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Abstract

Malware is a constant threat and is continuously evolving. Security systems

try to keep up with the constant change. One challenge that arises is the large

amount of logs generated on an operating system and the need to clarify which

information contributes to the detection of possible malware. This work aims

at the detection of malware using neural networks based on Windows audit log

events. Neural networks can only process continuous data, but Windows audit

logs are sequential and textual data. To address these challenges, we extract

features out of the audit log events and use LSTMs to capture sequential effects.

We create different subsets of features and analyze the effects of additional in-

formation. Features describe for example the action-type of windows audit log

events, process names or target files that are accessed. Textual features are

represented either as one-hot encoding or embedding representation, for which

we compare three different approaches for representation learning. Effects of

different feature subsets and representations are evaluated on a publicly avail-

able data set. Results indicate that using additional information improves the

performance of the LSTM-model. While different representations lead to sim-

∗Corresponding author
Email addresses: markus.ring@hs-coburg.de (Markus Ring),

daniel.schloer@informatik.uni-wuerzburg.de (Daniel Schlör),
sarah.wunderlich@hs-coburg.de (Sarah Wunderlich), dieter.landes@hs-coburg.de (Dieter
Landes), hotho@informatik.uni-wuerzburg.de (Andreas Hotho)

Preprint submitted to Computer & Security January 18, 2024



ilar classification results, analysis of the latent space shows differences more

precisely where FastText seems to be the most promising representation.

Keywords: Malware, LSTM, embeddings, Windows audit logs

1. Introduction

The idea of classifying security-related data into normal and malicious using

machine learning algorithms is followed by the community over years. Various

surveys report about the recent state of using machine learning for cyber secu-

rity [1], host-based intrusion detection [2], or on available data sources [3]. This

work focuses on a specific task within that setting, namely the classification of

windows audit log events into two classes, normal and malicious.

Problem. Audit logs are comprehensive and record detailed information

about the operating system and user activities. All activities on Windows op-

erating systems generate sequences of events in this kind of logging. That is

why Windows audit log events are a promising source for detecting unwanted

activities from malware, ransomware, trojan horses and so on. Further, it may

even allow to distinguish between normal and malicious user behaviour. How-

ever, Windows audit logs are textual and sequential data which complicates

their analysis using state-of-art machine learning algorithms and it is not clear

whether it is beneficial to use all information available of Windows audit log

events or whether certain information can be discarded. Therefore, manual

analyses or static thresholds are often used to analyze Windows audit log events.

This work tackles the problem of developing an appropriate approach for ana-

lyzing Windows audit log events using machine learning algorithms with respect

to malware detection.

Objective. We aim to transform Windows audit logs to meaningful vectors

such that they can be processed by typical machine learning algorithms like

deep neural networks. Thereby, this work follows two main objectives. The first

objective measures the impact of different representations for the used features.

The second objective investigates the influence of considering different feature
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subsets of Windows audit log events.

Approach and Contributions. The basic challenges, textual and se-

quential data, show parallels to natural language processing (NLP). One-hot

encodings are often used to represent words in NLP. Other methods such as

BERT [4], ELMo [5], GloVe [6] or Word2Vec [7, 8] use a text corpus as input

and learn real-valued vector representations for words. Due to the similar struc-

ture of the data, we transfer one-hot encodings and three embedding approaches

(FastText, GloVe and Word2Vec) to our security-related data. First, we extract

several features from each event of Windows audit logs. Then, we use one-

hot encoding and different embedding representations to transform these values

to continuous vectors. Finally, this work explores Long Short Term Memory

Networks (LSTMs) for classifying the preprocessed Windows audit log events

into two classes (normal and malicious). The LSTMs are evaluated on different

feature subsets and different representations. Thereby, this work analyzes if

the presence of additional information helps to improve the classification accu-

racy. We experimentally evaluate our models on a publicly available data set

from Berlin et al. [9]. The experiments indicate an improvement of the results

when using additional information whereas different representations only have

a marginal influence on the classification performance. The source code will be

published on github.

Structure. The remainder of the paper is organized as follows. Section 2

discusses related work about machine learning algorithms for malware detec-

tion. The required foundations including Windows audit logs and encoding

approaches are discussed in Section 3. Section 4 proposes our feature genera-

tion approach and neuronal network architecture. Experiments are presented

in Section 5 and are discussed in Section 6. The last section summarizes the

paper.
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2. Related Work

This section reviews related work about malware detection using machine

learning algorithms. A comprehensive survey about malware detection ap-

proaches using data mining techniques is given by Souri and Hosseini [10]. Souri

and Hosseini categorize existing approaches into signature-based or behavior-

based, and explicitly address the specific challenges for the application of data

mining approaches. Ye et al. [11] give a brief overview of the malware and

anti-malware industry. Then, the authors provide a detailed overview of data

mining methods for malware detection and categorize them into classification-

based and clustering-based approaches. Further, this survey discusses the topics

features extraction and feature selection in great detail.

A broad range of research regarding host-based intrusion detection using se-

quences of system calls can be found. System calls are similar to Windows audit

logs in that they also have a type and various parameters, but system calls con-

tain even more detailed information as they record every access to the kernel.

Over the years, Hidden Markov Models [12], Support Vector Machines [13] and

Neural Networks [14] have been used to analyze system calls. Athiwaratkun

and Stokes [15] execute normal and malware binaries and record the generated

system calls. Then, the authors use a recurrent neural network to detect mal-

ware based on the recorded system calls. Wunderlich et al. [16] classify systems

calls using an LSTM network and study the influence of different embedding

representations for system calls.

