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Abstract. Domain specific neural network architectures have shown to
improve the performance of various machine learning tasks by large mar-
gin. Financial fraud detection is such an application domain where math-
ematical relationships are inherently present in the data. However, this
domain hasn’t attracted much attention for deep learning and the design
of specific neural network architectures yet. In this work, we propose a
neural network architecture which incorporates recently proposed Im-
proved Neural Arithmetic Logic Units. These units are capable of mod-
elling mathematical relationships implicitly within a neural network. Fur-
ther, inspired by a real-world credit payment application, we construct
a synthetic benchmark dataset, which reflects the problem setting of
automatically capturing such mathematical relations within the data.
Our novel network architecture is evaluated on two real-world and two
synthetic financial fraud datasets for different network parameters. We
compare our proposed model with several well-established classification
approaches. The results show that the proposed model is able to im-
prove the performance of neural networks. Further, the proposed model
performs among the best approaches for each dataset.

Keywords: Arithmetic Neural Networks · iNALU · Financial Data ·
Fraud Detection

1 Introduction

Traditional machine learning models often rely on feature engineering with ex-
pert knowledge. In contrast, one benefit of neural networks is seen in the ability of
the network to find and combine relevant features. Certain network architectures
have proven to be well suited for different tasks capturing the characteristics of
the underlying data exceptionally well (e.g. Convolutional Neural Networks for
images or Recurrent Neural Networks for sequences). However, neural network
architectures specifically tailored to financial feature dependencies and mathe-
matical relationships have not been well-studied yet.

Problem. The presence of mathematical relationships between features is a
well-known fact in many financial settings [2,11]. For example, PaySim [11] is
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Fig. 1. Our proposed mixed layer consisting of ReLU and iNALU neurons

a mobile money simulator for fraud detection which generates bank transfers
including the transmitted amount, the old account balance and new account
balance as features. In this setting, these three features are highly related to
each other in a mathematical sense. While neural networks are well suited for
many complex data mining tasks, they often have problems with the calculation
of even basic mathematical operations [18].

Objective. Although such relationships are not always directly related to the
downstream-task which the machine learning model is applied to, a neural net-
work architecture capable of capturing such relations, is able to model the data
inherently better. A neural network architecture recently proposed to capture
such relationships is the Improved Neural Arithmetic Unit (iNALU) [14].

In this work, we want to examine the research question if introducing iNALUs
can improve the performance of neural networks on the task of financial fraud
detection.

Contribution. First, we provide a short summary of existing financial fraud
datasets, which are publicly available. Then, we explore the potential of enhanc-
ing neural networks using iNALUs for financial fraud detection. Since financial
fraud detection is more complex than modelling mathematical relationships in
the data, we propose a novel Mixed Layer architecture (see Fig. 1) which incor-
porates Rectified Linear Units (ReLUs) as general purpose neurons and iNALU
neurons to capture arithmetic relationships within the data.

All approaches are evaluated on two synthetic and two real-world fraud de-
tection datasets from the financial domain. Our findings suggest that incorpo-
rating iNALU layers significantly improves the performance on several datasets
in comparison to vanilla feed forward networks with comparable network struc-
tures. Compared to several commonly used standard classifiers, our model is
among the best models on each dataset and on average yields the best results.

Structure. The paper is structured as follows: The next section describes re-
lated work. Section 3 introduces the datasets used in our experiments. Our model
is introduced in Section 4 and the experiments are described in Section 5. Sec-
tion 6 discusses the results and Section 7 finally concludes the paper.
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2 Related Work

Since this work aims to improve financial fraud detection using iNALU, this
section reviews related work about modelling arithmetic relations in neural net-
works and financial fraud detection in general.

2.1 Modelling Arithmetic Relations

Kaiser and Sutskever [9] propose neural GPU for solving simple algorithmic
tasks. Neural GPU is based on a type of Recurrent Neural Network and is able
learn long binary summations and multiplications. This architecture generalizes
well for long numbers, but is limited to four input symbols. Similar approaches
are proposed by Kalchbrenner et al. [10] and Freivalds and Liepins [8].

