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Abstract. Automated completion of knowledge graphs is a popular
topic in the Semantic Web community that aims to automatically and
continuously integrate new appearing knowledge into knowledge graphs
using artificial intelligence. Recently, approaches that leverage implicit
knowledge from language models for this task have shown promising re-
sults. However, by fine-tuning language models directly to the domain of
knowledge graphs, models forget their original language representation
and associated knowledge. An existing solution to address this issue is
a trainable adapter, which is integrated into a frozen language model to
extract the relevant knowledge without altering the model itself. How-
ever, this constrains the generalizability to the specific extraction task
and by design requires new and independent adapters to be trained for
new knowledge extraction tasks. This effectively prevents the model from
benefiting from existing knowledge incorporated in previously trained
adapters.
In this paper, we propose to combine the benefits of adapters for knowl-
edge graph completion with the idea of integrating capsules, introduced
in the field of continual learning. This allows the continuous integra-
tion of knowledge into a joint model by sharing and reusing previously
trained capsules. We find that our approach outperforms solutions using
traditional adapters, while requiring notably fewer parameters for con-
tinuous knowledge integration. Moreover, we show that this architecture
benefits significantly from knowledge sharing in low-resource situations,
outperforming adapter-based models on the task of link prediction.

Keywords: knowledge graph completion · language model · link pre-
diction · continual learning.

1 Introduction

Our work is at the intersection of two research areas that have received significant
attention in recent years: Knowledge Graphs (KGs) and Language Models (LMs).
KGs have gained increasing attention over the past decade and have improved
the state of the art in natural language approaches through their integration into
many downstream tasks such as question answering [31] and sentiment analy-
sis [40]. However, KGs are incomplete and in continuous development. Much
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work has been done on the prediction of relations missing between two entities,
the so-called link prediction. Moreover, over time, new concepts and relation
types emerge that need to be captured in KGs, or even give rise to new KGs.
On the other hand, powerful pre-trained LMs such as GPT-2 [24] and BERT
[9] have been shown to incorporate a certain amount of factual and common
sense knowledge that has been automatically extracted from their unstructured
training data, without explicit common sense training. Since this knowledge is
extracted from unstructured texts and may not be available in structured form,
leveraging these models for KG completion by prompting facts with MASK to-
kens has emerged in recent research. In the past, pre-trained LMs have been
successfully used to improve KGs in two directions: (A) to rate the quality of
information contained in KGs [20] and (B) to complete given KGs through fine-
tuning these models and conducting link prediction [3,11].

Previous approaches to this have usually fine-tuned the entire language model
to all relation types in a KGs at once, which has two main drawbacks: First,
fine-tuning the entire LM is very resource intensive, due to the large number of
parameters contained in the model. Secondly, if a knowledge graph is updated
to include new relation types, or if a new knowledge graph is supposed to be
included into the model, the fine-tuning process needs to be redone on the full
dataset, rather than only updating it with the new information. For the second
case, simply performing fine-tuning on the new relations frequently leads to a
problem commonly called catastrophic forgetting [17], where the model learns
about the new relations, but forgets the ones it had previously learned.

In order to solve these problems, we propose to transfer ideas from the areas
of multi-task learning and continual learning, specifically the use of Adapters and
Capsules. Both of these approaches aim to make fine-tuning a model to different
sub-tasks (in our case, link prediction for different relation types) as efficient as
possible. Adapters (cf. Section 4.2) keep large parts of the model fixed during
fine-tuning, allowing to retain the originally learned information within the LM.
However, they do not allow for continuously fine-tuning the knowledge contained
in a previously trained adapter when new knowledge becomes available or new
aspects and sub-tasks become relevant for which information from the LM shall
be extracted. The knowledge contained within the adapter to be retrained or fine-
tuned to the new dataset would still be subject to catastrophic forgetting. Since
KGs are continuously evolving and new facts emerge or new relations become
important that can be queried from the LM, new adapters can be trained on
these new facts. However, multiple adapters do not communicate with each other
even if their purpose is to extract similar information and they could therefore
potentially benefit from each other’s training progress. Capsules additionally
add the capability of sharing knowledge between different sub-tasks, enabling
the model to make use of previously learned information (cf. Section 4.2).

