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Abstract
Whenever researchers write a paper, the same
question occurs: “Where to submit?” In this
work, we introduce WTS, an open and inter-
pretable NLP system that recommends con-
ferences and journals to researchers based on
the title, abstract, and/or keywords of a given
paper. We adapt the TextCNN architecture
and automatically analyze its predictions using
the Integrated Gradients method to highlight
words and phrases that led to the recommenda-
tion of a scientific venue. We train and test our
method on publications from the fields of arti-
ficial intelligence (AI) and medicine, both de-
rived from the Semantic Scholar dataset. WTS
achieves an Accuracy@5 of approximately
83% for AI papers and 95% in the field of
medicine. It is open source1 and available for
testing on https://wheretosubmit.ml.

1 Introduction

When choosing a scientific conference or jour-
nal (in the following called venue) to submit a
manuscript, researchers consider several factors.
While factors such as the venue’s impact, time,
or location are important, the main factor is the
manuscript’s thematic fit to the conference. This
can be ensured by inspecting the Call for Papers
(e.g. this paper fits into EMNLP as it is an “interest-
ing application nugget”) or by analyzing previously
published papers at the given conference. Given the
growing number of conferences (e.g., the exponen-
tial growth of computer science publications indi-
cates more and/or larger conferences2), the second
approach has become harder than ever, especially
for novice researchers, or even senior researchers
wanting to publish in a new domain. Finding a the-
matically fitting venue for a manuscript therefore
is a time consuming task.

1https://github.com/konstantinkobs/wts
2As visualized on https://dblp.uni-trier.de/

statistics/recordsindblp.

Figure 1: Overview of WTS. Title, abstract, and key-
words are processed separately by a convolution layer
and max-over-time pooling. The output vectors are con-
catenated and fed through two fully connected layers
that predict fitting venues. For the top five entries, we
calculate the important words and phrases using the In-
tegrated Gradient method (Sundararajan et al., 2017).

In this work, we try to simplify this process by
introducing “Where to Submit” (WTS), an NLP
system based on a convolutional neural network
that recommends academic venues given the title,
abstract, and/or keywords of a planned publica-
tion. The system is trained on previously published
manuscripts. To understand the system’s choice of
recommending a specific venue, WTS analyzes the
words and phrases that had the highest impact on
a recommendation. A researcher can then use the
list of recommended venues as a starting point to
find the best fitting venue based on other factors
such as the Call for Papers, rank, or deadline. Our
main contributions are: (1) We describe an effec-
tive method that can recommend scientific venues
based on a paper’s title, abstract, and keywords.
(2) We incorporate an Explainable AI method into
our system to give feedback on why a certain con-
ference or journal was recommended. (3) We eval-
uate our approach on two datasets from two differ-
ent research areas to show its general applicability.
(4) We make WTS available as a web service for
everyone to use.

https://wheretosubmit.ml
https://github.com/konstantinkobs/wts
https://dblp.uni-trier.de/statistics/recordsindblp
https://dblp.uni-trier.de/statistics/recordsindblp


2 Related Work

There exist several online services that recommend
venues based on the contents of a publication, but
all of them are lacking in some ways:

1. Most of them only recommend jour-
nals, not conferences (e.g. Elsevier; Jour-
nal Guide; Springer; Wiley; Enago; Edanz;
Manuscript Matcher; Journal/Author Name Estima-
tor; SJFinder). Especially in the fields of Computer
Science and AI, most work is published on confer-
ences (Vrettas and Sanderson, 2015), making this
a severe drawback for AI researchers.

2. Most of the services are commercially mo-
tivated (Elsevier; IEEE; Springer; Wiley; Enago;
Edanz; Manuscript Matcher). Publishers and com-
panies provide them to promote their own portfolio
or other services. Thus, they diminish the variety
of the recommendations by only considering their
own journals.

3. Many of the services are black boxes with-
out any information on how they perform their
recommendations. There are a few exceptions to
this: Journal/Author Name Estimator uses the open
source search engine software Lucene to find the 50
most similar papers according to the Lucene index
and recommends the journals that occur most often
in this set (Schuemie and Kors, 2008). Elsevier
extracts noun phrases from the paper and matches
these with a database using the Okapi BM25 algo-
rithm (Kang et al., 2015; Robertson, 1990).

4. None of the provided services explain why
a specific venue was chosen. Only very recently,
recommending conferences based on authors, ab-
stracts, and keywords became a new research
area (Iana et al., 2019). However, the authors ap-
proach a more general setting that includes con-
ferences from a wide variety of fields. They also
incorporate author information into the recommen-
dation and do not provide an explanation to the user
why a given conference was recommended. With
WTS, we introduce an open and explainable system
that recommends both journals and conferences.

3 Task and Methodology

Now we describe the task, our proposed method
WTS, and the baselines we compare it to.

3.1 Task Definition
Given a title, abstract, and keywords of a publica-
tion, we aim to predict the venue where the paper
was published. We interpret the classification task

as a ranking task by ordering the potential venues
according to their score in the model output and
use metrics that assess the ranking performance.