Chen et al. [6] present another approach which is able to model arithmetic
relations. They use reinforcement learning to solve mathematical operations such
as summation, subtraction, multiplication or division. However, their approach
requires the mathematical operation as an additional input to the network.

Neural Arithmetic Logic Unit (NALU) is a neural architecture designed to
perform mathematical operations which is proposed by Trask et al. [18]. The
NALU is not limited to certain input symbols and does not require the mathe-
matical operation as input. The special characteristics of NALU are the restric-
tion of the weights to the interval [−1, 1] and the realization of multiplication and
division in logarithmic space. The authors show in an experimental study that
NALU generalizes better than traditional neurons for extrapolation tasks and
achieves good results for various downstream tasks. However, NALU has some
limitations as discussed in [12] and [14]. Schlör et al. [14] proposes an improved
version of NALU called iNALU allowing multiplication of negative numbers and
stabilization of the training.

In this work, we want to learn underlying relations within financial data
implicitly. We do not want to limit ourselves to certain input symbols or explicit
op-codes as input for modelling real-world datasets which generally don’t fit
these requirements. Therefore, we choose iNALU as basic architecture since it
fits these requirements best.

2.2 Financial Fraud Detection

Financial fraud detection is very diverse and may appear in different areas such
as mobile payments, credit card misuse or in ERP systems. Often, fraud repre-
sents only a very small proportion of transactions in these areas. Consequently,
many financial fraud detection methods are based on anomaly detection. A com-
prehensive review of anomaly detection methods is given in [4]. Candola et al. [4]
categorize existing approaches for anomaly detection based on their techniques
and applications. Thereby, fraud detection is one of the applications being inves-
tigated. Chalapathy and Chawla [3] provide a more recent survey of deep learning
for anomaly detection which among other things addresses the topic fraud detec-
tion. The authors describe existing approaches for credit card fraud detection,
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mobile cellular network fraud detection, insurance fraud and healthcare fraud.
This survey shows that various network architectures such as Auto-Encoders,
Generative Adversarial Networks, CNNs, Restricted Boltzmann Machines, or
RNNs are used for fraud detection.

Baader and Krcmar [1] present an approach for fraud detection in purchase-
to-pay business processes in ERP systems. The authors combine a red flag ap-
proach with process mining and try to reduce the number of false positives. Red
flags are hints or indicators for fraudulent behavior and show that something
irregular has happened. Process mining entails discovering, monitoring, and im-
proving real processes through the extraction of information from event logs
of IT systems. Schreyer et al. [15] use deep autoencoders to detect anomalous
journal entries in ERP systems. Journal entries are standard accounting trans-
actions which affect multiple accounts. The authors calculate an anomaly score
for each journal entry which takes into account the frequency of the values and
the reconstruction error of the autoencoder. Then, anomalies are detected based
on a scoring systems in combination with a user-defined threshold. Schreyer et
al. evaluate their work on two private data sets which encompass the entire
population of journal entries of a single fiscal year.

Many works investigate the suitability of machine learning methods for credit
card misuse. Wang et al. [19] evaluate Random Forest, Support Vector Machines
and Capsule Networks for credit card fraud detection. The authors use a private
dataset about online credit card transactions and extract several features from
each transaction. The features consider customer specific historical information
like the average transaction amount over the last days. Similarly, Maes et al. [13],
Shen et al. [16], or Sun and Vasarhelyi [17] evaluate different neural network
architectures for credit card fraud detection.