We transfer and combine these ideas to the task of link prediction by mod-
elling each relation type in a KG as one sub-task and fine-tuning on them it-
eratively. This enables both of the desiderata described above: We avoid the
high cost of updating the entire language model and we can update a trained
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Fig. 1. Overview of our continual relation learning approach within CapsKG. To pre-
dict links within a given KG, a query containing a known entity and relation from the
KG is obtained and converted to natural language prompt with a <MASK> token.
This prompt is forwarded to a relation adapted LM to obtain likely candidate entities.
Finally, a filter ensures that predicted candidates correspond to entities contained in
the KG. For a detailed view of the relation adapted LM architecture, see Figure 2.

Capsule-based model with new relation types by simply fine-tuning the trained
model with the new relations. An overview of the task and our proposed model
is depicted in Figure 1.

Our resulting model CapsKG demonstrates the benefit of applying contin-
ual learning to the task of KG link prediction on three common KG datasets,
WN18, YAGO3-10, and FB15k. Results show consistent improvement across all
datasets, comparable to existing related work [36], while requiring significantly
fewer trainable parameters. CapsKG also shows superior results in a low resource
setting, when only small amounts of data are available for training, especially
when relation types are similar in the sense of sharing similar entities or relations
are semantically similar.

The remainder of this work is structured as follows: Section 2 introduces
the scientific context of link prediction through LMs, while Section 4 describes
the chosen adapter-based capsule network in detail. Experiments on multiple
datasets are conducted and discussed in Section 5. Section 6 concludes the paper.

2 Related Work

The task of completing KGs via link prediction is a well-established field of re-
search within the semantic web community that aims to explore new knowledge
by extrapolating from observed existing facts [7]. This task is commonly ap-
proached through learning KG representations, e.g. through classical translation-
based or tensor factorization-based graph embedding techniques, such as TransE
[33] or RotatE [39], as well as complex neural network architectures [7]. In this
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context, capsule networks have been used as a specialized architecture that ex-
tracts low level features to improve graph embeddings [19,32]. However, their
usage in previous work is so far limited to capsules as simple feature extrac-
tors. Additionally, within traditional KG representation learning, several works
have identified the use of so called continual learning schemes, where architec-
tures are designed to be continuously trained on newly incoming training data
without forgetting previously learned information [8,26].

Beyond the use of traditional KG embedding techniques, a recent trend of
works has identified the potential of large LMs for link prediction in KGs. In
the past, LMs have been effectively utilized for two purposes: testing the quality
of existing information contained in KGs [20], and extracting additional facts
to complete KGs [11]. Successful applications of LMs for KG link prediction
convert factual triples from a KG to natural language either through relation-
specific sentence templates or through leveraging available textual descriptions of
entities [3,5,11,12,22,27,30,35,37,38]. The resulting textual inputs are then used
to fine-tune pre-trained LMs to extract predictions of likely entities.

Wang et al. [31] have further improved this procedure by incorporating
adapters, which is an architecture designed to prevent catastrophic forgetting
in LMs. In this architecture, additional neuron layers are inserted between the
layers of a pre-trained LM for fine-tuning, while all weights belonging to the orig-
inal LM are frozen to prevent overwriting learned information. This approach
allows the LM to retain its learned high quality language representations, but
does not allow for the training of multiple adapters that can exchange informa-
tion and thus support each other.

Pfeiffer et al. [23] address this issue by proposing AdapterFusion, a two stage
training process that first trains multiple adapters and afterwards learns a knowl-
edge composition through training data. While this approach is capable of aggre-
gating the knowledge of multiple adapters, it does not allow individual adapters
to support each other during training. Moreover, it is not suitable for continual
learning, as the entire composition training process has to be repeated when new
training data is available.

In contrast to these existing works, our work jointly leverages continual learn-
ing strategies, large LMs, and adapters for KG link prediction. This allows for
the use of powerful LMs for KG link prediction, while continuously integrat-
ing new information into the learned model and facilitating communication of
individual adapters during the training process.