Another popular approach is the analysis of binaries. Saxe and Berlin [17]

extract features like byte and entropy histograms from benign and malicious

binaries. Then, the authors use a deep neural network to classify binaries into

two classes, normal and malicious. Moskovitch et al. [18] evaluate four different

classifiers for malware detection based on binary files. In a preprocessing step,

the authors parse the binary files and extract n-grams. Features are built using

term frequency (TF) and inverse document frequency (TF-IDF) based on the

extracted n-grams. In order to reduce the huge number of features, only the
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50.000 most frequent features are considered. Another data source for identify-

ing malware is used by Sami et al. [19]. The authors use classification methods

such as Näıve Bayes or Random Forest to classify binaries based on their API

calls. Further, Boukhtouta et al. [20] evaluate various machine learning algo-

rithms for malware classification based on network data. These works also try

to detect malware, but use other data sources like (binary) file content, API

calls, network traffic or build their own datasets by collecting data from sources

like VirusShare (e.g. [21] or [22]) which makes them difficult to compare. Often

these data sets are not available or only in preprocessed formats, making it im-

possible to subsequently identify the used binary files and calculating different

features.

The most similar work to ours is given by Berlin et al. [9]. Berlin et al.

apply a logistic regression classifier to classify four minute time frames of Win-

dows audit log events into the classes normal and malicious. The authors create

features by counting the presence of specific action and target values within

the Windows audit log events. Temporal aspects are considered through the

creation of q-grams. This feature generation process results in about seven mil-

lion features. Due to the large number of features, the correlation coefficient

to the class label is used to extract the 50.000 most relevant features. The

authors achieve a detection rate of 83 percent. In contrast to Berlin et al., we

use LSTMs which capture temporal aspects inherently and do not model them

manually through q-grams. In contrast to Berlin et al., we learn different rep-

resentations for available features in Windows audit log events and use LSTMs

which capture temporal aspects inherently and do not model them manually

through q-grams.

Other works which use the Windows audit log data set from Berlin et al. [9]

are presented by Wang et al. [23] and Guo et al. [24]. Although they use the

same data set, they pursue a different objective than this work. E.g. Wang et

al. propose a method for protecting deep neuronal networks against adversarial

examples on the application domain malware detection. The method is based

on randomly nullifying features and evaluated on the Windows audit log data
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set.

3. Foundations

3.1. Windows Audit Logs

While a variety of data sets exist for the analysis of binaries (e.g. [25]

and [26]), there are only few publicly available data sets for Windows systems.

The only recent and labeled data set which contains Windows audit logs is

made available by Berlin et al. [9], which we choose for our experiments. The

structure of the data is shown in Figure 1.

Figure 1: Excerpt of the Windows audit log files from Berlin et al. [9]

The data set consists of separate files where each file contains around four

minutes of Windows audit log events. Each log file contains some meta infor-

mation like the recording time and the number of events. A file has 1 to m

processes. For each process, there are the process name name, process id pid
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and the list of corresponding events. Events are the smallest units in the log

files and contain the following features: time, event id , string id , action, target

and abstraction. The feature abstraction is often not given and the string id can

be interpreted as a summary of the features action and target . Berlin et al. [9]

used Cuckoo Sandbox to record the data set. Cuckoo Sandbox (cuckoo-box)1 is

an open source automated analysis system which among other things is able to

analyze malicious files and trace their API calls. To avoid special characteristics

of cuckoo-box, the authors introduced a feature ignored , which indicates if it is

a special cuckoo-box event or not.

In reality, Windows audit log events are available as a continuous data stream

which is not divided into separate files. Therefore, we use the division into files

of the given data set only for labeling the data and evaluate each sequence of

events separately. As a result, our work is more similar to a real-world scenario.

3.2. Representations

As mentioned in the introduction, there are several methods for learning

embeddings. For this study we use FastText [27], GloVe [6] and Word2Vec [7]

which have been successfully used in other security-related domains like IP

addresses [28] and system calls [16] and evaluate their suitability for learning

meaningful representations from Windows audit logs.

We either use one-hot vectors or word embeddings to transform the features

action, name and target to continuous values. Both approaches are explained

in the following.

3.2.1. One-hot vector

One-hot vectors consider the different values of a feature. Assume, the

feature action has 10 different values: close, create, delete, execute, modify ,

permissions, read , spawn, write and write and createReg . In that case, the

one-hot vector contains 10 components where each component represents a pos-

sible value of the feature action. The components are listed in a predefined

1https://cuckoosandbox.org/
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order, e.g. the order of the listed values of the feature action given above.

For one-hot vectors, the component which represents the current value is 1,

while all other components are 0. Consequently, the value close is represented

by the vector ~aclose = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)T , the value create by the vector

~acreate = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0)T and so on.

3.2.2. Word Embeddings

The three approaches (FastText, GloVe and Word2Vec) use a text corpus

as input and create semantically meaningful vector representations for words.

In that context, vector representations are called embeddings. The basic ap-

proaches and our adaptation for Windows audit logs are described in the fol-

lowing.

Word2vec. Methodically, Word2Vec [7] is based on a neural network where the

hidden layer contains less neurons than the input and output layer. Using

the skip-gram approach of Word2Vec, the neural network is trained with an

input word and should predict the surrounding words. After the training, the

weights of the hidden layer are used as vector representations for words. Words

appearing in similar context tend to have similar vector representations while

vector representations differ for words that do not appear in similar contexts.

