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ABSTRACT

Recently, Recurrent Neural Networks (RNNs) have been applied to

the task of session-based recommendation. These approaches use

RNNs to predict the next item in a user session based on the pre-

viously visited items. While some approaches consider additional

item properties, we argue that item dwell time can be used as an im-

plicit measure of user interest to improve session-based item recom-

mendations. We propose an extension to existing RNN approaches

that captures user dwell time in addition to the visited items and

show that recommendation performance can be improved. Addi-

tionally, we investigate the usefulness of a single validation split

for model selection in the case of minor improvements and find that

in our case the best model is not selected and a fold-like study with

different validation sets is necessary to ensure the selection of the

best model.
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1 INTRODUCTION

Today, sales in the Internet are increasing rapidly, but supporting

customers while they’re shopping is still a challenge as users are

generally hidden by the anonymity of the web. One working so-

lution are recommender systems which identify a user’s needs by

analyzing the shopping history and the user’s behavior. Therefore,

tracking the user becomes an essential tool as it allows to under-

stand the behavior and goals of the customer and ensures the growth

of the business.

Recommendation can be done using explicit information from a

user’s purchase history, but is then limited to the general past pref-

erences, while the current interest, for example in a new product, is

hidden. However, the current interest of a user can be gleaned from

the session and traces left by the user while searching for new prod-

ucts in a web shop. These traces left by the user are only implicit

*Also with L3S Research Center.

feedback which tends to be noisy and difficult to analyze. Recently,

advanced recommender systems utilize deep learning approaches

when analyzing such click traces to predict the way through the

shop toward the next purchase. Typically, a user checks prices and

other properties of the next product of interest and investigates sim-

ilar products. Therefore, it is a plausible assumption that the next

product to buy will be visited by the user while browsing in the

shop and can therefore be identified by such learning methods.

Recent approaches utilize the order of visited items as good indi-

cators for predicting the next click on a page or item. Additionally,

such a session contains information about the type of products and

the frequency of visits. When analyzing a user’s behavior, one could

observe that some products are investigated in more detail than oth-

ers. This different interest is to some extent reflected by the time a

user spends with the product before investigating the next one by

following a link and is not only expressed by the frequency of the

visits within a session. In this work, we will make use of this addi-

tional time information called dwell time [20] and show that deep

learning networks can make use of this additional information to

improve the recommendation quality.

We propose an extension to a state-of-the-art session-based recur-

rent neural network model that integrates the item dwell time into

the model. Additionally, we show that care must be taken when con-

ducting a hyper-parameter study to ensure the selection of the best

parameters and present a fold-like scheme for selecting the model.

Finally, results are shown verifying that the dwell time positively

impacts recommendation performance.

The rest of the paper is structured as follows. In Section 2 we

discuss related work. Next we describe the dataset and give details

about the applied preprocessing in Section 3. This is followed by a

description of the studied models in Section 4. Results of our exper-

iments are shown in Section 5 followed by a discussion in Section 6.

Finally we give a conclusion in Section 7.

2 RELATED WORK

Recommendation systems help by suggesting resources (items) in

(web) applications based on user and resource preferences [1]. Ses-

sion recommendation systems learn a model of a user’s behavior by

http://arxiv.org/abs/1706.10231v1


using a session of events (requested resources, products, pages or

more generally items) that are generated by the user. For example,

Item-based recommendations, as in [11], use similar item profiles

to recommend new items in the current session. Session recommen-

dation can also be treated as a sequence learning problem that can

be modeled by a Markov Decision Process which predicts possible

next events (items) in a given session [15] and hence recommend

corresponding resources.

These approaches are in contrast to collaborative filtering [2] ap-

proaches that factorize user information to recommend based on

similar user profiles or similarity-based approaches that cluster users [7]

or items [14] based on their profiles to extract preferences.

