
ar
X

iv
:1

80
4.

05
82

5v
1

 [
cs

.C
L

]
 1

6
A

pr
 2

01
8

ClaiRE at SemEval-2018 Task 7 - Extended Version

Lena Hettinger, Alexander Dallmann, Albin Zehe, Thomas Niebler and Andreas Hotho

DMIR Group

University of Wuerzburg

{hettinger,dallmann,zehe,niebler,hotho}
@informatik.uni-wuerzburg.de

Abstract

In this paper we describe our post-evaluation

results for SemEval-2018 Task 7 on classifi-

cation of semantic relations in scientific liter-

ature for clean (subtask 1.1) and noisy data

(subtask 1.2). Due to space limitations we

publish an extended version of Hettinger et al.

(2018) including further technical details and

changes made to the preprocessing step in the

post-evaluation phase. Due to these changes

Classification of Relations using Embeddings

(ClaiRE) achieved an improved F1 score of

75.11% for the first subtask and 81.44% for

the second.

1 Introduction

The goal of SemEval-2018 Task 7 is to extract and

classify semantic relations between entities into

six categories that are specific to scientific liter-

ature (Gábor et al., 2018). In this work, we fo-

cus on the subtask of classifying relations between

entities in manually (subtask 1.1) and automati-

cally annotated and therefore noisy data (subtask

1.2). Given a pair of related entities, the task is to

classify the type of their relation among the fol-

lowing options: Compare, Model-Feature,

Part Whole, Result, Topic or Usage. Re-

lation types are explained in detail in the task de-

scription paper (Gábor et al., 2018). The follow-

ing sentence shows an example of a Result rela-

tion between the two entities combination meth-

ods and system performance:

Combination methods are an effec-

tive way of improving system perfor-

mance.

This sentence is a good example for two chal-

lenges we face in this task. First, almost half of

all entities consist of noun phrases which has to be

considered when constructing features. Secondly,

the vocabulary is domain dependent and therefore

background knowledge should be adopted.

Previous approaches for semantic relation clas-

sification tasks mainly employed two strategies.

Either they made use of a lot of hand-crafted fea-

tures or they utilized a neural network with as few

background knowledge as possible. The winning

system of an earlier SemEval challenge on relation

classification (Hendrickx et al., 2009) adopted the

first approach and achieved an F1 score of 82.2%

(Rink and Harabagiu, 2010). Later, other works

outperformed this approach by using CNNs with

and without hand-crafted features (Santos et al.,

2015; Xu et al., 2015) as well as RNNs (Miwa and

Bansal, 2016).

Approach We present two approaches that

use different levels of preliminary information.

Our first approach is inspired by the winning

method of the SemEval-2010 challenge (Rink and

Harabagiu, 2010). It models semantic relations

by describing the two entities, between which the

semantic relation holds, as well as the words be-

tween those entities. We call those in-between

words the context of the semantic relation. We

classify relations by using an SVM on lexical fea-

tures, such as part-of-speech tags. Additionally

we make use of semantic background knowledge

and add pre-trained word embeddings to the SVM,

as word embeddings have been shown to improve

performance in a series of NLP tasks, such as

sentiment analysis (Kim, 2014), question answer-

ing (Chen et al., 2017) or relation extraction (Dli-

gach et al., 2017). Besides using existing word

embeddings generated from a general corpus, we

also train embeddings on scientific articles that

better reflect scientific vocabulary.

In contrast, our second approach relies on word

embeddings only, which are fed into a convo-

lutional long-short term memory (C-LSTM) net-

http://arxiv.org/abs/1804.05825v1

work, a model that combines convolutional and

recurrent neural networks (Zhou et al., 2015).

Therefore no hand-crafted features are used. Be-

cause both CNN and RNN models have shown

good performance for this task, we assume that a

combination of them will positively impact clas-

sification performance compared to the individual

models.

Results By combining Lexical information and

domain-Adapted Scientific word Embeddings, our

system ClaiRE achieved an F1 score of 75.11% for

the first subtask with manually annotated data and

81.44% for the second subtask with automatically

annotated data. Our results make a strong case for

domain-specific word embeddings, as using those

improved our score by close to 5%.

Paper Structure In Section 2, we describe the

features that we used to characterize semantic re-

lations. Section 3 shows how we classify the re-

lation using an SVM and a C-LSTM neural net-

work. Section 4 presents the results, which are dis-

cussed in Section 5. Finally, Section 6 concludes

this work.