In contrast to existing approaches our work aims at evaluating the bene-
fit of neurons which model arithmetic relations rather than achieving the best
performance on the downstream tasks or specific datasets. Instead of relying
on thorough feature engineering (cf. [1,19]) or unsupervised anomaly-detection
methods (cf. [15]), we explicitly include neurons (iNALU) which model arith-
metic relations in our neural network architectures and evaluate in a supervised
classification setting. Financial data sets often cannot be shared due to privacy
concerns. As a consequence, many approaches are evaluated on non-publicly
available data sets and therefore lack reproducibility and the availability for
other researchers to conduct follow up studies. To address this challenge, we
chose four publicly available data sets in our evaluation.

3 Datasets

In this study, we use two synthetic and two real-world datasets for financial fraud
detection. All datasets are highly imbalanced and contain only few fraud cases.
The main dataset characteristics are summarized in Table 1.
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Table 1. Main characteristics of the datasets

Dataset Features Samples Benign Fraud Fraud-ratio Origin

Credit 4 100 000 98 967 1033 0.010 synth.
PaySim 11 6 362 620 6 354 407 8 213 0.001 synth.
CCFraud 30 284 807 284 315 492 0.002 real
IEEE-CIS Fraud 431 590 540 569 877 20 663 0.035 real

3.1 Credit Payment

Peer-to-Peer credits become more and more popular and open new opportunities
for financial fraud. One possibility for fraud is incorrect interest-calculation. We
created the synthetic credit payment dataset referred to as Credit, which reflects
such kind of fraud.

Each data point contains the following attributes: credit sum in month x
(CSx), interest rate (IR), payment rate (PR), credit sum in month x+1 (CSx+1),
label. The mathematical relationship between the attributes is defined as follows:

CSx+1 = CSx +
CSx · IR

12
− λ · PR (1)

With a probability of 99% the credit sum is calculated correctly (λ = 1)
according to Eq. (1), but with a probability of 1% we simulate a fraudulent
calculation of the remaining credit by only reducing the new credit sum by
95% of the payed rate (λ = 0.95). Overall, each instance contains the columns
CSx+1,CSx, IR,PR and the label isFraud. For each instance the features are
drawn randomly from a uniform probability distribution (CSx ∼ U(0, 10 000),
IRx ∼ U(0, 0.5), PRx ∼ U(0, 5 000)) with the constraint, that the credit is not
overpaid i.e. CSx+1 ≥ 0. In contrast to PaySim, fraudulent and benign trans-
actions are modeled after the same probability distributions (or user-profiles)
which means, the machine-learning model has to capture the mathematical rela-
tionship to predict correctly if a transaction is fraudulent. The dataset consists
of 100 000 instances having 1033 fraudulent and 98 967 benign transactions. We
make the dataset and the code publicly avaliable3.

3.2 PaySim

Paysim [11] is a multi-agent based simulator which can model financial mobile
money transactions with fraudulent behavior. The simulator is based on simple
mathematical statistics and is able to generate five types of transactions (cash-
in, cash-out, debit, payment and transfer). From unpublished real transaction
data, Lopez-Rojas et al. extracted several characteristics of the data and mod-
elled them as user profiles. These characteristics include for example aggregated
transaction counts, amounts or initial account balances. Based on these user
profiles, new synthetic data was generated.

3 https://github.com/daschloer/inalu-finfraud

https://github.com/daschloer/inalu-finfraud
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Each transaction instance is described by the attributes old and new balance
for both source and destination account, type of transaction, and amount of
transferred money. Each row also includes a rule-based red-flag indicator for
fraud, which is omitted for our experiments. We omit the account names, since
they are picked randomly during the simulation without any underlying user-
network structure or memory of fraudulent and non fraudulent users.

A dataset created with PaySim has been made publicly available on Kaggle4.
The PaySim dataset contains 6 362 620 transactions of which 6 354 407 (99.871%)
are benign and 8 213 (0.129%) are fraud.

