-most hierarchy) are of the Infras-
ructure class indicates that this class was modeled with the
ighest level of detail. Surprisingly it surpasses more typical IT
lasses like the two mentioned above.

For having a closer look, we decrease the minimum thresh-
lds, e.g., to τu = 3, τt = τr = 2. The resulting tri-lattice is
hown in Fig. 8. It contains the previous five tri-concepts plus
ve new ones. We see that again the major contribution comes
rom the Infrastructure class, which is now extended by Protec-
ive cabinets. Additionally some more of the combinations of
hese components became frequent, indicated by the additional
odes in the right hierarchy.

With the decreasing thresholds, the lower left hierarchy grew
s well. It contains now additionally four threats in two separated
odes. These nodes are not comparable (in terms of set inclu-
ion) with the already existing nodes. The threats in the lower
ne of them—Failure of internal supply networks, Fire—are
xtending the list of threats against the Infrastructure class via
he IT component Building. The upper hierarchy shows the safe-
uards against these new threats: Hand-held fire extinguishers
nd Adapted segmentation of circuits.

The threats in the uppermost isolated node of the lower left
ierarchy—Misuse of administrator rights [. . .] and Unautho-
ized acquisition [. . .]—belong to a new class of IT components,

s they are related to the new isolated node with three Windows
perating systems in the right diagram. The safeguards against
hese threats are listed at the isolated node in the upper diagram.
he IT components that seem to be endangered secondmost are h
d Agents on the World Wide Web 6 (2008) 38–53

hus—after IT infrastructure rooms—Windows operating sys-
ems. At least they are modeled with greater detail as other
perating systems that show up when decreasing the thresholds
urther.

If we decrease the minimum thresholds further, we can dis-
over this way more and more details, until we finally reach with
u = τt = τr = 0 all 3,751 tri-concepts of this dataset.

.3. Conceptual analysis of the BibSonomy publication
ata

We conclude the list of applications with another social
esource sharing system. BibSonomy25 is a social bookmark and
ublication management system that is run by the Knowledge

Data Engineering Group at the University of Kassel. Beside
haring bookmarks, BibSonomy enables the sharing of publica-
ion lists. It provides several output formats, including BibTEX,
ormatted HTML, RTF, EndNote, XML, RDF, and RSS-Feeds.
ibSonomy can thus be used for generating reference lists for

cientific publications and annual reports, as well as for personal,
roup, and project homepages—supporting researchers in their
veryday business. As a folksonomy offers the possibility to add
ore than one tag to a resource, documents can be found fol-

owing different search paths, unlike books in a library which
an only be placed in one physical location.

For our analysis we focused on the publication management
art of BibSonomy. We first made a snapshot of BibSon-
my’s publication entries, including all publication posts made
ntil November 23, 2006 at 13:30 CET. From the snapshot
e excluded the publication posts from the DBLP computer

cience bibliography26 since they are automatically inserted
nd all owned by one user and all tagged with the same tag
dblp). Therefore they do not provide meaningful informa-
ion about shared conceptualizations. Similarly, we excluded
ll tag assignments with the tag imported and all publication
osts which exclusively have this tag, because it is automat-
cally assigned to all posts which were added by one of the
mport functions. The resulting snapshot contains |Y | = 44, 944
ag assignments built by |U| = 262 users, containing |R| =
1, 101 publication references tagged with |T | = 5, 954 distinct
ags.27

The Trias algorithm needed 75 min on a 2 GHz AMD
pteron machine to compute all 13,992 tri-concepts of this
ataset. Among those there are 12,659 tri-concepts which
ontain only one user, representing the individual conceptual-
zations of the users. (These could be used to present personal
oncept hierarchies by means of dyadic Hasse diagrams.) The
25 http://www.bibsonomy.org
26 http://www.informatik.uni-trier.de/∼ley/db/
27 BibSonomy benchmark datasets are available for scientific purposes, see
ttp://www.bibsonomy.org/faq

http://www.bibsonomy.org
http://www.informatik.uni-trier.de/~ley/db/
http://www.bibsonomy.org/faq
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Fig. 8. All frequent tri-concepts of the IT Baseline Security Manual for τu = 3, τt = τr = 2.