2 Features

In this section, we describe the features which are

used in our two approaches. All sentences are first

preprocessed before constructing boolean lexical

features on the one hand and word embedding vec-

tors on the other. Both feature groups are based on

the entities of relations as well as the context in

which those entities appear.

Apart from the Compare relation, all relation

types are asymmetric, and therefore the distinction

between start and end entity of a relation is impor-

tant. If entities appear in reverse order, that means

the end entity of a relation appears first in the sen-

tence, this is marked by a direction feature which

is part of the data set.

In our entrance example, combination meth-

ods denotes the start entity, system performance

the end entity, and are an effective way of im-

proving the context.

2.1 Preprocessing

Early experiments showed that it is beneficial to

filter the vocabulary of our data and reduce noise

by leaving out infrequent context words. The best

setting was found to be a frequency threshold of

5 on lemmatized words. Therefore we discard

a context word if its lemma appears less than 5
times in the corpus of the respective subtask. Lem-

mas as well as POS tags were extracted with the

help of SpaCy.1 We started and finished the chal-

lenge with version 2.0.2 and afterwards updated

to version 2.0.9. This version update lead to a

change of POS tags, with which our results im-

proved. During post-evaluation we also noticed

an error in our preprocessing that caused an over-

lap of the vocabulary for bow features and POS

tags. After resolving this intersection our results

improved further.

2.2 Context features

First we will explain feature construction based on

the context of a relation. Abbreviations for fea-

ture names are denoted in brackets. Context is

defined as the words between two entities. Early

tests showed that using those words described the

relation better than the words surrounding the re-

lation entities.

Lexical We construct several lexical boolean

features which are illustrated in Table 1. First

we apply a bag of words (bow) approach where

each lemmatized word forms one boolean feature,

which for example takes 1 as value if the lemma

improve is present and 0 if it is not. Second we de-

termine whether the context words contain certain

part-of-speech (POS) tags (pos), such as VERB.

To represent the structure of the context phrase we

add a path of POS tags feature, which contains the

order in which POS tags appear (pospath). The

distance feature depicts whether the POS-path and

therefore the context phrase has a certain length

(dist).

Additionally we add background knowledge by

extracting the top-level Levin classes of intermedi-

ary verbs from VerbNet2 (lc), a verb lexicon com-

patible with WordNet. It contains explicitly stated

syntactic and semantic information, using Levin

verb classes to systematically construct lexical en-

tries (Schuler, 2005). For example the verb im-

prove belongs to class 45.4, which is described

by Levin as consisting of “alternating change of

state“ verbs.3

Embeddings Aside from lexical features we

also use word embedding vectors to leverage in-

formation from the context of entities (c). For

1
https://spacy.io/

2http://verbs.colorado.edu/˜mpalmer/projects/verbnet.html
3
http://www-personal.umich.edu/˜jlawler/levin.verbs

https://spacy.io/
http://verbs.colorado.edu/~mpalmer/projects/verbnet.html
http://www-personal.umich.edu/~jlawler/levin.verbs

Example Sentence: Combination methods are an effective way of improving system performance.

Lexical Feature Set Exemplary Boolean Features

BagOfWords (bow) an, be, effective, improve, of, way
POS tags (pos) ADJ, ADP, DET, NOUN, VERB
POS path (pospath) VDANAV
Distance (dist) 6
Levin classes (lc) 45

Entities without order (ents) combination methods, methods, system performance, performance
Start entity (startEnt) combination methods, methods
End entitiy (endEnt) system performance, performance
Similarity (sim100) 0.43
Similarity bucket (simb) q50

Table 1: Examples for lexical context and entity features.

each filtered context word we extract its word em-

beddding from a pre-trained corpus, where out-of-

vocabulary words (OOV) are represented by the

zero vector. The individual word vectors are later

applied to train a C-LSTM.

In contrast, for use in an SVM we found it ben-

eficial to represent the context embedding features

as the average over all context word embeddings.

2.3 Entity features

In the second set of features, we model the relation

entities themselves as they may be connected to

a certain relation class. For example, the token

performance or one form of it mostly appears as

an end entity of a Result relation, and in the rare

case when it represents a start entity, it is almost

always part of a Compare relation. Therefore we

leverage information about entity position for the

creation of lexical and embedding entity features.