3.3 Credit Card Fraud Detection

The Credit Card Fraud Detection (CCFraud) [7] dataset is a real data set of
credit card transactions of European cardholders in the year 2013. The dataset
contains normal and fraudulent credit card transactions. For anonymization, the
authors applied principal component analysis (PCA) to all features except time
and amount resulting in 28 continuous PCA transformed attributes. The feature
time contains the seconds elapsed since the first transaction in the dataset and
the feature amount the amount of money transferred. It contains 284 807 samples
from which 492 are fraudulent.

3.4 IEEE-CIS Fraud Detection

The IEEE-CIS Credit Card Fraud Detection data set was released as part of
a Kaggle5 data science competition in 2019. This dataset is provided by Vesta
Corporation and contains feature-rich representations of normal and fraudulent
credit card transactions. It contains identity features such as network connection
information and digital signature information about the device as well as trans-
action features, e.g., product information, card information, masked undisclosed
counting and match features, address and distance features as well as the amount
and time-delta from a reference date. Many features are not described in detail
and remain deliberately unclear for privacy and contract reasons. The dataset
contains 590 540 transactions, of which 20 663 are labeled as fraud (3.5%) and
569 877 as benign (96.5%).

4 Our model

This section first describes the iNALU architecture shortly and then proposes
our novel neuronal network architecture for financial fraud detection tasks.

4.1 iNALU

Improved Neural Arithmetic Unit (iNALU) [14] is a neuron specially designed
for mathematical operations and it’s architecture is shown in Figure 2.

4 https://www.kaggle.com/ntnu-testimon/paysim1
5 https://www.kaggle.com/c/ieee-fraud-detection/data

https://www.kaggle.com/ntnu-testimon/paysim1
https://www.kaggle.com/c/ieee-fraud-detection/data
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Fig. 2. iNALU architecture [14]

iNALU has one path for summation/subtraction and one path for multipli-
cation/division. A decision gate regulates the influence of both paths. Each path
has two weights matrices Ŵa and M̂a (respectively Ŵm and M̂m). In a first
step, tanh respectively sigmoid activation functions are applied to the weight
matrices and then weight matrices are multiplied with each other element by
element. Therefore the resulting weights are scaled to the interval [−1, 1] with
three plateaus at −1, 0 and +1. If the resulting weight is −1, iNALU performs
subtractions respectively divisions. If the resulting weight is 0, iNALU ignores
the input signals. If the resulting weight is +1, iNALU performs summations
respectively multiplications. Multiplications and divisions are calculated by ad-
ditions and subtractions of input signals in the logarithmic space. In addition,
iNALU uses max and min functions to prevent values which are too large and
calculates the resulting sign of the multiplicative path separately to allow the
multiplication and division of negative numbers. We refer to Schlör et al. [14] for
a more detailed description of iNALU and a discussion of stability and precision
in several experimental scenarios.

4.2 Improved Neural Network Architecture

Our model relies on iNALU which by design is able to model simple arithmetic
relationships. More complex relationships can be learned stacking multiple layers
of iNALUs to a deeper network. However, even in the financial domain, real-world
datasets generally contain more than mathematical relationships. Therefore, we
propose a model with each layer containing 50% general purpose non-linear
hidden units (to be precise ReLUs) and 50% iNALUs. In particular, the iNALU
part and the ReLU part of each layer has the full input dimension n as input, and
contributes with an output dimension of m

2 concatenated to an output dimension
of m for the complete layer (see Fig. 1). In combination with a linear layer
as input and output layer, the network can thereby “route” and combine any
input dimension to every part of each network layer by learning the weights
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Fig. 3. Mixed Layer network model with fully connected linear input and output layers
and 1 to k Mixed Layers as used in our experiments

accordingly. Therefore, the model is able to represent arithmetic as well as non-
arithmetic feature relationships of varying complexity. We refer to the resulting
model as shown in Fig. 3 as neuronal network with Mixed Layers (Mixed Layers
model for short).

