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Abstract. Conditional Random Fields (CRFs) have been widely used
for information extraction from free texts as well as from semi-structured
documents. Interesting entities in semi-structured domains are often con-
sistently structured within a certain context or document. However, their
actual compositions vary and are possibly inconsistent among different
contexts. We present two collective information extraction approaches
based on CRFs for exploiting these context-specific consistencies. The
first approach extends linear-chain CRFs by additional factors speci-
fied by a classifier, which learns such consistencies during inference. In
a second extended approach, we propose a variant of skip-chain CRFs,
which enables the model to transfer long-range evidence about the con-
sistency of the entities. The practical relevance of the presented work for
real-world information extraction systems is highlighted in an empirical
study. Both approaches achieve a considerable error reduction.

Keywords: information extraction, conditional random fields, collec-
tive, context-specific consistencies, long-range dependencies

1 Introduction

The accurate transformation of unstructured data into a structured representa-
tion for further processing is an active area of research with many interesting
challenges. One central task for mining unstructured textual data is Information
Extraction (IE), which tries to find well-defined entities and relations in textual
data. Over the last decade, statistical sequence labeling models and especially
Conditional Random Fields (CRFs) [10] became the dominant technique for IE
tasks. CRFs are discriminative undirected probabilistic graphical models often
trained in a supervised fashion. When applied on textual data, they are usually
designed as a linear chain with the first order Markov assumption.

In many scenarios, the entities in textual data are not independent and iden-
tically distributed. Recently, much effort went in new approaches that can be
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summarized under the term Collective IE [2, 4, 8, 9, 15]. They break the linear-
chain assumption and model also long-range dependencies in order to label re-
lated entities or instances collectively. One example is Named Entity Recognition
(NER), a task that aims at the extraction of persons or similar entities. Here,
the accuracy can be improved by the assumption that similar tokens should have
the same label or by providing contextual evidence of related tokens.

In semi-structured documents a different form of long-range dependency of-
ten occurs. Here, the context in which the textual data is created or written
introduces a homogeneous composition of the entities. The reference section of
this paper, for example, is generated using a style guide that defines the layout
of the citation information. Thus, all author entities end with a colon. However,
the reference sections of other publications follow different style guides in which
the author possibly ends with a period. Another example for consistency intro-
duced in a certain context is curricula vitae: Each author describes his or her
employments homogeneously but possibly with an arrangement of the interest-
ing entities different from other authors. If these long-range dependencies are not
taken into account, then the IE system faces a heterogeneous and inconsistent
composition of the entities in the complete dataset. However, by considering the
similarities of entities within a context and processing those entities collectively,
many labeling errors can be prevented. The accuracy for the detection of the
author of a reference, for example, can be greatly increased when the model is
encouraged that all authors in a reference section should end identically.

In this work, we present two collective IE approaches based on CRFs that
are able to exploit such context-specific consistencies. Both approaches consult
a classifier, which detects consistent boundaries of an entity within one con-
text. This classifier is trained during inference on an intermediate label sequence
predicted by an additional model. The generalization of the classifier’s learning
algorithm detects only equally shaped boundaries ignoring entities that break
the consistency assumption. This evidence about the consistency is exploited
in two different models. The first model extends linear-chain CRFs with addi-
tional unigram factors. The positions of the factors are given by the classification
result of the classifier combined with the predicted label sequence. In a second
approach, we investigate a variant of skip-chain CRFs [15]. Instead of adding de-
pendencies for similar tokens, the boundaries of related entities are connected.
These additional edges then transport evidence about the consistency of the en-
tities’ compositions at the positions indicated by the classifier. In an empirical
study, we evaluate our approaches with real-word datasets, for the segmentation
of references and for template extraction in curricula vitae. The results show
the practical relevance of the presented work for real-world IE systems. Our
approaches are able to achieve a substantial error reduction, up to 34%.