3 Task Definition: Link Prediction

KGs are structural representations of real-world factual knowledge in the form of
triples (e1, r, e2) where e1 and e2 represent the head and tail entities describing
world objects and r represents a specific relation connecting these two entities, for
example (Berlin, CapitalOf, Germany). Although existing KGs such as YAGO
and WikiData cover a large portion of factual knowledge, they often suffer from
incompleteness [10,34]. To address this problem, link prediction was introduced
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Fig. 2. Continual relation learning adapter showcasing two exemplary relations. The
adapter is attached to LM hidden layer h, where relation-specific features are extracted.
Feature extractors of a previously trained relation r′ (green) may influence the currently
trained relation r (orange) through similarity routing. Results are passed through a
shared adapter (grey) that is biased through relation-specific masks. Note that most
weights in the architecture are contained within the shared layers, leading it to share
most trainable weights.

that aims to learn a function f that predicts missing relations between entities
in a given graph. Given a head entity e1 and a relation r, the function f predicts
the tail entity e2 that is most likely to be connected via this relation:

fKG(e1, r) → e2 (1)

4 Methodology

In this chapter, we describe in detail the architecture we have chosen to solve the
link prediction task by continuously adapting an LM to the different knowledge
sub-tasks. The architecture is also illustrated in Figure 2.

4.1 Base Model: LM for Link Prediction

For our base model, we follow the idea of prompting a pre-trained LM for the
task of link prediction [3,22]. To access the model’s knowledge, facts are con-
verted into a natural language representation in the form of a sequence of to-
kens, where the desired unit of information is omitted or masked and the model
is prompted to complete the given text sequence. For example, given a tuple
(Berlin, CapitalOf), we transform the tuple into the following (masked) sen-
tence: “Berlin is a capital of <MASK>.” This sentence is then input to the LM,
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which predicts the most likely token for <MASK> – in this case Germany. Note
that the quality of the extracted information strongly depends on the prompt
sentence, and therefore the generation of well-performing prompts has been fo-
cus of several scientific works [4,13,25]. More formally, given a function prom
that maps tuples (e1, r) to a natural language representation prompt p, and a
pre-trained LM l, prompting for link prediction is defined as follows:

prom((e1, r)) → p, l(p) → e2 (2)

In the example above, this becomes prom((Berlin, CapitalOf)) → “Berlin is a
capital of <MASK>.” =: p, and l(p) → Germany.

We fine-tune this model to the task of link prediction by converting all tuples
in the train set of a dataset (cf. Section 5.1) to natural language sentences and
performing regular masked LM training. However, this approach comes with
the disadvantage that the model is prone to catastrophic forgetting, thereby
potentially losing its generalizability and language modeling performance, as
well as missing the possibility of extending the trained model with additional
relation types.

4.2 Continual Learning for Link Prediction

Continual learning [21] studies this problem of avoiding catastrophic forgetting,
i.e., the general ability of the system to maintain its performance in a previously
learned task or domain without access to the previous training data while learn-
ing a new task. This becomes relevant to incorporating LMs for KG completion
from two perspectives. First, the knowledge that the LM has learned during
its pre-training and training to perform natural language modeling should be
retained and not forgotten, although the specific domain of the KG including
the different relations, relevant entities and grammar cover only a very small
subset of the previously acquired knowledge. Second, the KGs themselves con-
tinuously expand. This means that by the integration of new entities or relations,
the previously learned KG knowledge might also become subject to catastrophic
forgetting.

One solution to address both issues following the idea of continual learning
is the adapter architecture [31]. This architecture has been proven useful as it
allows to freeze the underlying LM while training new knowledge into specific
adapter layers, added to the original architecture. Furthermore, new adapters
can be added for new relations and facts to be learned without altering the
weights of other adapters.

Basic Adapter To be precise, the adapter [31] is a small set of additional
trainable neural layers that are inserted between the layers of a pre-trained base
LM l to learn new features relevant for a new task, for example, link prediction
for a new relation type r. During training, the base model is frozen and only the
parameters of the adapter are trainable. In our work, following [15], the adapter
consists of two fully connected layers, which are inserted into each transformer
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layer in our LM. The input to the adapter is the output of the intermediate layer
h(r) ∈ Rds×de of the base model, with the sequence length ds and the dimension
of the base model’s hidden state output de. Adapter layers map the input to an
intermediate adapter dimensionality free of choice and back to the hidden state
space of the model. Finally, the intermediate output of the original base model
is added via skip connections, where fc and fd are fully connected layers by

h′(r) = fc(fd(h
(r)))) + h(r). (3)