Recently, (deep) neural networks have been used for recommen-

dation systems [13]. These networks learn feature representations

of items, users or whole sessions. [19], for example, learn latent

feature representations of content information with stacked denois-

ing autoencoders, [12] apply convolutional neural networks on au-

dio content for music recommendation, [6] use item embeddings

and [4] use embeddings of videos, search query terms and user fea-

tures on Youtube. Different combinations of network architectures

have been proposed in the literature. For instance, [3] investigate

combining deep (neural network) or wide (linear models) architec-

tures to capture generalization capabilities of a deep neural network

together with modeling strength of sparse feature interaction of lin-

ear models. [18] use a feed forward neural network to encode item

information and an RNN to encode session information for session-

based recommendations. [16] explicitly model temporal behavior

by RNNs together with user and item features using feed forward

nets to perform temporal recommendations.

The sequential nature of most of the systems for session-based

recommendations makes recurrent networks a good model candi-

date. Recurrent Neural Networks (RNNs) can be used to make pre-

dictions on sequential input data. Recently, Hidasi et al. proposed

a sequence-to-sequence RNN model for predicting the user session

from the sequence of clicks [8]. In contrast, Tan et al. use an RNN

model that predicted only the last click in a session and studied

the impact of item embeddings and data augmentation on the pre-

diction performance [17]. Considering a large set of additional fea-

tures to the items, [9] propose parallel RNNs. Further, temporal fea-

tures like the date or time of the current session have been used

in [5] to recommend music. In contrast to this approach, we use the

dwell time on a per item basis as a dwell time profile for the session.

Dwell time as a user feature for personalized recommendations is

investigated in [20]. The dwell time is used to express preferences

for a certain time. Hence, the longer the dwell time, the more rel-

evant the item is to a user. Here, the dwell times are only used to

rank the items for recommendations.

3 DATASET AND PREPROCESSING

We evaluate all models on the open RecSys Challenge 2015 dataset.

The dataset contains click events from an e-commerce store that

can be aggregated to user sessions and was published as part of the

RecSys Challenge 20151. Overall, the dataset contains 9 249 729

sessions with 33 003 944 clicks and 52 739 unique items. Table 1

shows the different attributes that are collected for each click.

1https://recsys.acm.org/recsys15/challenge/

Table 1: Relevant properties of the RecSys15 dataset.

Property Description

sid an id for the session this click event belongs to

timestamp the time the click event was recorded

item the id for the item that was clicked

category the item category

In general, we apply the same preprocessing steps as described in

[8]. More specifically, the dataset is split into a train and test set and

the test set contains all sessions of the last day. During the analysis

of the evaluation in the parameter study, with split the dataset as

follows. For a fold-like validation scheme, we create six splits of

the training set with each split using one of the last six days as the

validation set. Additionally, all sequences with length l < 2 and

items with a support sup < 5 are removed. We also remove items

from the validation and test sets that don’t occur in the respective

training sets. As proposed in [17], the session length (l) is restricted

and chosen so that max (l) = 16 and all sessions for which l > 16

are removed. This captures approximately 98% of all sessions. The

properties of the train and test sets after preprocessing are listed in

Table 2. We also produce a second dataset with augmented sessions

as described in [17], where for each session every prefix is added as

a separate example.

Table 2: Number of session, items and the avg. session length of

the training and test sets.

Train Test

#sessions 12,864,743 30,484

#items 53,308,101 136,150

session_lenдth 4.14 4.47

4 METHODS

In this section, we first give a description of the model in Sec-

tion 4.1.

Then we shortly describe the previously proposed approaches for

session-based recommendation using RNNs in Section 4.2. Next,

we present our extension for integrating dwell time information in

Section 4.3.

4.1 Problem Setting

We consider the task of predicting the next item in a session based

on its previous items in the same session. Let a session S be an or-

dered series of clicks S = (c1, c2, ..., ck ) with length k and a click

c be a tuple c = (i, t), where i ∈ I is a unique identifier for the

clicked item and t contains a timestamp when this click occurred.