The rest of the paper is structured as follows: In Section 2, we recap different
variants of CRFs for information extraction. The two novel approaches for ex-
ploiting context-specific consistencies are described in Section 3. Their results in
an empirical study are presented in Section 4. Section 5 gives a short overview
of the related work and Section 6 concludes with a summary.
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2 Conditional Random Fields

Conditional Random Fields (CRFs) [10] are undirected graphical models which
model conditional distributions over random variables y and x. Given exponen-
tial potential functions Φ (yc,xc) = exp (

∑
k λkfk (yc,xc)) a CRF assigns

pθ (y|x) =
1

Z(x)

∏
c∈C

Φ (yc,xc) (1)

to a graph with cliques C under model parameters θ = (λ1, . . . , λK) ∈ RK .
The partition function Z(x) =

∑
y′
∏
c∈C Φ (yc,xc) is a normalization factor to

assert
∑
y pθ(y|x) = 1. The feature functions fk can be real valued in general,

however, we assume binary feature functions if not mentioned differently.
When CRFs are applied for IE tasks, the model is adapted to the properties

of sequential data or textual documents respectively. Therefore the graph struc-
ture is normally restricted to be a linear chain representing the sequence of labels
that are assigned to a sequence of tokens. The entities of the IE tasks are iden-
tified by sequences of equal labels. If linear-chain CRFs also model long-range
dependencies with additional edges between distant labels, then the models are
called skip-chain CRFs [15]. Both models are shortly outlined in the following.

2.1 Linear-Chain CRFs

Linear chain CRFs [10] restrict the underlying graph structures to be linear
sequences, typically with a first order Markov assumption. The assignment of
yt given x and y− yt = (yt)t=1,...,t−1,t+1,...,T is then only dependent on yt−1,yt,
yt+1 and x. The probability of a label sequence y given an token sequence x is
modeled by

pθ (y|x) =
1

Z(x)

T∏
t=1

Φl (yt, yt−1,x) . (2)

We are using Φl to describe the factors of the linear-chain edges that link
adjacent labels:

Φl (yt, yt−1,x) = exp

{∑
k

λlkflk (yt, yt−1,x, t)

}
. (3)

The discriminative impact of the feature functions flk is weighted by the
parameters θ = θl = {λlk}Kk=1. The feature functions can typically be further
factorized into indicator functions plk and observation functions qlk

flk (yt, yt−1,x, t) = plk (yt, yt−1) · qlk(x, t) . (4)

plk returns 1 for a certain label configuration and qlk relies only on the input
sequence x. Thus, a feature function, e.g., that indicates capitalized tokens, can
be separately weighted for each label transition. Figure 1 contains an example
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of a linear-chain CRF in factor graph representation, which is applied for the
reference segmentation task. We added the label and token sequence for better
understanding. Dependencies of the factors to tokens are omitted for simplicity.

Author Author Author Author Author Title Title Title Title . . .

y1 y2 y3 y4 y5 y6 y7 y8 y9 . . .

Sutton , C . : GRMM : GRaphical Models . . .

Fig. 1. A linear-chain CRF applied on the reference segmentation task, i.e., the 14th
reference of this paper. The associated labels and tokens are depicted above and below
the variables.

2.2 Skip-Chain CRFs

Skip-chain CRFs [15] break the first order Markov assumption of linear-chain
CRFs by adding potentials to the graph that address dependencies between dis-
tant labels and tokens. A set Ix = {(u, v)} ⊂ {1, . . . , T} × {1, . . . , T} defines
positions u, v for which yu, yv are connected by skip edges. We refer to compo-
nents of skip-chain CRFs with the index x in order to point out their usage in
previous publications, e.g., [15]. The set Ix unrolls skip edges based on token sim-
ilarity and is therefore only dependent on the token sequence x. In NER tasks,
for example, the accuracy can often be increased when the model is encouraged
to label similar tokens identically. For controlling the computational cost, Ix has
to be kept small. An extension of Equation 2 with additional skip edges results
in the conditional probability

pθ (y|x) =
1

Z(x)

T∏
t=1

Φl (yt, yt−1,x)
∏

(u,v)∈Ix

Ψx (yu, yv,x) . (5)

The potentials Ψx for the skip edges are given by

Ψx (yu, yv,x) = exp

{∑
k

λxkfxk (yu, yv,x, u, v)

}
(6)

extending the complete set of parameters θ = θl ∪ θx. The feature functions
factorize again in an indicator function pxk and an observation function qxk:

fxk (yu, yv,x, u, v) = pxk (yu, yv, u, v) · qxk (x, u, v) (7)

The observation function enables the model to share observed information
between the positions u and v and their neighborhoods, e.g., for providing local
evidence at a position where such information is missing.
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3 CRFs with Context-specific Consistencies

This section introduces two different approaches to exploit context consistencies.
Both methods are divided into two different parts. When unrolling the graph dur-
ing inference, we first have to detect the patterns that describe the consistency
of the context. Secondly, we need to incorporate the gained knowledge into the
graph structure for a better prediction. In the following, we first describe chal-
lenges of dependencies on the label sequence and the applied method to learn
context-specific consistencies. Then, we explain the differences of the two ap-
proaches which only concern the structure and complexity of the models that
exploit the context-specific patterns.