Shared Adapter In a basic adapter architecture, a new adapter is added for
each type of relation. With a growing number of relations, this highly increases
the number of trainable parameters, as for each relation a separate adapter
with independent weights is provided. Inspired by [15], we propose to share the
adapter layers for all relation types making the model more parameter efficient
with increasing number of relations. To prevent catastrophic forgetting that may
occur when continuously training adapter layers with new data, a masking pro-
cedure is introduced into the adapter. For each relation r, a mask m(r) with same
dimensionality as each adapter layer is calculated from relation embeddings e(r)
based on the task’s id. These relation embeddings are then converted to a pseudo-
gating function through a Sigmoid activation and a scale hyper-parameter s as
follows:

m(r) = σ(se(r)) (4)

The hyper-parameter s is chosen as positive scalar that gradually increases in
value to ≫ 1 during training, forcing the learned mask m(r) to contain values
closer to 0 or 1. The resulting pseudo-binary masks m(r)

d and m
(r)
c for the adapter

layers fc and fd are multiplied element-wise with the respective shared adapter
layer, giving:

h′(r) = fc(fd(h
(r))⊗m

(r)
d )⊗m(r)

c + h(r) (5)

As we observe that the pseudo-gate function commonly produces non binary
masks that still lead to catastrophic forgetting, we additionally follow [14] and
binarize all masks for a sub-task once this sub-task has been fully trained.

m
(r)
eval =

{
1 if σ(se(r)) > 0.5

0 otherwise.
(6)

To prevent the gradient flow through neurons that were already used by
previously learned tasks, or in this case relation types, the overall use of neurons
by previous task masks is calculated by

m(prev) = MaxPool({m(r′)
eval, r

′ ∈ {previously trained r}}) (7)

and applied to the gradients g(r) to limit the updates on these neurons during
backpropagation through

g′(r) = g(r) ⊗ (1−m(prev)). (8)
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As we calculate previous masks m(prev) for gradient gating from these bi-
narized masks, this allows trained relations to truly reserve neurons within the
adapter preventing any gradient updates that could cause forgetting. Conversely,
other relations may still utilize reserved neurons during the forward pass, allow-
ing them to use shared information of previously learned relations while prevent-
ing problematic updates.

As trained relations are capable of reserving neurons through the masks which
prevents them from being trained by new relations, sparse masks are required to
prevent a single relation from occupying the entire architecture. To achieve sparse
masks, a regularization term is added to the loss function L, which regularizes
the values of m(r) during training depending on the number of neurons that are
not already occupied by previously trained relations:

L′ = L+ λ · ∥m(r)∥1
dm − ∥m(r)

eval∥1
, (9)

where dm denotes the dimensionality of m(r) and λ is a weighting hyperparam-
eter.

To summarize, this shared adapter architecture allows parameter efficient
continual learning and the utilization of weights from previously learned rela-
tions if they are helpful without risking catastrophic forgetting as these weights
are not changed during back-propagation. This idea is further extended by cap-
sules as low-level feature extractors, which instead of masking rely on a routing
mechanism. This approach brings the flexibility to incorporate additional cap-
sules in a trained model when required for continual learning.

Relation Specific Capsules with Knowledge Transfer To enable further
information transfer and reuse of previously learned knowledge between relation
types, we apply a capsule architecture to train low-level feature extractors with
a similarity based routing to share extractors between relation types [15]. Rela-
tion specific capsules consist of three components: relation capsule layer, transfer
capsule layer and a transfer routing mechanism. Relation-specific extractor cap-
sules fi in the relation capsule layer are used as low-level feature extractors
that learn relation-relevant information from intermediate layers of a given base
model through

p
(r)
i = fi(h

(r)), (10)

parameterized as small fully connected layers. Capsules in the transfer capsule
layer are used to represent transferable features extracted by relation specific
capsules. A special routing mechanism consisting of several steps is used to
transfer features between lower layer relation capsules and higher layer transfer
capsules. To share the extracted features between relation capsule p

(r)
i and a

transfer capsule t
(r)
j , a pre-routing vector is generated that extracts relevant

features from relation capsule i for transfer capsule j as

u
(r)
j|i = Wijp

(r)
i , (11)
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where Wij ∈ Rdc×dk is a transformation matrix learned during training, with dc

denoting the dimension of relation capsule p
(r)
i and dk denoting the dimension

of transfer capsule t
(r)
j .