Our task is then to fit a Model M defined as y = M(x) that com-

putes a probability distribution y ∈ R
|I | from an input sequence

x = (c1, c2, ..., ck ).

2
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4.2 Recurrent Neural Networks Based on Item

Sequences

Recently, different RNN architectures have been successfully pro-

posed for this task. In [8], a sequence-to-sequence RNN with Gated

Recurrent Unit (GRU) layers is proposed that uses a session-parallel

scheme to process the input sessions. Another model that, in con-

trast, predicts only the next item ik in a sequence [i1, i2, · · · , ik−1]

is studied in [17]. In order to facilitate the prediction of every item

in a session, a data augmentation scheme is introduced where every

session prefix is used as a distinct sample. Additionally, item em-

beddings are used as inputs and improvements over [8] in terms of

Recall@20 and MRR@20 are reported.

Because of the better adaptability to our task and the reported

results we use a model similar to the one described in [17] for solely

item-based recommendation and call it IT-RNN. Specifically, we

use item embeddings as input to an RNN consisting of GRU layers

and predict the next item ik in a fixed sequence of length l = k − 1.

The model produces a probability distribution over all items using a

single fully-connected layer followed by softmax as the final layer.

In preliminary experiments, it turns out that this setting is superior

to all the other tested configurations. An illustration of the IT-RNN

model its shown in Figure 1.

item

RNN

FCN

Softmax

i3

i4

i2

i1

GRU

GRU

GRU

GRU

s
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s
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ik item embedding

Figure 1: An illustration of the IT-RNN model for predicting

the next item in a sequence given only the items as input.

4.3 Recurrent Neural Network Combining Item

and Dwell Time Sequences

The described model predicts the next item in the sequences only

based on previously visited items. However, the amount of time a

user spends with an item (dwell time) can be an important metric

for user engagement and interest [20].

For every session, we compute the dwell time for item ik in a

session as dk = tk+1 − tk and get an aligned sequence of dwell

times that characterizes the user interest over the items.

While dwell times are computed from timestamps and are there-

fore measured in milliseconds, such a high resolution is unlikely to

be interesting when measuring user interest.

100 101 102 103
User dwelling time in seconds

100

101

102

103

104
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cu
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Dwelling time distribution

Figure 2: Distribution of dwell times in the preprocessed

dataset.

Therefore, we propose a simple bucketing technique, where dwell

times are rounded to the nearest second. The resulting distribution

of the rounded dwell times for the RecSys Challenge 2015 dataset

is shown in Figure 2. It already shows some interesting artifacts,

like the two peaks. One with a very short dwell time and one at

approximately 35s. After that, we observe an expected decrease in

the log-log plot which only contains some minor exceptions. Using

each second as a label, the dwell time for each item in a session can

be encoded as a discrete class.

In most settings the captured dwell time will have some upper

limit that is enforced by the consumed service, e.g. a connection

timeout. However, since the upper bound is arbitrary, the represen-

tation can become overly sparse and computations could become

inefficient. Furthermore, we assume that e.g. the peak with a very

short time somehow encodes skipping the visited pages. The encod-

ing of such an information is important, but rather difficult. In order

to encode the hidden information of the distribution and to avoid

problems with dwell times of arbitrary length, we encode the dwell

time classes into continuous lower dimensional embeddings.

To capture a sense of user interest over a session, we use the se-

quence of dwell time embeddings as input to an RNN with a GRU

layer. The output of the RNN at each step in the sequence is con-

catenated with the embedded item at the same step and the result is

used as input to the IT-RNN part (Please keep in mind that the con-

catenated vectors are of different size). This way the interest a user

expresses over a session can act as a weight that boosts or dampens

the influence an item has on the recommendation of the next item.

We call this model DT-RNN, an illustration is shown in Figure 3.