FastText. FastText [27] builds upon the basic idea of Word2Vec but represents

each word additionally as bag of character n-grams. The vector representa-

tion of a word is then the sum of the representation of all character n-grams.

This approach allows sharing of sub-word representations between words, which

improves the representations of infrequent words.

GloVe. GloVe [6] is a co-occurrence based approach, which uses local context

window information like Word2Vec but also incorporates global information

from matrix factorization to obtain meaningful word representations. In con-

trast to Word2Vec and FastText, GloVe is a counting-based rather than a

prediction-based model. It benefits from training on non-zero entries in the
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co-occurrence matrix to learn latent word representations in such a way that

they follow the probability of co-occurrence of the respective words.

Adaptation. In the following, we exemplarily use the feature action and explain

how we represent our data as word embeddings. The same procedure is done

for the features name and target .

To be able to train the models, we need an analogy to sentences. Therefore,

we consider the sequence of events as a sentence where the action represents

the words. Each file of the data set represents one sentence consisting of all

events in the order of occurrence. Consequently, we extract sentences like ”read

execute spawn modify write” from Windows audit logs. Table 1 illustrates the

generation of training samples based on this sentence for Word2Vec.

Table 1: Sample generation for the parameter action for word2vec.

# input word context word

1 read execute spawn modify write → read execute

read spawn

2 read execute spawn modify write → execute read

execute spawn

execute modify

3 read execute spawn modify write → spawn read

spawn execute

spawn modify

spawn write

4 read execute spawn modify write → modify execute

modify spawn

modify write

5 read execute spawn modify write → write spawn

write modify

At first, Word2Vec selects a so called input word from the training sentence.

Then, words from the surrounding window (we refer to them as context words)

are used to build training samples. Table 1 uses a window size of 2. Training
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is done as follows. The neural network is fed with the input word and tries to

predict a context word . For each training sample, the expected output value for

the corresponding context word is 1 and 0 for all other words. Let’s consider the

first sample where read is the input word (see Table 1). In that case, we have

the words execute and spawn in the context which should be predicted by the

network for the input read . After the training phase, the weights of the hidden

layer are used as vector representations for the values of the feature action.

FastText expands this approach by also incorporating sub-strings, i.e. exe-

cute is represented by the character n-grams <ex, exe, xec, ecu, cut, ute, te>

and <execute>, with < and > representing word boundary tokens. The ben-

efit of this approach becomes more visible for the features name and target ,

where sub-strings of for example the file name carry certain semantics, such as

the prefix [system] for the Windows system root folder or a suffix such as .exe

indicating an executable file, even if the full path name was unique and never

seen during training.

Other than FastText and Word2Vec, GloVe formulates a weighted least-

squares regression problem to infer word embeddings from co-occurrence counts.

Therefore a co-occurrence matrix is constructed based on the extracted sen-

tences from Windows audit logs, which indicates how often a certain word ap-

pears together with each other word. GloVe then uses the ratio of co-occurrence

probabilities to optimize word vectors, such that their dot product follows the

log-probability of their corresponding words.

For all approaches, the representations are created beforehand so they can

be used as input values when analyzing the influence of different features with

a LSTM-model. In our experiments, we use the FastText and Word2Vec im-

plementations from the gensim 3.8.3 library [29]. For GloVe, we use the imple-

mentation of the glove-python-binary 0.2.0 library.
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Table 2: Feature generation. Derived features are represented by → feature name.

level feature raw

1 start time 2014-09-10T20:22:10.38223

1 end time 2014-09-10T20:24:13.38733

1 size 451

2 process id 358

2 name [python]\\python.exe

2 → process path [python]

2 → process ending exe

3 time 2014-09-10T20:22:10.38223

3 event id 4663

3 ignored false

3 string id WINDOWS FILE:Execute: [system]\\cmd.exe

3 action Execute

3 target [system]\\cmd.exe

3 → target path [system]

3 → target ending exe

3 abstraction ””
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4. Approach

4.1. Feature Generation

Table 2 provides an overview of the features and preprocessing rules. The

column level indicates the hierarchy of the files. A file consists of 1 to m processes

and each process contains 1 to n events. Level 1 features are the same for all

events within the file, level 2 features are the same for all events which are caused

by the same process and level 3 features are different for each event. The column

feature describes the name of the feature and the column raw shows example

values.

All features from level 1 are artificially created during data set creation and

therefore not used in this setting. The feature process id is an identifier from

the operating system and is also ignored in this work.

We apply the same preprocessing for the features name (level 2) and target

(level 3). Some processes and targets are often used and should be given spe-

cial attention. These frequent values often indicate typical normal activities or

even malware properties. Therefore, we introduce threshold values (min proc

and min tar) to distinguish between frequent and non-frequent values for these

features. All values which do not exceed the predefined thresholds are treated

as a default value other . The use of threshold values has two advantages. First,

we can also handle previously unseen feature values by assigning them the value

other if necessary. Second, we do not learn behavior for certain feature val-

ues that are not representative in our training data. However, the threshold

values play an important role and their influence is investigated in the exper-

iments. After identifying relevant values, we either create one-hot vectors or

learn embedding representations for all frequent values including the default

value other . The transformation approaches are illustrated for the feature ac-

tion in Section 3.2.1 and 3.2.2.