5 Experiments

5.1 Experimental setup

Architecture. All experiments involve supervised training of a multi-layer-
perceptron (MLP) as basic neural network architecture with a linear input,
non-linear dense layers with ReLUs and a linear output layer. The number of
neurons in the hidden layers varies over the experiments. To investigate the re-
search question if introducing iNALUs can improve the performance of neural
networks on the task of financial fraud detection, we use the same architecture
and replace the non-linear dense layers with our Mixed Layers.

Train-Test Split. For all experiments, we use the same strategy to generate
the train-test split: For training we randomly choose only few instances of the
fraud class in order to keep the majority of fraudulent instances for evaluation.
This approach reflects the class imbalance of the available data and emphasizes
the requirement for a model to generalize from very few fraudulent samples to
find new fraudulent cases when applied in a real-world scenario. In a preliminary
study, we found that under-sampling the majority class to some extend didn’t
affect the performance negatively but reduced training-time by large margin.
Therefore only a random subset of the instances is used for training: For Credit,
PaySim and CCFraud we use 2000 instances with a fraud-proportion of 1%,
for IEEE-CIS we use 5000 instances with a fraud proportion of 4%. We then
use the synthetic minority over-sampling technique (SMOTE) [5] to synthesize
a balanced training dataset.
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For the test dataset, we create a balanced split of 50% fraud and 50% benign
samples, exclusively containing instances which haven’t been used for training.
This is motivated by the objective to study the ability of capturing mathematical
relations rather than investigating effects of predicting strongly unbalanced data.
To represent the variety of benign instances and avoid skewed results due to
random fluctuations, we repeat this process 5 times with different random seeds
and report the F1 score for the fraud class and for experiment 2 the Area Under
the Receiver Operating Characteristic Curve (ROC-AUC) additionally.

Preprocessing. Each dataset is preprocessed by one-hot encoding categorical
values. To assure comparability between all datasets, we follow the preprocessing
strategy of the CCFraud dataset and apply PCA to all other datasets as well as
min-max scaling to all datasets ensuring a valid train-test split by only fitting
on training data. In a preliminary study, we verified that applying PCA to the
datasets doesn’t negatively impact the performance of neural networks with and
without Mixed Layers. Applying PCA can also mitigate privacy issues which
could possibly prevent from making a real dataset publicly available.

Training Procedure. For neural network training, we use ADAM as optimizer
with a learning rate of 0.001, a weight decay of 0.0001 and Cross Entropy loss.
The batch-size is set to 200 and all models are trained for 200 epochs, which
have been validated as suitable training parameters in preliminary experiments.

5.2 Experiment 1

In the first experiment, we explore the influence of Mixed Layers in neural net-
work architectures. Therefore, we construct neural networks containing Mixed
Layer as well as neural networks of identical architecture exclusively with dense
layers and ReLU activations. For each dataset all possible combinations between
the number of input neurons (chosen from 10, 20, 30, 50 and 100) and the num-
ber of layers (chosen from 1 to 3) are evaluated to assess the performance and
stability for different neural network capacities.

Results. The results are depicted in Fig. 4 and Fig. 5. The boxplots show the F1
scores on our test datasets for both neural architectures for different number of
layers and varying number of hidden neurons in each layer. Each box summarizes
the results of all runs for a certain parameter configuration with different random
seeds. Note that both architectures share the same train- and test-splits for
each run and parameter configuration. This ensures the comparability of the
underlying performances and boxes for each parameter. For all dataset except
IEEE-CIS, our proposed model yields very good results of F1 scores around 0.9.
The performance of IEEE-CIS dataset is notably worse for both architectures
and the results vary highly for different random seeds. As this dataset is much
more complex regarding the number and kind of features, the task might require
a different training strategy to achieve better results.
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Fig. 4. F1 scores of experiment 1 on the synthetic Credit Payment and PaySim
datasets. Mixed Layers describes the neural network structure as described in Sec-
tion 4 and ReLU shows the results for the same model architecture having the Mixed
Layers replaced by layers with ReLU activations. The heatmaps show the absolute im-
provement of Mixed Layers in comparison to the respective ReLU architecture for each
parameter configuration averaged over all random seeds and their standard deviations.

