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Abstract. High-resolution grain size distribution maps for geographical
regions are used to model soil-hydrological processes that can be used
in climate models. However, measurements are expensive or impossible,
which is why interpolation methods are used to fill the gaps between
known samples. Common interpolation methods can handle such tasks
with few data points since they make strong modeling assumptions re-
garding soil properties and environmental factors. Neural networks po-
tentially achieve better results as they do not rely on these assumptions
and approximate non-linear relationships from data. However, their per-
formance is often severely limited for tasks like grain size distribution
interpolation due to their requirement for many training examples. Semi-
supervised learning may improve their performance on this task by taking
widely available unlabeled auxiliary data (e.g. altitude) into account.
We propose a novel semi-supervised training strategy for spatial interpo-
lation tasks that pre-trains a neural network on weak labels obtained by
methods with stronger assumptions and then fine-tunes the network on
the small labeled dataset. In our research area, our proposed strategy im-
proves the performance of a supervised neural network and outperforms
other commonly used interpolation methods.

Keywords: spatial interpolation · semi-supervised learning · neural net-
works.

1 Introduction

The composition of different grain sizes in the soil affects many hydrological
processes such as groundwater recharge, infiltration rates or surface flow. For
example, soils with dominating clay fractions (grain size ≤ 0.002 mm) retain wa-
ter better than sandy soils (0.063 mm < grain size ≤ 2.000 mm). Given accurate
grain size distribution maps, it is possible to estimate hydrological parameters for
environmental modelling purposes, e.g. regional climate models. Since sampling
is expensive or even impossible due to inaccessible terrain, spatial interpolation
methods are used to estimate grain size distributions for unknown locations.

A model for grain size distribution interpolation has the following require-
ments: (1) The model input is a location with (potentially) additional auxiliary
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Fig. 1: In our proposed semi-supervised training method, (1) a spatial interpola-
tion method with strong assumptions is trained on the labeled dataset. (2) The
neural network is pre-trained on weak labels obtained by applying the interpo-
lation method to the unlabeled data. The network gets locations and auxiliary
data as inputs. (3) It is then fine-tuned on the labeled dataset.

data (e.g. altitude). (2) The model outputs distributions across the grain size
classes (clay, silt, sand) for each unknown location. (3) The model works with
few labeled data points, since soil samples are rare.

Distance based interpolation methods such as k Nearest Neighbors or In-
verse Distance Weighting can output distributions and are applicable to small
labeled datasets due to their strong assumptions. However, they do not take aux-
iliary data into account which can benefit performance [11,17]. Neural networks
can learn non-linear relationships from data, are able to incorporate additional
auxiliary inputs, and are able to output distributions across grain size classes.
However, they usually need many labeled training data points [15]. The idea
of semi-supervised learning utilizes large unlabeled datasets to support network
training [8]. In recent years, most methods for semi-supervised learning were
designed for image classification, which are not applicable to our setting.

Therefore, in this paper, we bring semi-supervised learning specifically to
the task of grain size distribution interpolation for spatial inputs. We propose
a training strategy that makes use of weak labels produced by an interpola-
tion method with stronger modeling assumptions. Figure 1 gives a schematic
overview of our proposed three-step process. In our experiments for the region
of Lower Franconia, we show that our approach improves the performance of a
supervised neural network and outperforms other common interpolation meth-
ods. Furthermore, we analyze the effects of the proposed training strategy on
model performance.
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Our contributions are: (1) We describe a semi-supervised training strategy
for neural networks in the spatial domain to interpolate grain size distributions.
(2) We compare our strategy to supervised training and common interpolation
approaches and show that it outperforms them in our research area. (3) We
analyze the resulting model to understand what factors are important for its
performance.

2 Related Work

There are various spatial interpolation techniques with different properties used
in environmental sciences, e.g. k Nearest Neighbors, Inverse Distance Weight-
ing, or Kriging [16]. Neural networks have been successfully applied in such
tasks since they allow auxiliary data as input features and can model non-linear
relationships [5,20,23]. However, to obtain robust performance, they need many
labeled data points not available in most spatial interpolation tasks [15]. Semi-
supervised training promotes the use of large unlabeled datasets to support the
training of neural networks with few labeled data points [8]. For image classifi-
cation, which is the most popular semi-supervised learning task, domain-specific
strategies such as image augmentation have been proposed, which are not trivial
to apply in our setting. Classification specific approaches such as using the soft-
max output of the network as confidence for a weak label [26] are not directly
applicable to our task, since our desired output is a distribution and not a class.