3.2 Approaches
In the following, we describe the applied baseline
methods as well as our own approach.

Random Baseline The simplest baseline is to
always predict venues in a uniformly random order.
As this will yield variances in prediction quality,
we report the expected value for each metric.

Majority Baseline The majority baseline orders
venues by the number of publications in the train-
ing set in descending order. Assuming stratified
sampling, common venues are ranked higher.

Logistic Regression Baseline For this baseline,
we tokenize the title, abstract, and keywords. From
all tokens, we create a term frequency vector
and train a multi-class logistic regression. The
venues are then sorted in decreasing order based
on the model output. For implementation, we use
sklearn’s methods for vectorization and logistic re-
gression (Pedregosa et al., 2011).

Iana et al. We also compare our method to one
of the approaches outlined in (Iana et al., 2019).
For better comparison, we use their best perform-
ing approach (according to Recall@10) that does
not incorporate any third-party information (called
“Ensemble TF-IDF & word2vec plus CNN (10)”).
A logistic regression combines two classifiers:
(1) Concatenating all corresponding abstracts of
a venue, creating one TF-IDF representation and
ranking venues using their distance to the provided
abstract representation and (2) classifying abstracts
using TextCNN, a convolutional neural network
(CNN) for text classification (Kim, 2014).

WTS (Ours) Our model is based on the
TextCNN and implemented in PyTorch (Paszke
et al., 2019). Our network’s structure is shown in
Figure 1. In contrast to Iana et al., we also provide
the network with title and keyword information.
We lowercase and embed each word in the title, ab-
stract, and keywords using Word2Vec (Mikolov
et al., 2013), trained on the abstracts and titles
of the respective dataset. This creates three two-
dimensional inputs for the model. Each input is
then processed through a convolution layer with
potentially multiple filter sizes and max-over-time
pooling, which maps the processed inputs to a fixed



Metric AI Medicine

Publications 245 573 2 924 609
Venues 78 78

Avg Title length 9.24 13.29
Avg Abstract length 153.65 185.18
Avg used Keywords 8.73 12.33
# total Keywords 32 139 209 525

Min. publication count 63 20 959
Mean publication count 3148.37 37 494.99
Standard Deviation 4102.96 28 170.86
Median publication count 1597.5 27 734.5
Max. publications count 21 122 201 469

Table 1: Comparison of the subsets for AI and medicine
venues from Semantic Scholar.

size. The resulting vectors are concatenated and
fed through two feed-forward layers that map to
a vector representing the venues. Training with
categorical cross entropy leads to higher outputs
for more likely venues. Dropout (Srivastava et al.,
2014) and batch normalization (Ioffe and Szegedy,
2015) are used for regularization.

4 Datasets

For training and testing, we extract all publications
from the Semantic Scholar dataset (Ammar et al.,
2018)3 that were published in the research fields
artificial intelligence (AI) and medicine.4

A publication is considered to be an AI paper
if it was published in one of the scientific venues
given in (Kersting et al., 2019). We manually match
them as closely as possible to the Semantic Scholar
venues. This procedure leads to 77 distinct venues.
We also add a class called “non-AI” consisting of
20 000 publications from other fields, to let the
model learn the difference between AI and non-AI
venues, resulting in 78 classes for this dataset.

In the field of medicine, we only use publica-
tions from Semantic Scholar that originate from
Medline, a medical publication database. Due to a
high number of venues with few publications, we
only consider the top 78 venues (the same number
as for the AI dataset, making the performance met-
rics comparable), which account for about 10% of
the publications.

In general, we only keep publications where no
input information is missing. Table 1 gives an

3Release from 2019-01-31.
4Code to reproduce the data will be published.

Hyperparam. AI Medicine

Title
# Filters* 89 265
Filter Sizes* [7] [7]
Input Length 75 75

Abstract
# Filters* 272 265
Filter Sizes* [1] [1]
Input Length 200 200

Keywords
# Filters* 219 265
Filter Sizes* [7] [7]
Input Length 25 25

General
Learning Rate* 0.083 0.041
Dropout* 0.42 0.14
Early Stopping
Patience

10 10

Optimizer* SGD SGD

Table 2: Hyperparameters for our model. Parameters
marked with * were determined by random search.

overview of both datasets. From both datasets we
randomly sample 80% as training, 10% as vali-
dation and 10% as test sets in a stratified manner.
While our approach might favor larger conferences
with this sampling strategy, we argue that this pro-
cedure better reflects the venue landscape. Larger
conferences usually cover a larger thematic scope
and accept more manuscripts.

5 Experimental Setup

Given the training, validation, and test splits of both
datasets described in Section 4, we train all models
on the training dataset and perform hyperparameter
optimization on the validation data. We then report
several metrics, detailed below, on the test dataset.