3.1 Context-specific Consistencies

Context-specific consistencies refer to a special kind of long-range dependen-
cies that are often found in semi-structured documents. The interesting entities
within a specific context or document share a similar composition caused by
the process the document is created or written in. Examples for this process
are authors that arrange the entities homogeneously or templates that enforce
a specific layout. We call these consistencies context-specific, because the ac-
tual composition is unknown at application time and can strongly vary between
contexts. There are many different ways to describe the composition of entities.
In this work we take a closer look at the entity boundaries, that is, the first
and the last label of the entity3. Other possibilities include the labels within the
boundaries of an entity. More generally, this can be extended to any kind of label
transition. However, the boundaries alone are very suitable to classify an entity
independently of the actual label transition and allow to restrict the long-range
dependencies to a minimal amount.

3.2 Dependencies based on the label sequence

In this paper, we investigate how these consistencies can be exploited with the
idea of skip-chain CRFs or in general CRFs with additional potentials for long-
range dependencies. In contrast to skip-chain CRFs, where the potentials are
only based on the token sequence (cf. Equation 6), our additional potentials
are mainly dependent on the label sequence. Our approaches need a prediction
of the assignment in order to be able to link or relate the boundaries of the
entities. The label sequence (hidden variables) is of course not available during
inference when we unroll the graph on an instance with all potentials since it is
the result of the computation of pθ (y|x). However, there are many different ways
to provide a prediction of the label sequence during inference. Our initial choice
was to incrementally unroll the graph: We first unrolled the potentials of the
linear-chain part, computed the currently most likely label sequence and used

3 No additional encoding like IOB is applied in order to identify the entities in the
label sequence.
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this prediction to further unroll the additional potentials. However, we observed
problems with the parameter estimation and inference mechanism applied in this
work (cf. Section 3.6). While we sometimes achieved remarkable improvements,
the approach frequently did not converge at all. Therefore, we utilize a separate
static linear-chain model in order to provide a constant prediction of the label
sequences, which corresponds to the approach of stacked graphical models [8, 9,
7]. Here, an initial model is used to compute new features for a stacked model.
In our approach, however, the predicted assignments of the initial model lead
to additional potentials. Normally, cross-fold training is applied for the initial
model in order to prevent unrealistic predictions during training of the stacked
model. We neglect this improvement in the belief that the advantages of the
presented models prevail.

3.3 Learning Context-specific Consistencies

When we try to exploit the context-specific consistencies, it is very helpful to
acquire a description or model for the consistencies in each context or docu-
ment. Thereby, one can distinguish consistent and inconsistent boundaries of
the entities. As in previous work [7], we train and apply a binary classifier on
the boundaries of an entity within one context. The learning task of the clas-
sifier for a boundary of one type of entity is defined as following: Each token
of the context is a training example and the features of the CRF become bi-
nary attributes, possibly with an additional windowing. The intermediate label
sequence (cf. 3.2), respectively the predicted boundaries, specifies the learning
target of the classifier. The generalization capacity of the classifier’s learning al-
gorithm is the key to gain knowledge about the context-specific consistency. We
assume that the hypothesis space of the classifier is not sufficient to provide a
perfectly accurate model and therefore only describes the dominant consistency.

A suitable classifier for the tasks presented in this work has to provide fol-
lowing properties:

– The classifier should be efficient with respect to its execution time since it
is trained and applied on all emerging label sequences during inference.

– The classifier should not tend to overfit since it is trained and applied on
possibly erroneous data. These errors should not be reproduced. In general,
overfitting can also be restrained by limiting the amount of attributes.

– The classifier should not combine different hypotheses in order to solve the
classification problem if only one consistency for the boundary exists in data
as it is in our examples.

– The classifier should handle label bias correctly, even if there are only a few
true positives and thousands of true negatives.