The file type and file path may provide useful information. Therefore, we

extract the file type process ending from the feature name. The file type is

defined as the part of the value after the last dot (.). Further, we extract
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the file path process path from the feature name. The file path is defined as

the first part of the value until the first two backslashes (\\). We identify

frequent and non-frequent values for process ending and process path using the

threshold min proc. Next, we either create one-hot vectors or learn embedding

representations. The same procedure is applied to the features target ending

and target path based on the feature target using threshold min tar.

The first feature on level 3 is time. Generally, the time of events could be a

good identifier for normal and malicious behavior. Modifying large numbers of

files would be normal for daytime, but suspicious at night in a company network.

However, we refrain from considering timestamps since the underlying data set

does not reflect such characteristics.

Since there are only four different values for the feature event id in the

underlying data set, we ignore this feature as well. We also ignore the features

string id and abstraction. The feature abstraction is a free text field which is

often empty and the feature string id is an aggregation of the parameters action

and target .

The feature ignored is used as a selector. We ignore all events which contain

the value true for the feature ignored , since these events constitute artifacts of

the data set creation (see Section 3.1).

For the feature action, we either create one-hot representations or learn

embedding representations as described in the previous section.

Overall, we intend to train our models with different amounts of available

information. Therefore, we create five different feature subsets which are shown

in Table 3. The first column in Table 3 assigns each feature subset a unique

identifier. Subset I contains only the most basic feature action. Subset II

contains the feature action and the event-related feature target whereas subset

III contains the feature action and the process-related feature name. Subset

IV contains three features: action, target and name. The last subset V contains

all relevant features, namely action, target , name, process path, process ending ,

target path and target ending .
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Table 3: Feature subsets generated from Table 2.

ID included features

I action

II action, target

III action, name

IV action, target, name

V action, taget, name, process path, process ending, target path, target ending

4.2. LSTM Model

Sak et al. [30] show that stacking LSTM-layers together improves the han-

dling of long-term dependencies in sequences. Due to the long-term dependen-

cies in Windows audit logs, we decide to stack several LSTM layers together. A

preliminary study shows that stacking three LSTM layers together works very

well for our data. The LSTM layers are followed by two fully connected layers,

as shown in Figure 2.

Figure 2: LSTM model.

The data transformation approach leads to a varying number of features

which depend on the considered features and used representations. Therefore,

we adapt the number of neurons per layer depending on the number of input fea-

tures n as follows: The first layer uses min(max(n
2 , 4), 128) neurons, the second

LSTM layer min(max(n
4 , 3), 64), the third LSTM layer min(max(n

8 , 2), 32), the

first fully connected layer 4 and the last layer 1 neuron. For one-hot encoding,

the number of input features increases fast for small threshold values min tar

and min proc. Therefore, we limit the maximum number of neurons in the first
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layer to 128, in second layer to 64 and in the third layer to 32 in order to avoid

too large network architectures. The network is trained to predict a value of

0 for normal and 1 for malicious sequences. Training is done using the ADAM

optimizer with a learning rate of 0.0001 for 10 epochs and the batch size is fixed

to 64. The sequence length of Windows audit logs is fixed to 32 events. A

preliminary study showed that a sequence length of 32 achieved better results

than smaller sequence lengths like 8 or 16. The data set consists of files where

each file contains the Windows audit log events of a four minute time window.

We do not discard files with less than 32 events, instead we fill the stream with

zeros at the beginning. The complete processing pipeline is shown as pseudo

code in Algorithm 1.

Algorithm 1: Processing pipeline of Windows audit log events.

Input: dataset, feature subset, representation type, thresholds

Output: TPR, FPR, ACC

1 foreach subset in crossValidationSplits(dataset) do

2 // Preprocess data

3 train = getTrainingData(subset, feature subset)

4 replaceInfrequentValues(train, thresholds)

5 rep = learnRepresentations(train, representation type)

6 // Transform training and test data

7 train preprocessed = transform(train, rep)

8 test = getTestData(subset, feature subset)

9 test preprocessed = transform(test, rep)

10 // Train and evaluate the model

11 trainModel(train preprocessed)

12 results = results ∪ evaluateModel(test preprocessed)

13 TPR, FPR, ACC = mean(results)
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5. Experiments

5.1. Evaluation Methodology

5.1.1. Data Set

We use the anonymized Windows audit log data set from Berlin et al. [9]

which can be found on github2. The structure of the data set is discussed in

Section 3. The available version consists of 5.440 files recorded in a real-world

environment exclusively representing normal behavior as well as 20.362 files

recorded in a cuckoo-box from which 5.683 files represent normal behavior and

14.679 files represent malicious behavior.

In our experimental evaluation, we use both parts of the data set and apply

a 5-fold cross-validation over the complete data set. In that kind of evaluation,

the data set is split into 5 parts where 4 parts are used to train the model and

1 part is used to evaluate the model. This procedure is repeated five times such

that each part is used once for evaluation. Reported results are the mean and

standard deviation over the 5-fold cross-validation.

5.1.2. Evaluation Methodology

In the area of intrusion detection, the number of detected attacks and false

alarms are the most important evaluation measures. Therefore, we use the true

positive rate (TPR), false positive rate (FPR) and classification accuracy (ACC)

as evaluation measures. The TPR sets the number of correctly identified attack

sequences in relation to all attack sequences within the data set. FPR calculates

the ratio between the number of false alarms and the total number of non-attack

sequences. ACC divides the number of correct predictions by all predictions.