5 EXPERIMENTS

In this section, the experiments and results for our model are pre-

sented. All experiments are conducted using the dataset described

3
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Figure 3: The DT-RNN network architecture.

in Section 3. The models are implemented in Tensorflow2 and are

trained for six epochs over the training data on a NVidia GTX 1080

Founders Edition graphics card. Batch size is set to the maximum

possible value for each model depending on the model size. Adam

[10] is used as the optimizer with the default settings provided by

Tensorflow. For evaluation, Recall@20 and MRR@20 (Mean Re-

ciprocal Rank) are calculated on the test set for each model and

epoch, and evaluation scores of the best epoch are reported.

We want to study whether our model can use the dwell time infor-

mation in addition to the item sequence to more accurately predict a

user’s next click and hence improve recommendation performance

and user experience. Therefore, we first investigate the effects of

item embeddings and augmentation on the item sequence based IT-

RNN and fix the relevant hyperparameters for both models. Next,

we perform a parameter study on the remaining parameters of the

DT-RNN model and present the results.

5.1 Parameter Selection for IT-RNN

Results in [8] and [17] show that the best performance is achieved

with an RNN layer size of 100 when comparing to a larger network

with a layer of size 1000. We therefore fix the layer for IT-RNN to

a similar size of 128.

Both one-hot codings and embeddings have been studied for en-

coding the items as input to the RNN with mixed results in [8] and

[17]. Hence, we experiment with both embeddings of size 128 and

one-hot codings and find that embeddings clearly outperform one-

hot codings in our setup.

Next, we experiment with augmented sessions as introduced in

[17] and find that training with augmented datasets improves the

performance of the network on the test set. Table 3 shows the Re-

call@20 values with and without augmentation for both embedded

and one-hot coded items.

2https://www.tensorflow.org

Table 3: Comparison of one-hot codings versus embeddings for

IT-RNN with it_rnn_size = 128 and item_em_size = 128. Both

networks are first trained without augmenation and then with

augmentation and Recall@20 is computed on the augmented

test set in both cases.

one-hot embedding

with augmentation 0.648 4 0.687 1

without augmentation 0.629 4 0.653 3

Table 4: Results for IT-RNN with item_em_size = 128 and

it_rnn_size = 128.

Method R@20 MRR@20

IT-RNN 0.687 1 0.282 9

Based on the results we fix the size of the item embeddings to

item_em_size = 128 and use the augmented dataset for training and

evaluation. The evaluation results on the test set for IT-RNN are re-

ported in Table 4 and will be used as a baseline to judge whether

the proposed DT-RNN model can improve recommendation perfor-

mance.

5.2 Influence of Dwell Time

We want to study the effect of dwell time on the performance com-

pared to the IT-RNN model. Hence, we fix the parameters for the IT-

RNN part and only conduct the parameter studies for the remaining

parameters of the DT-RNN model. We perform a grid search for the

dwell time embedding size dt_em_size and the dwell time rnn size

dt_rnn_size with values for dt_em_size chosen from [4, 8, 16, 32]

and values for dt_rnn_size selected from [4, 8, 16, 32, 64, 128].

First, we use the second to last day (sixth) day as the validation

set and the remaining days for training (as given in Section 3) and

run a grid search with the former specified values. Based on the eval-

uation on the validation set, dt_rnn_size = 16 and dt_em_size = 8

are selected as the best performing hyper-parameters and a model

using these parameters is trained on the full training set and evalu-

ated on the test set. The results are listed as DT-RNN in Table 5. A

comparison between the results of IT-RNN in Table 4 and DT-RNN

in Table 5 with the selected parameters shows no improvement over

IT-RNN.