Hyperparameters For WTS, we perform ran-
dom search (Bergstra and Bengio, 2012) with 100
runs choosing the model with the best validation
Accuracy. Since our method uses a CNN that can
have different filter sizes in the convolution layer,
we randomly sample up to three different filter sizes
from {1, . . . , 9}. The number of filters per size
are drawn from {5, . . . , 300}. Also, we randomly
choose the optimizer from {Adam, SGD} (Kingma
and Ba, 2014), the learning rate from continu-
ous values in [0.01, 0.1], and the dropout proba-
bility from [0.1, 0.5]. Other parameters such as the
lengths to which the three inputs are padded and the
early stopping patience on the validation loss were
set manually. Table 2 shows the final parameters.



Method Acc Acc@5 MRR
A

I
Random 0.013 0.064 0.063
Majority 0.086 0.319 0.212
Log. Reg. 0.487 0.811 0.628
Iana et al. 0.065 0.198 0.154
WTS (Ours) 0.503 0.831 0.645

M
ed

ic
in

e Random 0.013 0.064 0.063
Majority 0.069 0.213 0.157
Log. Reg. 0.587 0.911 0.724
Iana et al. 0.440 0.808 0.599
WTS (Ours) 0.659 0.948 0.782

Table 3: Results of the baselines and our methods. Best
values are displayed in bold.

Metrics To compare our methods, we use three
common ranking metrics: Accuracy, Accuracy@5,
and Mean Reciprocal Rank (MRR). Accuracy@5
measures the fraction of test examples where the
method correctly puts the venue in the top five
ranks. MRR is defined as follows: Given a test set
of queries Q for which the model returns a ranking
of all items, MRR = 1

|Q|
∑|Q|

i=1
1

ranki
, where ranki

is the position at which the target item is ranked
by the model. Always predicting the correct item
at first position leads to a MRR of one, while bad
models achieve a MRR closer to zero.

6 Results

Table 3 shows the results of all tested methods on
the test sets of both datasets. On both datasets,
WTS outperforms all baseline methods in all met-
rics. A Wilcoxon signed-rank test (Wilcoxon,
1992) at 1% confidence level shows a significant
difference in the ranking of correct venues between
WTS and the logistic regression baseline on both
datasets. Together with the better MRR, this shows
the superiority of our method to the baselines. In
approximately 83% (AI) and 95% (Medicine) of
all cases, the correct venue was in the top five.

Interestingly, compared to the Medicine dataset,
the method by Iana et al. performs poorly on AI
publications. We suspect this is due to the smaller
size of the AI dataset and a higher skew in publica-
tion counts per venue (cf. Table 1).

7 Explainability

As a key part of WTS is explainability, we do not
only want to recommend venues to the user but also
explain why a certain venue was recommended. We

BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding
We introduce a new language representation model called

BERT, which stands for Bidirectional Encoder Representa-

tions from Transformers. . . .

Figure 2: Excerpt from a publication. WTS highlights
the words leading to its prediction “NAACL”.

use the Integrated Gradients method introduced by
Sundararajan et al. (2017) implemented in the Py-
Torch Captum library5 to find the most influential
words and phrases for the top five recommenda-
tions of the network. The method varies the input
by linearly transitioning in 50 steps from the ac-
tual embedding inputs to matrices filled with zeros.
Then, the gradients of the desired venue output with
respect to the inputs are calculated for each of these
steps. The gradients are averaged and multiplied by
the initial input, giving positive or negative values
to words and phrases that had positive or negative
impact on the score of the desired venue.

Figure 2 visualizes an excerpt from WTS’s out-
put for the well-known BERT paper, which re-
ceived the best paper award at NAACL 2019 (De-
vlin et al., 2019). It correctly ranks “NAACL” first.
Integrated Gradients correctly identifies “Trans-
formers” and “Language Understanding” as words
that qualify this publication as an NLP paper.

8 Website

In order to make our system available to the pub-
lic, we release WTS as a web service6 where re-
searchers can input their AI paper’s information
and receive recommendations for venues. The web
service applies the trained CNN and explainability
method and shows the top five predicted venues for
the given paper along with a color-coded explana-
tion (cf. Section 7) and venue-related links. The
Accuracy@5 results described in Section 6 indicate
that most of the times, a fitting venue is displayed
to the user.

9 Conclusion

We have presented WTS, an NLP system that rec-
ommends scientific venues based on the title, ab-
stract, and/or keywords of a publication. WTS
is designed to provide an explanation as to why
a certain venue was recommended, making it the

5https://captum.ai
6https://wheretosubmit.ml

https://captum.ai
https://wheretosubmit.ml


first interpretable and open recommendation ser-
vice for both, conferences and journals. We have
shown that WTS provides strong recommendations
on publications from the areas of AI and medicine.

Future work may regard evaluation: While each
publication only was published at one specific
venue, it might also be suitable for multiple other
venues, implying that our current scores are just
lower bounds for the actual performance. Improve-
ments to the provided web service could be to make
the list of venues sortable based on their deadline,
impact, or other configurable factors.
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