Contrarily to the structure of the data set in which Windows audit logs are

aggregated in separate files each representing time Windows up to 4 minutes,

in a real world application Windows audit log events are a continuous data

stream. In such a stream, subsequences represent malicious behavior, which an

2https://github.com/konstantinberlin/malware-windows-audit-log-detection
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intrusion detection system ideally is able to differentiate from normal behavior.

For our evaluation methodology, we follow this realistic setting and choose a

subsequence-based classification. The data set, however, only reports labels

for each file and, as a consequence, a sequence of audit log events labeled as

malicious might contain malicious and non-malicious behavior. As more fine-

grained labels are not available, some subsequences might be erroneously marked

as malicious which may lead to a higher number of false alarms through our

analysis methods.

5.1.3. Definition of a Baseline

The baseline approaches evaluate Windows audit log events only based on

the feature action which reflects the feature subset I from Table 3. To improve

comparability, the baselines are based on the same LSTM architecture (see

Figure 2). All baselines use the feature action as it is event-related and events

are the smallest units in Windows audit logs. Further, the feature action has

a set of predefined values which is not the case for other event-related features

like target . This allows the baselines to extract the essential information from

Windows audit logs.

5.2. Experiment 1

The thresholds min proc and min tar are used to identify frequent and non-

frequent values and thereby limit the number of possible manifestations for the

features process and target in the data set. E.g., the threshold value 0.01%

leads to the following amount of different values: 143 names, 22 process paths,

3 process endings, 465 targets, 22 target paths and 91 target endings. These

numbers are calculated for one subset and may vary slightly over the different

subsets of the 5-fold cross-validation.

Experiment 1 analyzes the influence of these threshold values. Since the

thresholds affect the features taget , name, process path, process ending , target

path and target ending , we choose feature subset V (see Table 3), since it con-

tains all mentioned features. The smaller the values for the thresholds, the more
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Table 4: Results of experiment 1.

Encoding min proc min tar TPR FPR ACC

one-hot 3% 3% 0.9908 ± 0.0035 0.1634 ± 0.0086 0.8869 ± 0.0046

one-hot 1% 1% 0.9772 ± 0.0086 0.1527 ± 0.0087 0.8897 ± 0.0061

one-hot 0.5% 0.5% 0.9941 ± 0.0012 0.1349 ± 0.0102 0.9073 ± 0.0051

one-hot 0.1% 0.1% 0.9944 ± 0.0013 0.1292 ± 0.0064 0.9112 ± 0.0031

one-hot 0.01% 0.01% 0.9921 ± 0.0031 0.1361 ± 0.0049 0.9049 ± 0.0028

FastText 3% 3% 0.9814 ± 0.0079 0.1658 ± 0.0089 0.8823 ± 0.0076

FastText 1% 1% 0.9684 ± 0.0201 0.1557 ± 0.0102 0.8848 ± 0.0108

FastText 0.5% 0.5% 0.9913 ± 0.0034 0.1453 ± 0.0134 0.8993 ± 0.007

FastText 0.1% 0.1% 0.9928 ± 0.0012 0.1374 ± 0.0097 0.9052 ± 0.0053

FastText 0.01% 0.01% 0.9903 ± 0.0045 0.1314 ± 0.0083 0.9084 ± 0.0054

FastText 0.001% 0.001% 0.9911 ± 0.0042 0.1334 ± 0.0104 0.9073 ± 0.0068

FastText 0% 0% 0.9930 ± 0.0033 0.1398 ± 0.0113 0.9036 ± 0.0059

Word2Vec 3% 3% 0.9751 ± 0.0102 0.1707 ± 0.0102 0.8769 ± 0.0088

Word2Vec 1% 1% 0.9796 ± 0.0132 0.1556 ± 0.0129 0.8886 ± 0.0081

Word2Vec 0.5% 0.5% 0.9935 ± 0.0017 0.1438 ± 0.0118 0.9011 ± 0.0064

Word2Vec 0.1% 0.1% 0.9925 ± 0.0022 0.1354 ± 0.0097 0.9064 ± 0.0046

Word2Vec 0.01% 0.01% 0.9900 ± 0.0050 0.1314 ± 0.0087 0.9082 ± 0.0060

Word2Vec 0.001% 0.001% 0.9893 ± 0.0054 0.1314 ± 0.0097 0.9080 ± 0.0065

GloVe 3% 3% 0.9500 ± 0.0172 0.2156 ± 0.0216 0.8385 ± 0.0150

GloVe 1% 1% 0.9641 ± 0.0207 0.2125 ± 0.0203 0.8452 ± 0.0154

GloVe 0.5% 0.5% 0.9839 ± 0.0108 0.1768 ± 0.0202 0.8757 ± 0.0114

GloVe 0.1% 0.1% 0.9820 ± 0.0088 0.1626 ± 0.0211 0.8846 ± 0.0122

GloVe 0.01% 0.01% 0.9925 ± 0.0036 0.1591 ± 0.0232 0.8904 ± 0.0145

GloVe 0.001% 0.001% 0.9889 ± 0.0058 0.1361 ± 0.0100 0.9047 ± 0.0068

different values are considered.

Results. Table 4 show the results of experiment 1. The best results for

each encoding are shown in italics, while the overall best results are in bold

print. The columns min proc and min tar provide the used threshold values

in percent. The results show no major differences for one-hot encodings and

embedding-based representations (FastText, GloVe and Word2Vec).