For our semi-supervised training strategy, we adapt so-called “distant su-
pervision” from other domains [10, 14] by training the network on weak labels.
Obtaining weak labels from more traditional interpolation methods and fine-
tuning the network on labeled data afterwards is a new approach in this area.

3 Research Area and Dataset

In this section, we describe the research area and the dataset we use for the
interpolation task. Inputs to the interpolation models are the latitude, longitude,
and multiple features from different auxiliary data sources that we suspect to
have an influence on or are influenced by the grain size distribution. While only
315 locations have a target grain size distribution, the auxiliary data is widely
available in a fine grid of 25 m × 25 m cells (overall 11 952 963 grid cells).

The research area is Lower Franconia, northern Bavaria, Germany. It covers
8530 km2 and falls within 49.482°N to 50.566°N and 8.978°E to 10.881°E. The
topography of this region is characterized by alluvial zones with surrounding low
mountain ranging from 96 m to 927 m in altitude.

3.1 Target Variable: Grain Size Distribution

Soils are compositions of grain sizes. To get soil conditions for the research area,
we use a soil profile database of the Bavarian Environment Agency (BEA)1. The

1 unpublished data; reference: https://www.lfu.bayern.de/umweltdaten/

https://www.lfu.bayern.de/umweltdaten/
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(a) Labeled data point locations. Map tiles
by ESRI, USGS, NOAA, data by BEA.

(b) Distribution of target grain size distri-
butions.

Fig. 2: Map showing labeled locations and distribution of the labels.

database covers detailed information on in-depth grain size distribution on 431
sites in Lower Franconia. The sampling took place in-between 1989 and 2017 and
exposes grain size distributions of the fine earth fraction per soil-horizon through
combined sieve and pipette analysis [12]. The method of sampling varies between
drill cores and complete profile excavations.

While each observed location lists multiple layers, we limit the interpolation
task to two dimensions by only using soil information from 14 cm–15 cm as most
recorded layers span across this range. This common approach [6] results in 315
labeled locations, shown in Figure 2a.

Given the detailed grain sizes, we represent each location as a composition
of three grain size classes [1]: clay (grain size ≤ 0.002 mm), silt (0.002 mm <
grain size ≤ 0.063 mm), and sand (0.063 mm < grain size ≤ 2.000 mm). Each
label is a three dimensional distribution vector, e.g. 20 % clay, 50 % silt, and 30 %
sand. The label distribution is shown in Figure 2b. The task is to estimate this
distribution for a location given other locations and auxiliary data.

3.2 Auxiliary Data

While there are only 315 labeled data points, auxiliary data is available for
all locations in Lower Franconia (11 952 963 grid cells). For this work, we use a
Digital Elevation Model (DEM) and meteorological data to generate ten features
for each grid cell: latitude, longitude, altitude, slope, Multi-Scale Topographic
Position Index (minimum, mean, and maximum), Topographic Wetness Index,
temperature, and precipitation, that are explained in the following.

The used DEM provided by the BEA2 reflects the altitude of the terrain
surface, excluding buildings and vegetation, resampled to our grid’s spatial reso-

2 https://geodatenonline.bayern.de/geodatenonline/seiten/dgm info

https://geodatenonline.bayern.de/geodatenonline/seiten/dgm_info
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lution of 25 m. We derive five additional features through topographic, morpho-
metric and hydrographic analysis [25].

Slope . In basic terrain analysis, slope represents the change in elevation over
a given distance. For a cell with altitude alt, we calculate the mean altitude
over the neighboring cells in north and south direction altNS and in west and
east direction altWE. The slope ranges from 0° (a horizontal plane) to 90° and is
calculated using slope = 180

π·
√

(altNS−alt)
2
+(altWE−alt)

2
.

Multi-Scale Topographic Position Index . The Topographic Position Index
(TPI) [24] is defined as the altitude difference between a location of interest and
the mean altitude of a square area around it, giving values that indicate local
ridges and valleys. We obtain TPIs on multiple scales by altering the side length
of the square from 3 grid cells (75 m) to 41 grid cells (1025 m) in steps of two
cells, having the current location in the square’s center. From the resulting 19
TPIs, we take the minimum, mean, and maximum as features. They describe
the morphology of our study area at different scales as numeric factors.

Topographic Wetness Index . To represent spatial variations of soil moisture
content and soil water drainage, a terrain-based wetness index (TWI) is com-
puted [4]. The index is high for locations where water normally collects due to
the topographic setting. It is calculated as a tangent function of the cell’s slope

angle w.r.t. the cell’s area (625 m2): TWI = ln
(

625
tan(slope)

)
.