Lexical For the creation of boolean lexical fea-

tures, we first take the lowercased string of each

entity and construct up to three distinct features

from it. One feature which marks its general ap-

pearance in the corpus without order (ents) and

one each if it occurs as start (startEnt) or end

(endEnt) entity of a relation, taking its direction

into account. Additionally we add the head noun

to the respective feature set if the entity consists of

a nominal phrase to create greater overlap between

instances.

Furthermore we measure the semantic similar-

ity of the relation entities using the cosine of the

corresponding word embedding vectors (sim100).

While the cosine takes every value from [-1, 1] in

theory, we cut off after two digits to reduce the fea-

ture space and get 99 boolean similarity features

for our corpus. To again enable learning across

instances we additionally discretize the similar-

ity range and form another five boolean similar-

ity features (simb) that capture into which of the

following buckets the similarity score falls: q0 =
[−1, 0), q25 = [0, 0.25), q50 = [0.25, 0.5), q75 =
[0.5, 0.75), q100 = [0.75, 1] (values below zero

are very rare in this corpus).

Embeddings Similar to the context features we

also want to add word embeddings of entities to

our entity feature set. This is not straighforward

as more than 44% of all entities consist of nomi-

nal phrases, while a word embedding usually cor-

responds to a single word. By way of comparison,

the proportion of nominals in the relation classifi-

cation corpus of the SemEval-2010 challenge was

only 5%. Thus we tested different strategies to ob-

tain a word embedding for nominal phrases and

found that averaging over the individual word vec-

tors of the phrase yielded the best results for this

task. These word embeddings for start (es) and

end (ee) entities of relations were then presented

to our two classification methods, which will be

described in detail in the following section.

3 Classification Methods

We utilize two different models for classifying se-

mantic relations: an SVM which incorporates both

the lexical and embedding features described in

Section 2 and a Convolutional Long Short Term

Memory (C-LSTM) neural network that only uses

word embedding vectors

3.1 SVM

To fully exploit our hand-crafted lexical features

we employ a traditional classifier. In compari-

son to Naive Bayes, Decision Trees and Random

Forests we found a Support Vector Machine to per-

form best for this task. Instead of utilizing the de-

cision function of the SVM to predict test labels

bow pos pospath dist lc

1129 13 965 23 44

c es ee

300 300 300

ents startEnt endEnt sim100 simb dir

3097 1831 1783 99 5 1

2174 lexical context 6816 lexical entity900 embedding

context entity

9886 features

Figure 1: Feature vector used in the SVM. Numbers hold true for subtask 1.1, including 1.2 data

we decided to make use of the probability esti-

mates according to Wu et al. (2004) as this proved

to be more successful. As mentioned before, the

lexical features are fed into the SVM as boolean

features whereas the word embeddings are nor-

malized using MinMax-Scaling to the range [0, 1]
to make it easier for the SVM to handle both fea-

ture groups (Fig. 1).

3.2 C-LSTM

In contrast to SVM, neural network models do

not necessarily rely on handcrafted features and

are therefore faster to implement. We experi-

ment with C-LSTM (Zhou et al., 2015) which ex-

tracts a sentence representation by combining one-

dimensional convolution and an LSTM network

and uses the representation to perform a classifi-

cation.

C-LSTM extracts a sentence representation in

the following steps. First embeddings for all

words wi ∈ R
v are obtained from a pre-computed

embedding table E ∈ R
v×|V | where v is the em-

bedding size and |V | denotes the size of the vo-

cabulary. For entities that are nominal phrases the

average over the individual word embeddings is

used. This results in a sequence of embedding

vectors s = [es, w1, w2, · · · , wn, ee] of length ls
where e1, e2 ∈ R

v are embeddings representing

entities and the wi represent the context word em-

beddings. Next the embedding vectors in s are

concatenated to form an input matrix I ∈ R
v×ls

for the one-dimensional convolution layer. For

computational reasons a matrix Î ∈ R
v×lmax is

obtained by right padding I with a zero token to

the maximum sequence length lmax in the corpus.

After that k feature maps fi ∈ R
m with m being

the number of features in each map are computed

over Î using a one-dimensional convolution layer

with k filters of window size ws and stride st. The

resulting feature map matrix C ∈ R
k×m is then

split along the second axis into a sequence c with

individual elements ci ∈ R
k and length lc = m.

Finally c is used as input to an LSTM network with

the last output being a representation of the input

sequence. A softmax layer is used to compute la-

bel scores from the sentence representation. See

Figure 2 for an illustration of the model.