One-hot encodings achieve their best results for medium-high thresholds like

min proc = 0.1% and min tar = 0.1%. Lower thresholds lead to slightly worse

results. It should be mentioned that low thresholds lead to very large one-hot

vectors which increase the computation time and lead to large neural networks
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architectures compared to the embedding-based approaches.

In contrast to that, different threshold values have more effect on embed-

ding representations than on one-hot encodings. The three chosen embedding

variants achieve very similar results and perform similarly with regard to the

used thresholds. In general, lower threshold values lead to better results in

all evaluation measures. Due to its use of n-grams, FastText can also handle

unknown values. Therefore, we also evaluate FastText without any threshold

values (min proc = 0% and min tar = 0%). However, results for FastText

for thresholds between 0% and 0.1% differ only very slightly compared to the

significantly higher computational demands without a threshold.

Explorative Analysis. In addition to the analysis of different embedding-

techniques and thresholds by numbers, an in-depth review of the embeddings

can reveal further insights which aspects are captured well within the latent

space. We analyze the latent space exemplarily for the attribute target which

by itself is the most meaningful single parameter. The embeddings are projected

to a two-dimensional space using t-SNE [31]. To visualize the homogeneity of

the latent space regarding specificity for attack / normal behavior, we apply the

following coloring schema: For all files within the dataset, we count how often

each target occurs in an attack respectively normal context. We then weight

the counts according to the total proportion of attack vs. normal sequences.

A target only occurring in attacks thereby has a score of 1.0 (red), whereas a

target only present in normal behavior has a score of 0.0 (blue). A target which

is present in both, attack and normal behavior equally (relative to the overall

proportion) has a score of 0.5 (grey).

Figure 3 shows the representations for target , learned with a threshold of

min tar = 0.001% for one-hot encoding, Word2Vec, GloVe and FastText embed-

dings. The latent space differs considerably between the representation variants.

One-hot encodings do not yield a meaningful latent structure while GloVe and

Word2Vec are able to provide some structures. In contrast to that, the ability

of FastText to consider sub-strings seems to be beneficial to create semantically

meaningful clusters, which reveal their preference for attack or normal behavior
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even in a very low-dimensional space. When inspecting the different clusters

closely, folder structure such as common sub-folders, file name structure and

file endings become visible as well as semantic or contextual similarity such as

temporary files of various types created as web-browser cache or system file

clusters. This is also reflected in the attack score (color), where several very

homogeneous attack and normal behavior clusters appear.

Figure 3: t-SNE visualization of the latent space for target
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Table 5: Results of experiment 2.

Encoding subset ID min proc min tar TPR FPR ACC

one-hot I 0.01% 0.01% 0.9075 ± 0.0124 0.2572 ± 0.0156 0.7948 ± 0.0081

one-hot II 0.01% 0.01% 0.9519 ± 0.0160 0.1400 ± 0.0135 0.8890 ± 0.0059

one-hot III 0.01% 0.01% 0.9791 ± 0.0217 0.1780 ± 0.0148 0.8716 ± 0.0106

one-hot IV 0.01% 0.01% 0.9808 ± 0.0031 0.1315 ± 0.0076 0.9040 ± 0.0042

one-hot V 0.01% 0.01% 0.9921 ± 0.0031 0.1361 ± 0.0049 0.9049 ± 0.0028

FastText I 0.01% 0.01% 0.8972 ± 0.0224 0.2385 ± 0.013 0.8058 ± 0.0067

FastText II 0.01% 0.01% 0.9384 ± 0.0056 0.1359 ± 0.0102 0.8884 ± 0.0067

FastText III 0.01% 0.01% 0.9850 ± 0.0074 0.1863 ± 0.0116 0.8697 ± 0.0104

FastText IV 0.01% 0.01% 0.9858 ± 0.0031 0.1434 ± 0.012 0.8988 ± 0.007

FastText V 0.01% 0.01% 0.9903 ± 0.0045 0.1314 ± 0.0083 0.9084 ± 0.0054

Word2Vec I 0.01% 0.01% 0.9086 ± 0.0298 0.2459 ± 0.0211 0.8046 ± 0.0077

Word2Vec II 0.01% 0.01% 0.9401 ± 0.022 0.1515 ± 0.0104 0.8784 ± 0.0067

Word2Vec III 0.01% 0.01% 0.9867 ± 0.0034 0.1882 ± 0.0168 0.8689 ± 0.0115

Word2Vec IV 0.01% 0.01% 0.9859 ± 0.0064 0.1561 ± 0.0234 0.8903 ± 0.0146

Word2Vec V 0.01% 0.01% 0.9900 ± 0.005 0.1314 ± 0.0087 0.9082 ± 0.006

GloVe I 0.001% 0.001% 0.9543 ± 0.0493 0.3988 ± 0.1336 0.7165 ± 0.0753

GloVe II 0.001% 0.001% 0.9684 ± 0.006 0.1515 ± 0.0073 0.8876 ± 0.0055

GloVe III 0.001% 0.001% 0.9845 ± 0.0082 0.1954 ± 0.0090 0.8634 ± 0.0062

GloVe IV 0.001% 0.001% 0.9856 ± 0.0083 0.1491 ± 0.0098 0.8949 ± 0.0056

GloVe V 0.001% 0.001% 0.9889 ± 0.0058 0.1361 ± 0.0100 0.9047 ± 0.0068

5.3. Experiment 2

Experiment 2 analyzes the effects when using different representations and

considering additional features of Windows audit log events. Therefore, we use

several LSTM models which analyze Windows audit logs based on the different

feature subsets of Table 3. For example, one-hot with subset ID III means

that feature subset III is chosen in combination with one-hot representations.