For all other datasets the performance of our model is very stable over all
parameter configurations, which means that even a very small neural network
consisting of one Mixed Layer and 10 hidden neurons (along with a linear input
and output layer) solves the task sufficiently well. In comparison, the same ar-
chitecture with one dense layer and ReLU activiations performs notably worse.
To assess the actual performance improvement for each possible parameter con-
figuration, we pairwise aligned parameters and seeds of both architectures and
report the average absolute improvement per parameter configuration in Fig. 4
and Fig. 5. A positive improvement value describes a performance gain of Mixed
Layers over the respective ReLU model, whereas a negative improvement means
that the ReLU model performs better. The Mixed Layer model outperforms the
ReLU model for all datasets except IEEE-CIS. For Credit and PaySim this ob-
servation holds for all network configurations, whereas for the CCFraud dataset
large models (50 and 100 neurons) with one or two layers perform equally well.

5.3 Experiment 2

In the second experiment, we want to compare our model with several com-
monly used supervised classification algorithms. Precisely, we evaluate linear
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Fig. 5. F1 scores of experiment 1 on the real CCFraud and IEEE-CIS datasets. Mixed
Layers describes the neural network structure as described in Section 4 and ReLU
shows the results for the same model architecture having the Mixed Layers replaced by
dense layers with ReLU activations. The heatmaps show the absolute improvement of
our architecture in comparison to the respective ReLU architecture for each parameter
configuration averaged over all random seeds and their standard deviations.

Support Vector Machines (SVM), Support Vector Machines with RBF kernel
(SVM-RBF), k-Nearest Neighbor (kNN, k = 3), Decision Tree (DT), Random
Forest (RF), Näıve Bayes (NB), Logistic Regression (LR) and eXtreme Gradi-
ent Boosting (XG-Boost). With Isolation Forest (IF) we also include an anomaly
detection method for comparison. For all classifiers, we use the implementation
from the python scikit-learn6 library with default hyper-parameters except XG-
Boost, which is evaluated using the xgboost7 python library.

For the ReLU model, we use the most promising parameter configuration
from experiment 1, which is one layer with 100 neurons. For the Mixed Layers
model we used one layer with 20 neurons. We want to emphasize that due to
the good stability of Mixed Layers over different parameter configurations, the
parameter choice for Mixed Layer in this experiments is arbitrary and other
parameter configurations perform comparably.

Results. The results of the second experiment are presented in Table 2. Our
model is among the best four classifiers for all datasets. All classifiers perform

6 https://scikit-learn.org v. 0.22.2
7 https://github.com/dmlc/xgboost v. 1.0.2

https://scikit-learn.org
https://github.com/dmlc/xgboost
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Table 2. Average and standard deviation F1 score and ROC-AUC for several super-
vised classifiers in comparison to our model aggregated over different random seeds.
For ReLU and our model, we conducted this experiment using the most promising pa-
rameter configuration from experiment 1, one layer with 100 neurons for ReLU and one
layer with 20 neurons for our Mixed Layer model. The last column shows the average
for each classifier over all datasets. The best results per dataset are printed in bold.

Credit PaySim CCFraud IEEE-CIS Avg.