[es, w1, w2, w3, w4, w5, w6, es]

concatenate embeddings

�lter fi

1-D CNN
feature maps

w=3

Figure 2: An illustration of the model architecture of

C-LSTM.

4 Evaluation

After describing the two models we employ for re-

lation classification, we now portray the data set

we use and present results for both SVM and C-

LSTM in detail. Results are reported as micro-F1

label subtask 1.1 subtask 1.2 total

COMPARE 95 (8%) 41 (3%) 136 (5%)
MODEL-F. 326 (27%) 174 (14%) 500 (20%)
PART W. 234 (19%) 196 (16%) 430 (17%)
RESULT 72 (6%) 123 (10%) 195 (8%)
TOPIC 18 (1%) 243 (20%) 261 (11%)
USAGE 483 (39%) 468 (38%) 951 (38%)

Table 2: Distribution of class labels for training data as

absolute and relative values.

and macro-F1. The latter is the official evaluation

score of the SemEval Challenge. We describe the

experimental setup for both models and compare

different feature sets and pre-trained embeddings.

4.1 Data and Background Knowledge

We evaluate our approach on a set of scientific ab-

stracts, Dtest. It consists of 355 semantic relations

for each subtask which are similarly distributed as

its respective training data set. As training data we

received 350 abstracts of scientific articles per sub-

task, which resulted in 1228 labeled training rela-

tions for subtask 1.1 and 1245 training instances

for subtask 1.2 (c.f. Table 2). We combine data

sets of both subtasks for training, resulting in 2473
training examples in total (Dtrain).

Background Knowledge In our experiments,

we compare different pre-trained word embed-

dings as a source of background knowledge. As

a baseline, we employ a publicly available set of

300-dimensional word embeddings trained with

GloVe (Pennington et al., 2014) on the Common

Crawl data4 (CC). To better reflect the semantics

of scientific language, we trained our own scien-

tific embeddings using word2vec (Mikolov et al.,

2013) on a large corpus of papers collected from

arXiv.org5 (arXiv).

In order to create the scientific embeddings, we

downloaded LATEX sources for all papers published

in 2016 on arXiv.org using the provided dumps.6

After originally trying to extract the plain text

from the sources, we found that it was more fea-

sible to first compile the sources to pdf (exclud-

ing all graphics etc.) and then use pdftotext7 to

convert the documents to plain text. This resulted

in a dataset of about 166 000 papers. Using gen-

sim (Řehůřek and Sojka, 2010), for each docu-

ment we extracted tokens of minimum length 1

4
http://commoncrawl.org/

5
https://arxiv.org

6
https://arxiv.org/help/bulk_data

7
https://poppler.freedesktop.org

context + entities
data macro F1 micro F1 macro F1 micro F1

1.1 45.10 59.15 48.96 65.35
+1.2 46.95 61.97 66.03 70.14

CC 51.14 64.79 70.31 73.24
arXiv 51.55 64.79 75.11 77.46

Table 3: SVM results for subtask 1.1.

context + entities
data macro F1 micro F1 macro F1 micro F1

1.2 68.61 71.27 73.49 81.41
+1.1 61.09 69.01 78.63 83.66

CC 62.74 70.42 76.80 85.63
arXiv 63.29 70.99 81.44 85.07

Table 4: SVM results for subtask 1.2.

with the wikicorpus tokenizer and used word2vec

to train 300-dimensional word embeddings on the

data. We kept most hyper-parameters at their de-

fault values, but limited the vocabulary to words

occurring at least 100 times in the dataset, reduc-

ing for example the noise introduced by artifacts

from equations.

4.2 SVM

After an extensive grid search per cross validation

the best parameters for the SVM were found to be

a rbf-kernel with C = 100 and γ = 0.001 for both

tasks.

Results of the SVM for subtask 1.1. are shown

in Table 3. Adding entity features proves to be

very beneficial compared to using only context

features, as we could improve macro-F1 by 16

points on average. Results are further improved

by enlarging the data set with the training samples

of subtask 1.2 and by adding word embeddings to

the feature set. While adding the CC embeddings

enhances the micro-F1 by more than 4 points, our

domain-adapted arXiv embeddings prove to per-

form even better and deliver the best result with

a macro-F1 score of 75.11% and a micro-F1 of

77.46%.

Similar observations can be made for subtask

1.2., as is pictured in Table 4.

4.3 C-LSTM

We fix the batch size and number of epochs to 128
and 100 respectively for all trained models. Words

are encoded using either arXiv or CC embeddings.