All feature subsets are evaluated for one-hot, FastText, GloVe and Word2Vec

representations. Since the FPR rate is very important in the field of IT security,

we have chosen similar thresholds for each representation which result in low

FPR rates in experiment 1. Results of experiment 2 are shown in Table 5.

Results. Table 5 shows that one-hot as well as embedding-based represen-

tations (GloVe, FastText and Word2Vec) benefit from additional features, since

these methods achieve better results for subsets which consider more features.

As in experiment 1, different representations achieve very similar results.
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5.4. Experiment 3

From the previous experiments, we observe the following: (1) None of the

analyzed representations is clearly better or worse than the others. (2) Consider-

ing all available features (subset ID V ) is beneficial and leads to better results.

For those reasons, we select a suitable configuration (encoding = Word2Vec,

subset ID = V , min proc = 0.01% and min tar = 0.01%) and analyze whether

we can improve the results further by optimizing parameters in experiment 3:

To do this, we first vary the parameters batch size, sequence length and

learning rate. Then, we also vary the number of layers and neurons in the

neural network. The default configuration of the model (as introduced in Sec-

tion 4.2) is referenced under the term normal. We provide a configuration with

only one LSTM-layer with n
2 neurons, followed by a dense layer with n

4 neurons

and an output layer of one neuron. Thereby, n is the number of input features.

This configuration is denominated small. Additionally, we provide a configura-

tion with three LSTM-layers with n neurons each followed by two dense layers

with 32 neurons each and an output layer with one neuron. We refer to this

configuration as large.

Results of experiment 3 are shown in Table 6. The parameter study does

not lead to any significant improvement. However, it can be observed that

larger sequence lengths lead to lower false positive rates. In contrast to that,

the parameters batch size, learning rate and the size of the neural network have

only marginal influence.

6. Discussion

Experiment 1 analyzes the effect of different threshold parameters min proc

and min tar. Generally, the threshold values can strongly influence the results.

If the threshold values are too high, typical values for malware are not taken

into account and the detection rate decreases. This effect can be observed in

Table 4 for thresholds like min proc = 3% and min tar = 3%, which causes
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Table 6: Results of experiment 3.