Meteorological Data . In addition to terrain based features described above,
we also obtain meteorological data provided by the German Meteorological Ser-
vice (DWD). The data reflects the 30-year (1971–2000) means of the monthly
averaged mean daily air temperature 2 m above the ground and precipitation.3

The grid-based data was obtained by accurate interpolation methods for tem-
perature and precipitation at a resolution of 1 km2 [19] and resampled to the
target grid size of 25 m using nearest neighbor interpolation.

4 Methodology

Given the data described above, we now have a large dataset of unlabeled data
as well as a small labeled dataset. A neural network should now learn to estimate
the grain size distribution of a location based on the ten input features. To make
use of the large unlabeled dataset, we propose a three step semi-supervised
training strategy that pre-trains the neural network on weak labels created by
an interpolation method with stronger assumptions:

1. Weak Label Generation . We apply a common interpolation method such
as Inverse Distance Weighting (IDW) on the small labeled dataset. Note that
these methods usually do not take auxiliary data into account. Due to the
strong modeling assumptions of such algorithms, they are able to work with

3 https://opendata.dwd.de/climate environment/CDC/grids germany/multi annual/
air temperature mean and precipitation

https://opendata.dwd.de/climate_environment/CDC/grids_germany/multi_annual/
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small datasets. The trained model then estimates the target labels for the large
unlabeled dataset, which are used as weak labels in the next step.

2. Pre-Training . The neural network is pre-trained using the large amount of
available weakly labeled data, thus being exposed to the property assumptions
of the weak label generator. This way, the network learns representations from
all input features, including the auxiliary data, and is guided to create more
realistic outputs. Since interpolation methods such as IDW represent the location
information as distances, the network has to learn from different features, as we
will show in Section 6.1. Calculating the euclidean distance from locations is
hard for the network, therefore it tries to find other correlations as well.

3. Fine-Tuning . The pre-trained network is fine-tuned on the labeled dataset.
This reinforces or weakens some correlations the network has found. For fine-
tuning, a smaller learning rate is used in order to keep the previously trained
weights intact. The resulting model can then be used on all locations.

5 Experiments

Now, we compare our self-supervised training strategy to the traditional su-
pervised method and other common interpolation methods on the grain size
distribution task. Note that not all methods can output distributions, so we will
only apply methods that are able to handle this task-specific output type.

5.1 Methods

Mean . Always predicts the mean of all training examples. As the average of
multiple distributions is also a distribution, the prediction is valid.

k Nearest Neighbors (kNN). Calculates the average label of the nearest k
training locations [2]. We set k = 3 based on a parameter search on validation
data for k ∈ {1, . . . , 10}.
Inverse Distance Weighting (IDW). Same as kNN, but the average is in-
versely weighted based on the distance to a labeled location [22]. A parameter
search for k ∈ {1, . . . , 10} results in k = 7.

Multilayer Perceptron (MLP). Trains a Multilayer Perceptron on the labeled
dataset in a supervised learning setting. The ten-dimensional input is normalized
to zero mean and unit variance. It is then fed through three hidden layers with
256 neurons each with ReLU activation functions [9] in a batch of size 1024.
The three-dimensional output is then converted to a probability distribution
by applying the softmax activation function. These hyperparameters have been
found on validation data. The standard cross entropy loss function is used that
allows distributions as targets. The network is optimized with Adam [13] and
a learning rate of 10−1 for at most 1000 epochs. Early stopping [18] stops the
training if the validation loss does not improve at least 10−5 for ten epochs.

Semi-supervised MLP (SemiMLP). We apply our semi-supervised training
strategy to the same MLP architecture as above. We generate weak labels using
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Table 1: Test results (mean ± standard deviation) for each model. Best values
are written in bold.

MAE MSE JSD

Mean 0.5210 ± 0.0384 0.1337 ± 0.0183 0.0549 ± 0.0076
kNN 0.4267 ± 0.0412 0.1011 ± 0.0223 0.0398 ± 0.0090
IDW 0.4188 ± 0.0417 0.0954 ± 0.0225 0.0381 ± 0.0090
MLP 0.4361 ± 0.0552 0.1068 ± 0.0251 0.0426 ± 0.0088
SemiMLP (after pre-training) 0.4781 ± 0.0577 0.1296 ± 0.0283 0.0497 ± 0.0099
SemiMLP (after fine-tuning) 0.4078 ± 0.0445 0.0952 ± 0.0195 0.0377 ± 0.0077

the IDW baseline with k = 7 as it achieved the best baseline validation results.
We train the network with learning rates 10−1 and 10−3 for pre-training and
fine-tuning, respectively.