From results in [20] we know that we should not expect big im-

provements. However, if the expected improvements are only small,

it is possible that using an arbitrary and arguably small validation

set might account for the selection of the wrong model, which hides

a possible gain. We therefore investigate whether a parameter set-

ting in our grid exists that shows significant improvement over the

plain IT-RNN by conducting a grid search on the full training set us-

ing the test set as the validation set. Surprisingly, the best perform-

ing setting is different from before and is listed in Table 5 as DT-

RNN*. A Wilcoxon signed rank test showed that the improvement

over IT-RNN in Rec@20 is statistically significant with p < 0.01,

while no significant improvement for MRR@20 can be observed.

4
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Table 5: Metrics on the test set calculated for the settings se-

lected by the parameter study DT − RNN and the best settings

on the test set DT − RNN ∗.

Method dt_em_size dt_rnn_size Rec@20 MRR@20

DT − RNN 16 8 0.687 3 0.281 0

DT − RNN ∗ 32 8 0.692 6 0.283 6

Table 6: Rec@20 values with different days chosen as the vali-

dation set. The hyper parameters selected by a parameter study

dt_em_size = 16 on a fixed validation day (here day 6∗) are

compared to those with the best performance on the test set

dt_em_size = 32.

Day dt_rnn_size Rec@20

dt_em_size = 16 dt_em_size = 32

1 8 0.636 5 0.639 2

2 8 0.629 6 0.631 9

3 8 0.661 1 0.665 5

4 8 0.673 8 0.673 6

5 8 0.684 6 0.688 5

6* 8 0.666 1 0.663 4

Rec@20 0.658 6 0.660 4

The different model selection results could be caused by param-

eter overfitting or by an arbitrary small validation set. To decide

this question, we conduct a third parameter study and train both

parameter settings in Table 5 on six different train-validation splits

as described in Section 3. Table 6 shows the results for the six dif-

ferent splits. Only two of them, including our initial validation set,

show a better performance with the initially chosen parameter set-

tings (dt_rnn_size = 16), while the majority of four splits shows

higher performance for the optimal setting (dt_rnn_size = 32). Cal-

culating the average Rec@20 values for both models over all splits

shows that on average the best performing model DT-RNN* should

have been selected with dt_rnn_size = 32 which results in a signif-

icant improvement of our approach.

6 DISCUSSION

Our experiments show that the proposed extension can exploit dwell

times to boost the performance in terms of Rec@20. Unfortunately,

the gain is rather limited and seems to be hidden by other effects, as

our analysis reveals.

Selecting the correct model in a parameter study is not straight-

forward and is also influenced by the selected parts of the dataset

used for training and validation. Conducting the study on a small

and limited validation set can yield the wrong parameter combina-

tion if the improvement is small, as in our case. One solution can

be to use several folds or a complete leave-one-out scheme. We ex-

perimented successfully with using different days as validation sets,

but a more detailed analysis is also needed for experiments relying

on the same split of the data as we used to check the generality of

the results.

The used dataset split is also of interest in other settings, as a

poorly chosen validation set could lead to results which are not ap-

plicable in general. This could be caused by several reasons. When

dealing with temporal data, such data typically contains seasonally

or weekly effects, i.e. buy patterns which show a significantly differ-

ent behavior on different time slots. In this case, one can no longer

assume that the distribution of the data is the same, which could be

the reason for the observed results in our experiments. Therefore,

care must be taken when evaluating models on small and timely

restricted datasets.

7 CONCLUSION

In this work, we showed that the performance of an RNN for session-

based recommendation can be improved by integrating item dwell

times into the model. Additionally, we demonstrated that using a

single validation set for a parameter study can lead to a sub op-

timal choice of parameters if the performance gain is only small.

Furthermore, we showed that using a fold-like scheme with several

validation sets can help to find the optimal parameters in this case.

In future work, we would like to provide a more detailed anal-

ysis of temporal effects in datasets comprised of user sessions on

model selection in parameter studies and find general guidelines

for performing these studies. Additionally, we want to investigate

the effectiveness of our model on different datasets from various

domains. Finally, we would like to evaluate the effectiveness of in-

corporating user dwell time as a measure of user interest in other

settings, e.g. buy event prediction.
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