Fig. 9. All frequent tri-concepts of the BibSonomy publications for τu = 3, τt = 2, τr = 2.
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Table 2
The mapping of publication IDs to publication titles

ID Publication title

1 A Finite-State Model for On-Line Analytical Processing in Triadic Contexts
2 Annotation and Navigation in Semantic Wikis
3 A Semantic Wiki for Mathematical Knowledge Management
4 BibSonomy: A Social Bookmark and Publication Sharing System
5 Bringing the “Wiki-Way” to the Semantic Web with Rhizome
6 Building and Using the Semantic Web
7 Conceptual Clustering of Text Clusters
8 Content Aggregation on Knowledge Bases using Graph Clustering
9 Creating and using Semantic Web information with Makna

10 Emergent Semantics in BibSonomy
11 Explaining Text Clustering Results using Semantic Structures
12 Harvesting Wiki Consensus - Using Wikipedia Entries as Ontology Elements
13 Information Retrieval in Folksonomies: Search and Ranking
14 KAON – Towards a Large Scale Semantic Web
15 Kaukolu: Hub of the Semantic Corporate Intranet
16 Kollaboratives Wissensmanagement
17 Learning with Semantic Wikis
18 Mining Association Rules in Folksonomies
19 On Self-Regulated Swarms, Societal Memory, Speed and Dynamics
20 Ontologies improve text document clustering
21 Proceedings of the First Workshop on Semantic Wikis – From Wiki To Semantics
22 Proc. of the European Web Mining Forum 2005
23 Semantic Network Analysis of Ontologies
24 Semantic Resource Management for the Web: An ELearning Application.
25 Semantic Web Mining
26 Semantic Web Mining and the Representation, Analysis, and Evolution of Web Space
27 Semantic Web Mining for Building Information Portals (Position Paper)
28 Social Bookmarking Tools (I): A General Review
29 Social Bookmarking Tools (II). A Case Study – Connotea
30 Social Cognitive Maps, Swarm Collective Perception and Distributed Search on Dynamic Landscapes
31 SweetWiki : Semantic Web Enabled Technologies in Wiki
32 Text Clustering Based on Background Knowledge
33 The ABCDE Format Enabling Semantic Conference Proceedings
34 The Courseware Watchdog: an Ontology-based tool for Finding and Organizing Learning Material
35 Towards a Wiki Interchange Format (WIF) – Opening Semantic Wiki Content and Metadata
36 Towards Semantic Web Mining
37 TRIAS - An Algorithm for Mining Iceberg Tri-Lattices
38 Usage Mining for and on the Semantic Web (Book)
39 Usage Mining for and on the Semantic Web (Workshop)
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1 WordNet improves text document cluste

i.e., with minimal support values τu = 3, τt = 2, τr = 2). Each
f these 21 tri-concepts expresses the fact that all of its users
agged all its publications with all its tags.

The diagram in Fig. 9 shows the triadic concept lattice of all
hese 21 tri-concepts. The titles of the publications in the figure
re substituted by numbers for space reasons. The corresponding
itles can be found in Table 2, the full bibliographic information
as tagged in BibSonomy (after the evaluation) with the tag

rias example.28 As in Figs. 7 and 8, the 21 nodes in the center
f the triangle represent the 21 frequent tri-concepts. The sets of
sers, tags, and resources composing a tri-concept can be read

ff the three sides of the triangle.

For instance, the lower most node in the triangle represents
he tri-concept consisting of the set {jaeschke, schmitz, stumme}

28 http://www.bibsonomy.org/group/kde/trias example?items=50

c
t
i
a
u
2

lksonomies

f users, the set {fca, triadic} of tags, and the set {1, 37} of
esources. Similarly, the node in the user hierarchy labelled
rotkasting represents not only the user brotkasting but also
ll users in nodes laying below this node. Therefore the users
aeschke and—since it is located below both brotkasting and
aeschke—stumme also belong to this node. Note that it fulfills
hus the minimal support constraint τu = 3 for the users.