Model Batch

Size

Sequence

Length

Learning

Rate

TPR FPR ACC

small 16 8 0.0001 0.9936 ± 0.0013 0.1479 ± 0.0037 0.8977 ± 0.0019

small 16 32 0.0001 0.9925 ± 0.0009 0.1304 ± 0.0097 0.9097 ± 0.0049

small 16 128 0.0001 0.9899 ± 0.003 0.1256 ± 0.0052 0.9099 ± 0.0024

small 64 8 0.0001 0.9922 ± 0.0012 0.1489 ± 0.0066 0.8965 ± 0.003

small 64 32 0.0001 0.9901 ± 0.0053 0.1346 ± 0.0097 0.9061 ± 0.0068

small 64 128 0.0001 0.9859 ± 0.0057 0.1287 ± 0.0057 0.9066 ± 0.0035

small 96 8 0.0001 0.9916 ± 0.0018 0.1506 ± 0.0049 0.8952 ± 0.0023

small 96 32 0.0001 0.9911 ± 0.0027 0.1369 ± 0.0093 0.9049 ± 0.0046

small 96 128 0.0001 0.9851 ± 0.005 0.1419 ± 0.0224 0.8972 ± 0.015

normal 16 8 0.0001 0.9932 ± 0.0017 0.1439 ± 0.0039 0.9003 ± 0.0019

normal 16 32 0.0001 0.9929 ± 0.0022 0.1313 ± 0.009 0.9093 ± 0.0045

normal 16 128 0.0001 0.9893 ± 0.0065 0.125 ± 0.0059 0.9102 ± 0.0034

normal 64 8 0.00005 0.9931 ± 0.0017 0.1494 ± 0.0043 0.8965 ± 0.0022

normal 64 8 0.0001 0.9911 ± 0.0022 0.1439 ± 0.0053 0.8996 ± 0.0016

normal 64 32 0.00005 0.9903 ± 0.0043 0.1349 ± 0.0118 0.906 ± 0.0076

normal 64 32 0.0001 0.9924 ± 0.0012 0.132 ± 0.0097 0.9086 ± 0.0052

normal 64 32 0.001 0.9895 ± 0.0051 0.1297 ± 0.0095 0.9092 ± 0.0066

normal 64 128 0.00005 0.9865 ± 0.0052 0.1281 ± 0.0054 0.9071 ± 0.0035

normal 64 128 0.0001 0.9831 ± 0.0071 0.127 ± 0.0036 0.9068 ± 0.0026

normal 64 128 0.001 0.9862 ± 0.0046 0.1274 ± 0.0113 0.9076 ± 0.0068

normal 96 8 0.0001 0.9928 ± 0.0024 0.1489 ± 0.0094 0.8968 ± 0.0039

normal 96 32 0.0001 0.9926 ± 0.0017 0.1335 ± 0.0107 0.9077 ± 0.0059

normal 96 128 0.0001 0.9856 ± 0.0053 0.1273 ± 0.0044 0.9074 ± 0.0028

large 16 8 0.0001 0.993 ± 0.0023 0.142 ± 0.0056 0.9015 ± 0.0022

large 16 32 0.0001 0.9938 ± 0.0027 0.1314 ± 0.0097 0.9095 ± 0.0048

large 16 128 0.0001 0.9916 ± 0.0029 0.1242 ± 0.0049 0.9114 ± 0.0018

large 64 8 0.0001 0.993 ± 0.0019 0.1442 ± 0.0051 0.9 ± 0.0019

large 64 32 0.0001 0.9927 ± 0.0035 0.1335 ± 0.009 0.9077 ± 0.0046

large 64 128 0.0001 0.9885 ± 0.0045 0.1241 ± 0.0038 0.9105 ± 0.0024

large 96 8 0.0001 0.9915 ± 0.0026 0.144 ± 0.006 0.8997 ± 0.002

large 96 32 0.0001 0.9934 ± 0.0024 0.132 ± 0.0093 0.909 ± 0.0052

large 96 128 0.0001 0.9895 ± 0.0037 0.1246 ± 0.0055 0.9105 ± 0.0024
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typical observations for malware to be lost in the masses of normal behavior

behind the default token.

Experiment 1 indicates that different thresholds have only marginal effects,

given different embedding representations. In principle, better results can be

obtained for low thresholds which is probably due to the fact that more detailed

information is drawn from the data. For this extracted information, embed-

dings are learned that take into account similarities between them. Finally, the

models benefit from this additional information. For one-hot encodings, too low

thresholds have no positive influence. In that case, the model probably does not

generalize well and computation time increases considerably with long one-hot

vectors.

An in-depth inspection of the latent space of all representation variants

showed that FastText is a suitable choice as representation technique due to

the capability to introduce previously unseen attributes and the ability to yield

meaningful information from the clustering of neighboring samples in latent

space for an in-depth analysis of specific targets.

Overall, experiment 1 leads to the assumption that embedding representa-

tions benefit from more detailed information whereas one-hot representations

benefit from medium-high thresholds. Despite similar classification results for

different representations, the visualization of the latent space shows differences.

In particular, FastText seems to be most promising.

Experiment 2 analyzes the effect of using different feature subsets. Consid-

ering only the action of Windows audit log events, all encoding variations lead

to worse results (e.g., see results for one-hot or GloVe in Table 5). This fact may

be explained by the limited information content available. When considering

the additional feature target (subset ID II), all representations achieve better

results. This effect is boosted by including additional features, see e.g. the re-

sults for different features subsets for GloVe in Table 5. Results are very similar

for all representations, with the best results being achieved by considering all

features (subset ID V ). Overall, experiment 2 shows that LSTMs benefit from

additional information when analyzing Windows audit log events.
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The parameter study of experiment 3 did not lead to a significant change in

performance. For optimizing the results, the use of a larger training data set is

an obvious starting point, since the used data set contains Windows audit logs

from only few Windows systems. Further, the file-based labelling of the data

set may lead to the situation that attack labelled files may include audit log

sequences at the beginning or end of the file which are exclusively normal. This

could be an explanation why larger values for the parameter sequence length

lead to lower FPR in experiment 3, since a larger sequence length reduces the

probability of extracting attack-free sub-sequences from attack labelled files.

Berlin et al. [9] do malware detection on the same data set, but they process

and evaluate the data in a very different way (specifically four minute time

Windows and supervised feature selection). In contrast to that, our approach

processes Windows audit logs as continuous data stream which is a more realistic

scenario. Therefore, both methods are not comparable and we did not use the

work of Berlin et al. [9] as further baseline. However, we want to mention that

Berlin et al. report a TPR of 83% and FPR of 0.1% for their evaluation setting.

In contrast to them, our approach achieves higher TPR and FPR results. We

have the following conjecture for the different results. Berlin et al. [9] generate

a huge number of features which allows them to create more specific signatures

of existing malware patterns within the training data. For this reason, we

assume that their approach is less capable of detecting new respectively unknown

malware (lower TPR) but also generates fewer false alarms (lower FPR).

7. Summary

Malware is constantly evolving and its detection is still an important topic

today. In this paper, we investigated the suitability of LSTMs for detecting

malware based on Windows audit log events. Windows audit logs record de-

tailed information about running processes of users and the operating system.

Consequently, such data provide deep insights and can be a useful source for

malware detection and other types of malicious behavior.
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Primary challenge of this work was that Windows audit logs consist of tex-

tual and sequential data which have to be represented appropriately for an

analysis using neuronal networks. In order to address these challenges, we ex-

tracted several features from Windows audit logs and evaluated four different

representation approaches: one-hot encoding and learning FastText, GloVe as

well as Word2Vec embeddings. Based on this setting, we focused on two re-

search questions. The first one analyzes the effects of different representation

approaches. The second one analyzes the effects of considering different amounts

of available information. Our experimental study showed that additional infor-

mation improves the performance of LSTMs. Further, the results indicate that

none of the representations can clearly be considered superior to the other. As a

result, our study recommends the inclusion of available information and the use

of FastText, which showed the most meaningful latent space, has the ability to

generalize to previously unseen values and performs well for malware detection

on Windows audit logs using LSTMs.

The proposed models achieved very good detection rates, but are associated

with too many false alarms for the use in real company networks. However,

the aim of this work was to analyze the influence of additional features and

different transformation approaches. In order to improve the performance of

the models, especially lowering the number of false alarms, the use of larger

training data sets is a promising starting point. In the future, we intend to

expand the evaluation of the proposed approaches on upcoming data sets.
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