In order to transfer useful knowledge between relation types, the similarity
between relation types i and the relation type r is estimated using multiple con-
volution layers that form a learned similarity estimator comparing the relation
capsules of i and r:

q
(r)
j|r = MaxPool(ReLU(u

(r)
j|r ∗Wq + bq)) (12)

a
(r)
j|i = MaxPool(ReLU(u

(r)
j|i ∗Wa + fa(q

(r)
j|r ) + ba)) (13)

Convolutions over uj|r and uj|i extract the relevant features of the relation
type r and i respectively. The similarity score a

(r)
j|i is calculated in Equation (13),

where fa is a linear layer for matching the dimensions of q(r)j|r and u
(r)
j|i , ba, bq ∈ R

are biases, Wa,Wq ∈ Rde×dω convolution filters and dω denotes the window size.
To keep knowledge exchange constrained to only similar relation types, a

binary differentiable gating function is calculated using convolution with Gumbel
Softmax

δ
(r)
j|r = Gumbel_softmax(a(r)j|i ∗Wδ + bδ), (14)

resulting in a gating function for similar tasks. The overall output is obtained by
aggregating over the element-wise product of all similar extractor capsules with
their corresponding learned similarities to the relation that is currently trained
by

v
(r)
j =

n+1∑
i=1|δ(r)

i|j =1

v
tran(r)
j|i , v

tran(r)
j|i = a

(r)
j|i ⊗ u

(r)
j|i (15)

with δ
(r)
j|r ∈ {0: disconnected, 1: connected}. Note that this gating allows for

gradient updates to apply to the extractor capsules of previously learned relation
types if similarity to the current relation type is found by the Gumbel Softmax,
thus facilitating a backward knowledge transfer to previously trained relation
types. We additionally investigate model performance when preventing these
updates even on similar relations following [15], allowing only forward knowledge
transfer from previously learned relations to the new relations.

The generated output v(r) is forwarded through a fully connected layer fb
to match the base model’s hidden dimension. The base model’s intermediate
output h(r) is added again through a skip connection, giving

v′(r) = fb(v
(r)) + h(r). (16)

Finally, v′(r) contains the aggregated relation-specific information of all ex-
tractor capsules and is given as input to the shared adapter.
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Table 1. Dataset characteristics of the used link prediction datasets after filtering
according to Section 5.1.

dataset relation types entities train triples dev triples test triples total

WN18 5 23324 27045 9017 9018 45080
YAGO 8 92991 75774 25260 25262 126296
FB15k 18 10754 38178 12734 12736 63648

5 Experiments

In the following, we showcase the introduced architecture on three KG link
prediction datasets.

5.1 Datasets

For our experiments, we use three established KG datasets commonly used in
link prediction settings, namely (1) the WN18 dataset [2] with triples from the
WordNet KG, (2) the YAGO3-10 dataset [18,29] (called YAGO from hereon)
with triples from the YAGO KG, and (3) the FB15k dataset [28] that contains
data from the FreeBase KG. WN18 has a strict hierarchical structure, with most
triples representing the hyponym and hypernym relation. YAGO is a subset of
YAGO3, with most triples covering descriptive factual information about people,
including birthplace, nationality, and more. FB15k is a subset of FreeBase that
contain a rich collection of factual information about a diverse range of subjects
including movies, actors, people, places and more.

Following previous work that prompts LMs through the use of entity masking,
we remove all triples from the datasets where the target entity is (1) larger than
one token or (2) not known within the LM’s vocabulary [6,11,22]. As we evaluate
the distinct relations within the dataset separately, which results in very small
and unbalanced splits for some relations after filtering, we join the original train,
development, and test splits to one dataset, remove all relations that contain less
than 1200 triples, and split the remaining relations back into train, development,
and test sets of 60%, 20%, and 20% respectively. The statistics of the resulting
datasets can be found in Table 1.

5.2 Experimental Setup

In this section, we describe our evaluation setup, including the sentence genera-
tion, evaluation metrics, methods that we evaluated, as well as hyperparameters
used.

Sentence Generation To convert the KG triples into natural language (prom in
Equation (2)), we use the sentence templates of [22] where applicable and design
sentence templates in the same style for relations not covered by their work. The
full list of used templates is listed in the repository.
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Evaluation Metric To evaluate link prediction performance of the investigated
models, we use the established hits at one accuracy (Hits@1), which corresponds
to the ratio of exact matches between prediction and correct KG entity. Since
there may be multiple correct completions e2 for a given tuple (e1, r), we follow
[11] and filter out all correct alternative entities from the model prediction to
avoid penalizing the models for the correct answers that differ from the current
label entity. More formally, let P = l(prom(e1, r)) be the probability distribution
over tokens returned by the LM l. We count the prediction as correct if

e2 = argmaxe {P (e) | (e1, r, e) /∈ (train ∪ test)\{(e1, r, e2)}}. (17)

Scores are always reported as averages over all sub-tasks. To prevent results being
skewed by statistical fluctuation, we repeat all experiments with 5 random seeds
and report means and standard deviations of all metrics.