The embeddings are not further optimized during

training. Cross-entropy is used as the loss function

http://commoncrawl.org/
https://arxiv.org
https://arxiv.org/help/bulk_data
https://poppler.freedesktop.org

parameter min max selected

number of filters 10 500 384
filter width 2 5 3
rnn cell units 16 500 93
dropout rate 0.0 0.5 0.23
l2 normalization scale 0.0 3.0 0.79

Table 5: C-LSTM parameters and settings selected by

random search from search ranges of [min, max].

subtask 1.1 subtask 1.2
macro F1 micro F1 macro F1 micro F1

CC 54.42 67.61 74.42 78.87
arXiv 67.49 70.96 67.02 74.37

Table 6: Results for C-LSTM models trained with CC

and arXiv embeddings on both subtasks.

and the model is optimized using Adam (Kingma

and Ba, 2014) with the initial learning rate set to

lr = 0.002, β1 = 0.9, β2 = 0.999, ε = 10−8.

To find the optimal hyperparameter configura-

tion, we perform a random search (Bergstra and

Bengio, 2012) on the hyper-parameters number of

filters, filter width, rnn cell units, dropout rate and

l2 norm scale. For this study, we sample 10%
stratified from the training set to serve as a val-

idation set. All parameters were chosen from a

uniformly random discrete or continuous distribu-

tion. The ranges and the parameters yielding the

best performance on the validation set are given in

Table 5.

Using the determined optimal parameter set-

tings, models with both types of embeddings were

trained on the full training set and evaluated on

the test set. Table 6 shows that the C-LSTM

model performs well on the scientific embeddings,

but consistently worse than the SVM model us-

ing handcrafted features and achieves a macro-F1

score of 67.49 and 67.02 for subtask 1.1 and sub-

task 1.2 respectively.

5 Discussion

We briefly discuss our approach during the train-

ing phase of the SemEval-Challenge and how label

distribution and evaluation measure influences our

results. Ahead of the final evaluation phase where

the concealed test data Dtest was presented to the

participants we were given a preliminary test par-

tition Dpre as part of the training data Dtrain. To

be able to estimate our performance we evaluated

it on Dpre as well as for a 10-fold stratified cross

validation setting. We chose this procedure to be

sure to pick the best system for submission at the

challenge.

As some classes were strongly underrepre-

sented in the training corpus and Dpre, we as-

sumed that this is also true for the final test set

Dtest. When in doubt we therefore chose to opti-

mize according to Dpre as cross validation is based

on a slightly more balanced data set (of train data

for subtask 1.1 + 1.2). The best system we sub-

mitted for subtask 1.1 of the challenge achieved a

macro-F1 of 75.05% on Dpre during the training

phase which shows that we were able to estimate

our final result pretty closely.

During training we also noticed that for heavily

skewed class distributions as in this case, macro-

F1 as an evaluation measure strongly depends on

a good prediction of very small classes. For exam-

ple, macro-F1 of subtask 1.1 increases by 5 points

if we correctly predict one Topic instance out of

three instead of none. Thus we pick a configura-

tion that optimizes the small classes.

We also omitted some lexical feature sets from

our system as performance on the temporary and

final test set showed that they did not improve re-

sults. These features were hypernyms of context

and entity tokens from WordNet and dependency

paths between entities. Using tf-idf normalization

instead of boolean for lexical features also wors-

ened our results.

The C-LSTM model performes quite well, con-

sidering it only relies on very limited information,

the sequence of entity and word embedding vec-

tors, to perform the classification. For example

the model has no way of determining the direc-

tion of the relation and we speculate that increas-

ing the model complexity to include such informa-

tion might increase the performance further. Ad-

ditionally, the results for subtask 1.2 show that in

contrast to the SVM model, C-LSTM does not per-

form consistently better with arXiv embeddings,

which warrants further investigation.

6 Conclusion

In this paper, we described our SemEval-2018

Task 7 system to classify semantic relations in sci-

entific literature for clean (subtask 1.1) and noisy

(subtask 1.2) data. We constructed features based

on relation entities and their context by means of

hand-crafted lexical features as well as word em-

beddings. To better adapt to the scientific do-

main, we trained scientific word embeddings on

a large corpus of scientific papers obtained from

arXiv.org. We used an SVM to classify rela-

tions and additionally contrasted these results with

those obtained from training a C-LSTM model on

the scientific embeddings. We were able to ob-

tain a macro-F1 score of 75.11% on clean data

and rank 4th out of 28 and 81.44% on noisy data,

which resulted in a 6th place out of 20.