F
1

SVM 0.88 ± 0.01 0.89 ± 0.02 0.90 ± 0.01 0.41 ± 0.27 0.77
SVM-RBF 0.92 ± 0.03 0.85 ± 0.02 0.85 ± 0.07 0.43 ± 0.23 0.76
kNN 0.89 ± 0.03 0.81 ± 0.01 0.91 ± 0.01 0.65 ± 0.03 0.81
DT 0.87 ± 0.02 0.82 ± 0.03 0.80 ± 0.08 0.49 ± 0.04 0.74
RF 0.89 ± 0.03 0.83 ± 0.03 0.88 ± 0.02 0.57 ± 0.05 0.80
NB 0.85 ± 0.03 0.76 ± 0.05 0.91 ± 0.01 0.65 ± 0.02 0.80
LR 0.88 ± 0.01 0.87 ± 0.02 0.92 ± 0.01 0.55 ± 0.15 0.81
XG-Boost 0.91 ± 0.02 0.84 ± 0.03 0.89 ± 0.01 0.62 ± 0.01 0.82

IF 0.82 ± 0.01 0.81 ± 0.01 0.88 ± 0.01 0.74 ± 0.01 0.81

ReLU 0.89 ± 0.02 0.78 ± 0.04 0.90 ± 0.02 0.65 ± 0.03 0.81
Mixed Layers 0.90 ± 0.01 0.88 ± 0.02 0.92 ± 0.01 0.65 ± 0.02 0.84

R
O

C
-A

U
C

SVM 0.95 ± 0.01 0.97 ± 0.01 0.95 ± 0.01 0.49 ± 0.12 0.84
SVM-RBF 0.98 ± 0.01 0.96 ± 0.01 0.93 ± 0.05 0.59 ± 0.09 0.86
kNN 0.91 ± 0.02 0.86 ± 0.02 0.92 ± 0.01 0.54 ± 0.05 0.81
DT 0.88 ± 0.02 0.85 ± 0.02 0.83 ± 0.05 0.52 ± 0.08 0.77
RF 0.98 ± 0.01 0.95 ± 0.01 0.97 ± 0.00 0.48 ± 0.04 0.85
NB 0.93 ± 0.02 0.92 ± 0.01 0.94 ± 0.03 0.50 ± 0.01 0.82
LR 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.45 ± 0.09 0.83
XG-Boost 0.98 ± 0.02 0.98 ± 0.01 0.97 ± 0.00 0.54 ± 0.01 0.87

IF 0.95 ± 0.01 0.90 ± 0.01 0.95 ± 0.00 0.74 ± 0.01 0.89

ReLU 0.96 ± 0.01 0.88 ± 0.02 0.94 ± 0.01 0.64 ± 0.02 0.85
Mixed Layers 0.97 ± 0.00 0.96 ± 0.01 0.96 ± 0.01 0.57 ± 0.12 0.87

well on each dataset except IEEE-CIS on which the best models except IF only
achieve F1 scores of 0.65. Isolation Forest performs best on this dataset with a
F1 score of 0.74 which suggests, that methods specifically tailored to anomaly
detection can capture the characteristics of this dataset better. Comparing the
F1 score averaged over all datasets (see Table 2, column Avg.), the Mixed Layer
architecture yields significantly8 better results compared to the best ReLU archi-
tecture. The results evaluated with the ROC-AUC metric support our findings
with the exception of IEEE-CIS, where our Mixed Layers performed worse than
the ReLU layer. An in-depth analysis showed that two of the five repetitions
with different random seeds yield notably worse results (0.41 and 0.44) which
leads to the performance drop for the mean and the high standard deviation.

8 p = 0.00932, Wilcoxon Signed-Rank Test [20] over all datasets and repetitions
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6 Discussion

In our experiments, we show that neural networks benefit from including Mixed
Layers when applied to the task of fraud detection on four different datasets. This
finding suggests that Mixed Layers improve the capability of neural networks to
model mathematical relationships within the data. The neural network architec-
tures containing our Mixed Layers have a good stability over different number of
hidden neurons and layers. Even small networks yield competitive results with
several well established supervised classification algorithms over different syn-
thetic and real-world datasets. Overall the ReLU architecture seems much less
stable regarding the different random seeds and parameter configurations.