A closer look on the tag hierarchy reveals the content of the
ost central publications in the system. The tag social co-occurs
ith most of the tags. On the level of generality defined by the τ

hresholds, this tag is (together with the tags ai (meaning Artifi-
ial Intelligence), . . ., tags) assigned by the users lkl kss and yish
o the publications 19 and 30, (together with the tag bookmark-

ng) by the users hotho, jaeschke, stumme to the publications 4
nd 28, and (again together with the tag bookmarking) by the
sers brotkasting, jaeschke, stumme to the publications 28 and
9. The tags as well as the corresponding publication titles indi-

http://www.bibsonomy.org/group/kde/trias_example?items=50
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ate that the two sets of users {lkl kss, yish} and {brotkasting,
otho, jaeschke, stumme} form two sub-communities which
oth work on social phenomena in the Web 2.0, but from differ-
nt perspectives.

A second topical group is spanned by the tag semantic, which
ccurs in three different contexts. The first is on semantic wikis,
hich correlates with the isolated group {2, . . ., 31, 12, 33, 35}
f publications, and the—equally isolated—group {lysander07,
amde, deynard, langec} of users. The second context in which
he tag semantic occurs is on Semantic Web Mining, being
onnected by the users {grahl, hotho, stumme} with different
ombinations of the additional tags web and mining to the pub-
ications 6, 14, 22, 25, 26, 27, 36, 38, and 39. These assignments
re witnessed by the three tri-concepts in the very middle of the
iagram. On the same line are two more tri-concepts, which indi-
ate that these users are also interested in text clustering and in
epomuk (the acronym of a European project). The third context
n which the tag semantic occurs is in combination with folkson-
my. This provides a link to the group {2006, myown, nepomuk,
ibsonomy, folksonomy} of tags which are used by the authors
f this paper and by other researchers from the European project
epomuk29 to describe their own publications.
Two more topical groups can be found at the top and bottom

f the tags quasi-order. One is related to a Peer-to-Peer eLearning
pplication, and the other to triadic Formal Concept Analysis.

Since the diagram shows the frequent tri-concepts only, we
annot deduce from the absence of a relationship that two objects
re not related at all. When the thresholds are lowered, links
etween the topical islands discussed above will show up.

Concluding, we see that iceberg tri-concept lattices provide a
eans for exploring the flat structure of folksonomies—just as

ceberg concept lattices in the dyadic case. One may be surprised
y the relatively small numbers of frequent tri-concepts. This
hows—just as in the dyadic case—that the closeness condition
rovides a strong criterion for pruning the result set without loss
f information.

. Conclusion and outlook

In this paper, we have presented a formal definition of the
roblem of mining all frequent tri-concepts, and have presented
n efficient algorithm for its solution. We have empirically stud-
ed the performance of the algorithm, and have presented two
eal-world applications.

This work opens a series of challenging tasks for future
esearch. (i) An important issue for the presentation of the results
s the development of a visualization metaphor to display small,

edium, and large (frequent) concept tri-lattices, and to provide
fficient means for navigating and browsing them. (ii) Continu-
ng the research on association rules, a natural next step would be
he development of ‘triadic association rules’, combining thus

he developments in triadic FCA and association rule mining.
iii) The natural next step after discovering shared conceptual-
zations would be to formalize them in an ontology. We plan

29 http://nepomuk.semanticdesktop.org/

[
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[
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hus to extend our approach to an ontology learning applica-
ion. (iv) These steps together lead to a development which is
urrently undertaken in the European project ‘Nepomuk – The
ocial Semantic Desktop’: the exploitation of Trias for discov-
ring and managing communities in a peer to peer network of
emantic desktops.
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