In future work, we will improve the tokeniza-

tion of the scientific word embeddings and also

take noun compounds into account, as they make

up a large part of the scientific vocabulary. We

will also investigate more complex neural network

based models, that can leverage additional infor-

mation, for example relation direction and POS

tags.

References

James Bergstra and Yoshua Bengio. 2012. Random
search for hyper-parameter optimization. Journal of
Machine Learning Research, 13:281–305.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open–
domain questions. In ACL (1), pages 1870–1879.
Association for Computational Linguistics.

Dmitriy Dligach, Timothy Miller, Chen Lin, Steven
Bethard, and Guergana Savova. 2017. Neural tem-
poral relation extraction. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 2, Short
Papers, volume 2, pages 746–751.

Kata Gábor, Davide Buscaldi, Anne-Kathrin Schu-
mann, Behrang QasemiZadeh, Haı̈fa Zargayouna,
and Thierry Charnois. 2018. Semeval-2018 Task
7: Semantic relation extraction and classification in
scientific papers. In Proceedings of International
Workshop on Semantic Evaluation (SemEval-2018),
New Orleans, LA, USA.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian
Padó, Marco Pennacchiotti, Lorenza Romano, and
Stan Szpakowicz. 2009. Semeval-2010 task 8: Mul-
ti-way classification of semantic relations between
pairs of nominals. In Proceedings of the Work-
shop on Semantic Evaluations: Recent Achieve-
ments and Future Directions, pages 94–99. Associ-
ation for Computational Linguistics.

Lena Hettinger, Alexander Dallmann, Albin Zehe,
Thomas Niebler, and Andreas Hotho. 2018. Claire
at semeval-2018 task 7: Classification of relations
using embeddings.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014

Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1746–1751.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In NIPS, pages 3111–3119. Curran Associates,
Inc.

Makoto Miwa and Mohit Bansal. 2016. End-to-end re-
lation extraction using lstms on sequences and tree
structures. Cite arxiv:1601.00770Comment: Ac-
cepted for publication at the Association for Compu-
tational Linguistics (ACL), 2016. 13 pages, 1 figure,
6 tables.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–
1543.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA.

Bryan Rink and Sanda Harabagiu. 2010. Utd: Clas-
sifying semantic relations by combining lexical and
semantic resources. In Proceedings of the 5th Inter-
national Workshop on Semantic Evaluation, pages
256–259. Association for Computational Linguis-
tics.

Cicero Nogueira dos Santos, Bing Xiang, and Bowen
Zhou. 2015. Classifying relations by ranking with
convolutional neural networks. Proceedings of the
7th International Joint Conference on Natural Lan-
guage Processing [IJCNLP].

Karin Kipper Schuler. 2005. Verbnet: A Broad-
coverage, Comprehensive Verb Lexicon. Ph.D. the-
sis, University of Pennsylvania, Philadelphia, PA,
USA. AAI3179808.

Ting-Fan Wu, Chih-Jen Lin, and Ruby C. Weng. 2004.
Probability estimates for multi-class classification
by pairwise coupling. Journal of Machine Learning
Research, 5(Aug):975–1005.

Kun Xu, Yansong Feng, Songfang Huang, and
Dongyan Zhao. 2015. Semantic relation classifica-
tion via convolutional neural networks with simple
negative sampling. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing [EMNLP], pages 536–540.

Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Fran-
cis C. M. Lau. 2015. A c-lstm neural network for
text classification. CoRR, abs/1511.08630.

http://dblp.uni-trier.de/db/conf/acl/acl2017-1.html#ChenFWB17
http://www.aclweb.org/anthology/W09-2415
http://aclweb.org/anthology/D/D14/D14-1181.pdf
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#KingmaB14
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://arxiv.org/abs/1601.00770
http://www.aclweb.org/anthology/S10-1057
https://www.aclweb.org/anthology/P15-1061
https://www.aclweb.org/anthology/D/D15/D15-1062.pdf
http://dblp.uni-trier.de/db/journals/corr/corr1511.html#ZhouSLL15b

	1 Introduction
	2 Features
	2.1 Preprocessing
	2.2 Context features
	2.3 Entity features

	3 Classification Methods
	3.1 SVM
	3.2 C-LSTM

	4 Evaluation
	4.1 Data and Background Knowledge
	4.2 SVM
	4.3 C-LSTM

	5 Discussion
	6 Conclusion