Models While the general adapter framework is LM agnostic, we use a pre-
trained BERT model in this experimental setup due to its public availability,
computational efficiency, and established use within the domain of KG comple-
tion [5,11]. We compare the following models in our experiments:

BERTfrozen A BERT base model that is prompted without any fine tuning.
BERT An independent BERT base model is trained and evaluated for each

relation type [11].
BERT-CL A BERT base model is iteratively trained for all relation types and

evaluated once at the end.
Adapter An independent BERT base model with frozen parameters and one

trainable Adapter is trained and evaluated for each relation type [9,31].
Adapter-CL A frozen BERT base model with one trainable Adapter is itera-

tively trained for all relation types and evaluated once at the end.

Table 2. Number of trainable model parameters for the the YAGO, WN18, and FB15k
data. The number of parameters depends on the number of relation types in the dataset,
since in the non-CL settings, a separate model is trained for each relation type, while
in the CL settings, additional Capsules are added to the model for each relation type.

Dataset Model specific per r (M) shared across r (M) total (M)

WN18 BERT 301.99 0.00 1, 509.95
Adapter 73.83 0.00 369.16
CapsKG 0.16 75.53 76.33

YAGO BERT 301.99 0.00 2, 415.92
Adapter 73.83 0.00 590.65
CapsKG 0.16 75.53 76.81

FB15k BERT 301.99 0.00 5, 435.83
Adapter 73.83 0.00 1, 328.96
CapsKG 0.16 75.53 78.41
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Fig. 3. Visualization showing trainable parameters in billions for BERT, Adapter and
CapsKG on an increasing numbers of relations, marking the datasets used in this study.
CapsKG scales very conservatively due to the large numbers of shared parameters.

CapsKGforward The full CapsKG model (Section 4.2) is iteratively trained for
all relation types and evaluated once at the end, not allowing the capsules
for previous relation types to be updated even if similarity to the current
relation type is given by the Gumbel Softmax.

CapsKGbackward The full CapsKG model (Section 4.2) is iteratively trained
for all relation types and evaluated once at the end, allowing the capsules
for previous similar relation types to be updated.

In BERT and BERT-CL, the entire model is updated during fine-tuning, lead-
ing to a very expensive training process and very high capacity of the model. In
Adapter and Adapter-CL, the number of trained parameters is greatly reduced,
leading to a more efficient training process. The resulting number of trainable
parameters of used models on all datasets is reported in Table 2. We addition-
ally visualize the increase in trainable parameters for each model with increasing
numbers of relations in Figure 3. The CapsKG-variations use Capsules to enable
the model to share knowledge between the different relation types and simulta-
neously avoid catastrophic forgetting. Note that CapsKG still requires increasing
numbers of trainable parameters when adding new relations, which is required
to prevent catastrophic forgetting [31]. Nevertheless, the increase in trainable
parameters per relation is vastly reduced in CapsKG in comparison to other
models, due to the efficient parameter sharing.

Model Hyperparameters For the adapter and capsule models, we follow the setup
of [15]. We use an adapter size of 2000, adding adapter modules before each
layer normalization within the 12 BERT transformer layers. Knowledge extractor
capsules are set to 3 extractor capsules of hidden size 3 per relation. Training
was carried out on a single A100 GPU for 30 epochs using a regularization
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parameter λ (cf. Equation (9)) of 10, a batch size of 64, and learning rate of 5e-5
using the Adam optimizer [16], choosing the model with lowest validation loss
after training each relation.

5.3 Link Prediction Evaluation

We evaluate our proposed CapsKG architecture on a link prediction task for
three different KG datasets, WN18, YAGO, and FB15k to systematically inves-
tigate its benefit compared to previous architectures.

The results of this comparison on all three datasets are shown in Table 3,
measured through Hits@1 accuracy on the test set.

The first section with BERTfrozen shows that prompting a pre-trained LM
without any training on the KG data results in poor performance across all
datasets. Due to the significantly lower performance of BERTfrozen compared to
all other approaches, we omit this baseline in the following experiments.