5.2 Evaluation

To evaluate the methods described above, we perform a ten-fold cross-validation
(i.e. 31 or 32 examples per fold) using the labeled dataset. We average over
50 repetitions to account for the random initialization of the neural networks.
Three metrics are used for evaluation: Mean Absolute Error (MAE), Mean
Squared Error (MSE), and Jensen-Shannon Divergence (JSD). While
MAE and MSE compute the mean (absolute and squared) deviation from the
correct values, JSD is specifically designed to measure the difference between two
distributions [7]. Note that MAE and MSE sum the errors up for an example
before averaging over all examples.

6 Results

Table 1 shows the test results for all models. The model with our training strat-
egy (SemiMLP) yields the best test results. While the supervised MLP performs
worse than kNN, the fine-tuned SemiMLP even improves the performance of
the IDW baseline. In fact, a Wilcoxon signed rank test (α = 0.01) on the MSE
indicates that the improvement w.r.t. IDW is significant. We suspect that the
network’s improvement comes from having direct access to locations as well as
auxiliary data that it uses during training, while IDW only relies on distances
between locations as inputs.

6.1 Analysis

Pre-training matters. For our experiments, we altered the MLP baseline by
adding the pre-training step to obtain SemiMLP, while the architecture and
preprocessing were fixed. Thus, SemiMLP’s better performance compared to
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Fig. 3: Drop in MAE performance when the feature column was permuted.

MLP (cf. Table 1) shows that pre-training has a positive effect on SemiMLP. Pre-
training the network seems to build better representations for the downstream
task than random initialization.

Fine-tuning matters. While it helps, pre-training alone does not give superior
performance. Table 1 shows that only pre-training on weak labels gives worse
performance than most baselines and the supervised MLP. This indicates that
the network is not able to imitate the IDW baseline, which generated the weak
labels. This may be due to IDW using distances between new and labeled lo-
cations to assess its predictions. SemiMLP does not get distance information as
input and is not able to directly access the labeled dataset. Thus, it learns a
surrogate function that fits the training data but will not exactly match IDW’s
output for new data points. Also, SemiMLP gets more features than IDW, in-
creasing the chance that the network exploits other correlations to predict the
output. After the fine-tuning step, the method is superior to all baselines.

Auxiliary data matters. The features that may be influenced by or influence
the target variable also have an effect on the performance. To investigate this,
we apply the permutation importance for feature evaluation method [3] that
permutes the values of a feature to see how much the predictive quality of the
trained model changes. The more important a feature is, the higher the drop
in performance if its input is altered. We average the features’ importances for
each test fold over ten different permutations to get more robust results.

Figure 3 shows the resulting feature importances. Besides location, the fea-
tures temperature, precipitation, and altitude have the largest influence. Accord-
ing to previous research, soil is formed by the alteration of present bedrock un-
der the influence of climate, relief, organisms, and human activity over time [21].
Since we do not provide features describing organisms and human activity, the
model focuses on climatic (30-year means of temperature and precipitation) and
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relief-based (altitude) influences. While we expected other relief-based features
such as TPI or TWI to be more important for the model, altitude and location
seem to be descriptive enough.

7 Discussion

Neural networks make no modeling assumptions for the interpolation task. Com-
pared to common interpolation methods, the network can model non-linear re-
lationships in the data and can utilize any kind of auxiliary data. Our method
circumvents the necessity of large training datasets by guiding the network to-
wards more realistic outputs using weak labels before fine-tuning on few real
labels. It is very easy to replace the weak label generator with a potentially bet-
ter interpolation method. The required pre-training of the network on weakly
labeled data takes extensively longer. However, depending on the neural network
architecture, input data, and size of the research area, inference can be faster
than other approaches, as we can compute outputs in batches on specialized
hardware without any distance calculations.

As stated in Section 3, we restrict this work to the two-dimensional case
of grain size distribution interpolation. While depth information is expected to
increase performance, it is not trivial to use it in the weak label generation
methods. Labeled locations usually have large distances (hundreds to thousands
of meters), while labeled soil layers have very small distances (millimeters to few
centimeters). Distance based approaches such as IDW will only take the nearest
labeled location into account and average its soil layers as these are overall the
closest to the desired location. While this is not resolved, building a model for
each depth layer is the simplest approach that we can apply in practice.

8 Conclusion

In this paper we have proposed a semi-supervised training method for spatial
interpolation tasks. For our grain size distribution task, additional pre-training
on weak labels improved the network’s performance compared to supervised
learning and common interpolation methods. Testing other weak label generators
and sampling strategies to optimize pre-training remains future work. Mixing
weak labels from methods with different modeling assumptions might enrich the
learned representations of the network. Future challenges include adding the
depth dimension, allowing the exploitation of soil layer relations. Further, we
will evaluate the interpolated map in a soil-hydrological simulation model.
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