Although our model was among the best classifiers for the IEEE-CIS dataset
in experiment 2, all methods performed notably worse compared to the other
datasets. This shows that the dataset is hard to predict in our evaluation set-
ting and suggests that the unstable performance observed in experiment 1 is
presumably not related to our model but rather to the dataset itself and might
be explained by different aspects: On the one hand the dataset includes many
features which might require intensive prepossessing and feature engineering.
On the other hand the dataset is larger than all other datasets with respect to
the number of features and fraud cases. This might require a different training
procedure than the other datasets for example regarding the train-test split, the
network architecture or the number of epochs for training. The observation, that
Isolation Forest yields notably better results on IEEE-CIS also suggest that for
more complex data sets methods adapted for anomaly detection should be used
instead of standard classifiers. Since our study is not primarily conducted to
achieve best performances on each dataset but rather to examine the research
question, if neural network architectures benefit from iNALU neurons applied
to the financial domain, our experiments focused on a fair comparison instead
of thorough hyper-parameter tuning on individual datasets. However, tuning
our proposed model to certain datasets in comparison to hyperparameter-tuned
state-of-the-art classifiers may be interesting to investigate as future work.

On our synthetic Credit Payment dataset, some supervised classifiers per-
formed surprisingly well, which by design of our dataset we didn’t expect. Since
solving the task correctly is fully dependent on capturing the correct mathemat-
ical relationship, we expected for example kNN to perform worse. We suspect
the good performance is a result of applying PCA as preprocessing step, which
might contribute to modeling the correct relation within the data. Examining
the influence of different preprocessing steps e.g. training embedding layers end
to end instead of PCA might be an interesting task for future work.

Both experiments show, that our model outperforms the respective ReLU
baseline models. However, Mixed Layers with iNALUs contain more trainable
parameters than linear neurons with ReLU activations. One Mixed Layer in our
experiments contains 50% ReLUs and 50% iNALUs and a iNALU has 4 times
more trainable parameters. For a comparison of two architectures with an equal
number of trainable parameters an architecture with Mixed Layers with a hidden
dimension of 20 can be compared with an architecture with ReLU Layers with
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a hidden dimension of 50. In this comparison (see Fig. 4 and Fig. 5) the Mixed
Layers model still outperforms the ReLU based model with an F1-score of 0.837
over 0.759 averaged over all datasets.

7 Conclusion

This work examined the question if a neural network architecture which includes
hidden units specifically tailored to capturing mathematical relations is beneficial
for supervised classification tasks on datasets in the financial fraud domain.

We designed a new Mixed Layer for neuronal networks which incorporates
iNALUs and ReLUs. Further, we constructed a synthetic benchmark dataset
specifically with the difficultly of modeling a mathematical relationship, which
is inspired by a real-world credit payment application. We evaluated Mixed Layer
based neural networks on two real-world and two synthetic datasets and com-
pared it to a neuronal network with ReLU activations. The experiments show
that Mixed Layers are able to improve the performance of neuronal networks
on financial fraud data sets. We compare our proposed model with several well-
established classification approaches in a supervised evaluation setting and per-
form among the best approaches for each dataset.

As we designed our baseline architecture as well as our proposed model to
solve a supervised task, we constructed our experiments accordingly and eval-
uate on a balanced dataset. However, in a real-world setting fraud and benign
transaction will not occur equally frequent and the actual financial prejudice
of having more false positives or more false negatives will be task depending
and require a more detailed evaluation including metrics to reflect these circum-
stances. Moreover many approaches applied to recognize financial fraud rely on
anomaly-detection or novelty-detection techniques which often use one-class or
even unsupervised approaches. As we generally showed the benefit of our pro-
posed model in the supervised setting, for future work we plan to introduce it in
other evaluation settings and compare it to unsupervised approaches, as well as
approaches specifically designed for anomaly or novelty-detection. Other ideas
for future work include optimizing and evaluating different network architectures
and to vary the proportions of iNALU and ReLU neurons in the mixed layers
as well as inspecting and refining preprocessing steps.
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