The second section comprises BERT and Adapter and represents the re-
source intensive training of one individual model per relation. As these models
are trained independently by design, they denote the performance achievable
without leveraging inter-relation dependencies and are evaluated without the
threat of catastrophic forgetting. In comparison to BERT, the Adapter-based
model performs slightly better on all datasets, despite its significantly lower
number of trainable parameters (cf. Table 2). This highlights the potential of
the general model decision to freeze the underlying LM and incorporate addi-
tional trainable layers, even if no continual learning setting with the danger of
catastrophic forgetting is given.

The third block of our results contains all models trained in a continual
learning setting, including both variants of our CapsKG. By iteratively incorpo-
rating new relations and presenting the respective training data to the model,
this setting is prone to catastrophic forgetting. For both of the architectures not
specifically optimized for continual learning, training in the continual learning
setting as BERT-CL and Adapter-CL shows the severe impact of catastrophic

Table 3. Results for link prediction on WN18, YAGO, and FB15k with 5 random
seeds, reporting mean and standard deviation of Hits@1 performance.

Model/Dataset WN18 YAGO FB15k

BERTfrozen 10.7± 0.0 27.0± 0.0 5.5± 0.0

BERT 25.8± 0.5 48.0± 0.1 34.7± 0.7
Adapter 26.4± 0.5 48.7± 0.4 35.6± 0.2

BERT-CL 20.2± 1.2 40.4± 4.0 11.4± 3.2
Adapter-CL 18.4± 1.2 41.5± 0.7 16.3± 1.4
CapsKGforward 27.4± 0.4 49.4± 0.3 36.1± 0.3
CapsKGbackward 27.2± 0.4 49.5± 0.3 34.9± 0.3
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forgetting as their performance is impaired significantly for all datasets, occa-
sionally losing more than half of their prediction power. An in-depth analysis of
the training course shows that they do indeed suffer from catastrophic forgetting,
as the relation most recently learned shows good performance, while the perfor-
mance of previously learned relations deteriorates over time. The FB15k dataset
especially suffers from this forgetting effect, which may be attributed to its large
number of different relation types that all have the potential to disrupt trained
knowledge of previous relation types. BERT-CL achieves a very low performance
on this dataset due to only retaining good prediction accuracy on the relation
type trained last, entirely failing to predict previous relation types. Adapter-CL
manages to retain more information compared to the BERT-CL model on the
FB15k dataset, but still performs significantly worse in this continual learning
scenario.

Our CapsKG model, however, performs considerably better in the contin-
ual learning setting, strongly outperforming the other approaches throughout
all datasets. Additionally, our CapsKG model even consistently outperforms the
non-continual models that train on individual relations. This can be attributed
to the internal structures that route and reuse previously learned low-level fea-
ture extractors. The performance gain, even in comparison to the much more
parameter-intensive BERT and Adapter models (cf. Table 2), suggests that it-
erative training emphasizes the sharing of knowledge from different but related
relations reminiscent of the concept of curriculum learning [1].

Finally, we compare both variants of CapsKG, CapsKGforward that allows
only to use parameters of previously learned relation types and CapsKGbackward
that allows to update the model parameters of knowledge capsules from previ-
ously trained relation types. One can observe that both models perform compa-
rably with CapsKGforward slightly outperforming CapsKGbackward which might
be a consequence of the significantly larger number of relation types in FB15k
accumulating disturbance on early learned relations over the course of the train-
ing.

Overall our results highlight the superior performance of the CapsKG archi-
tecture on all link prediction datasets.

5.4 Low Resource Evaluation

Since [15] found the capsule architecture to be more efficient in low-resource
scenarios where shared knowledge may be used to overcome the limited training
data, we further evaluate the model’s performance with only a limited number of
training instances for each relation. This is particularly relevant for the task of
KG-completion, as some of the knowledge graph (KG) relations are very sparse.

To evaluate the performance of our model in a low-resource setting, we build
low-resource subsets of the datasets used in the previous experiment by reducing
the number of training samples to only 200 triples per relation. We follow the
architectural parameters and experimental setup of our previous experiments,
other than that we set the regularization parameter λ to a large number of 2000,
as we observe that the limited number of training samples severely impedes the
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Table 4. Link prediction on WN18, YAGO, and FB15k using only 200 triples for
training each relation, repeated with 5 seeds and reporting mean and standard deviation
of Hits@1 performance.

Model/Dataset WN18200 YAGO200 FB15k200

BERT 19.1± 0.5 45.8± 0.6 30.7± 0.5
Adapter 18.8± 0.2 44.9± 0.7 32.2± 0.6

BERT-CL 13.1± 0.5 29.5± 6.5 5.5± 0.0
Adapter-CL 13.6± 0.4 26.1± 1.1 6.7± 1.1
CapsKGforward 19.7± 0.4 46.4± 0.2 33.7± 0.1
CapsKGbackward 19.1± 0.4 46.3± 0.2 32.2± 0.2

regularization of weight sharing (cf. Equation (9)) within CapsKG. We train the
model on a single RTX 2080 ti using a batch size of 16.

The results of this low resource evaluation are summarized in Table 4. Cap-
sKG outperforms BERT and Adapter on all datasets, while requiring fewer pa-
rameters. Note that both architectures have been explicitly fine-tuned for each
relation individually. This suggests that the parameter sharing and routing be-
tween similar feature extractor capsules allows the model to access knowledge
extracted by previously trained relations that a model trained individually per
relation cannot leverage.

The remarkably lower performances for BERT-CL and Adapter-CL suggest,
that even though the number of training samples has been reduced by magni-
tudes, the effect of catastrophic forgetting is not mitigated in this setting, such
that this effect outweighs the lower number of training samples overall.

5.5 Topic Evaluation

To verify our hypothesis that relation types learned with CapsKG iteratively
profit from previously learned similar relations, we conduct a topic evaluation
experiment in the low-resource setting from Section 5.4. We therefore sample
four topic groups from the FreeBase hierarchy, people, music, sport, and film,
each consisting of more than one relation type, topically related. The goal is
to examine to what extent CapsKG based models benefit from topically similar
relations while similar can be understood in terms of overlap of similar entity
pairs and semantics from the LM. The results of the experiments are shown in
Table 5 and support our hypothesis, as CapsKG outperforms all other models.
The largest improvement is observed in the smallest topic group consisting of
only two relation types which are the direct inverse relations and thus highly
relevant for each other: location/contains and location/containedby. Our experi-
ment shows that, when considering topic-specific similar relations, our model can
leverage knowledge from prior relations for all topic groups, showing its potential
in the low-resource continual learning setting.
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Table 5. Link prediction on FB15k relations grouped by topic according to the KG
relation types, each with 5 random seeds.

Model/Topic people music location film

BERT 41.1± 1.6 20.7± 1.3 48.0± 1.2 36.4± 1.6
Adapter 42.4± 0.7 23.4± 0.7 47.4± 0.4 37.9± 0.6
CapsKG-Forward 43.8± 0.4 24.2± 0.3 50.8± 0.4 38.8± 0.5
CapsKG-Backward 44.0± 0.3 22.9± 0.8 50.9± 0.4 38.7± 0.2

6 Conclusion

In this work, we have proposed to transfer architectures from continual learning
to KG completion using LMs, and demonstrated the performance of an Adapter-
and Capsule-based architecture on the task of link prediction in KGs in CapsKG.
CapsKG combines the benefits of adapters for the extraction of knowledge from
LMs with capsules as feature extractors to perform link prediction in KGs in
a continual learning scenario. Our experiments on three common KG datasets,
WN18, YAGO, and FB15k demonstrate the benefit of the proposed architecture,
outperforming even fine-tuned BERT that has 20 to 70 times more trainable pa-
rameters and Adapters that have 5 to 17 times more trainable parameters. We
have also shown that our CapsKG model maintains and partially even improves
in performance when trained in a continual learning scenario, while other mod-
els show the devastating behavior of catastrophic forgetting. Our low-resource
experiment demonstrates the benefit of knowledge sharing across different sub-
tasks, especially when only few training instances per sub-task are available.

Our findings suggest that our proposed model-agnostic architecture allows
continual learning for KG completion using LMs even in low resource scenarios,
making it a promising foundation for future research in the Semantic Web com-
munity. In our consecutive research, we plan to systematically evaluate a variety
of base-LMs with CapsKG on top, to examine their potential for generic KG
completion as well as link prediction with specific domain adapted LMs in their
particular domain, for example for medical KGs. Moreover, different approaches
to precisely model similarity for the low-level feature extraction capsules and
their routing mechanism is an interesting field for future work as well.
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