We decided to utilize a simple but efficient rule learner based on subgroup
discovery [6], an exhaustive search for the best conjunctive pattern describing
an target attribute, respectively the entity’s boundary. This technique fulfills all
requirements with minimal efforts of configuration and is fast enough if the set
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of attributes is constrained. As an improvement to [7], a new quality function
F exp1 selects the best pattern:

F exp1 =
2 · tp

2 · tp+ fn+ fp
·

(
1−

(
|tp+ fp− Ey|

max(tp+ fp,Ey)

)2
)

(8)

The left part of this measure describes the traditional F1-Measure, that is
how well the pattern reproduces the predicted boundaries. The right factor is a
penalty term for the divergence of the amount of instances classified as bound-
aries to a given variable Ey, the expected amount of boundaries in a context. Ey
can simply be estimated using the token sequence and the feature functions in
the data set applied in this work. In the domain of reference segmentation, for
example, we expect that each reference contains exactly one author. Although
this is not true in general, it provides for a valuable weighting of the hypothesis
space and further reduces overfitting.

3.4 Comb-Chain CRFs

In a first approach, we extend the variables of a linear chain model with ad-
ditional (unigram) factors dependent on the classification result (cf. Figure 2).
Hence, we chose the name comb-chain CRFs for this approach because of the
layout of the graph.

Let Rb(y) and Re(y) be the set of positions, which are identified by the
classifier as the beginning and end of an entity with the label y. We can now
define the positions of additional factors:

Ub =

{
u : yu−1 6= yu ∨ u ∈

⋃
y

Rb(y)

}

Ue =

{
u : yu 6= yu+1 ∨ u ∈

⋃
y

Re(y)

}
U = Ub ∪ Ue

(9)

Ub and Ue contain all positions that are either intermediately labeled by the
external model or are identified by the classifier as the beginning, respectively
end of an entity. The conditional probability is then defined as4

pθ (y|x) =
1

Z(x)

T∏
t=1

Φl (yt, yt−1,x)
∏
u∈U

Ψc (y, u) (10)

and the potentials for the unigram factor are given by

4 The different usage of y for the predicted sequence and the label configuration of
the parameters deduces from the context.
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Author Author Author Title . . . Author Author Author Title . . .

yu-2 yu-1 yu yu+1 . . . yv-2 yv-1 yv yv+1 . . .

: GRMM : GRaphical . . . A . : Collective . . .

Fig. 2. An excerpt of a comb-chain graph with erroneous labeling whereas only addi-
tional factors for the end of the author are displayed. The output functions indicate a
missing end at position yu-2, a surplus end at yu and a consistent end at yv

Ψc (y, u) = exp

{∑
k

λckfck (y, u)

}
(11)

whereas θc = {λck} is the set of additional parameters for the classifier
template. We let the feature function factorize into an indicator function pck
and an output function qck:

fck (y, u) = pck (yu) · qck (y, u) (12)

We introduce six different output functions:

qe-consistent (y, u) =

{
1 iff yu 6= yu+1 ∧ u ∈ Re(yu)

0 else

qe-project (y, u) =

{
1 iff yu 6= ỹ ∧ u ∈ Re(ỹ)

0 else

qe-suppress (y, u) =

{
1 iff yu 6= yu+1 ∧ u 6∈ Re(yu)

0 else

(13)

The output functions qb-consistent, qb-project and qb-suppress are defined equiv-
alently for the beginning of an entity. This reflects the meaning, that is the
result of the classification combined with the intermediate labeling: qe-consistent
indicates a true positive, qe-project a false positive and qe-suppress a false negative
classification compared to the label sequence. Together these feature functions
supply evidence, which parts of the label sequence agree with the consistency and
which parts should be altered in order to gain a higher likelihood. The resulting
graph of the model contains no loops and provides therefore less challenges for
an inference mechanism.

The idea of comb-chain CRFs is summarized with an example for the seg-
mentation of references (cf. Figure 2). Let the reference section of this paper be
the input sequence. When unrolling the graph, we ask the external model for
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an intermediate labeling specifying the entities. A classifier is trained to detect
the boundaries of the entities. The descriptive result of the classifier for the end
of the author is, for example, a pattern like “A period followed by a colon”.
Now, the additional potentials with the output functions influence the model to
assign a high likelihood to label sequences that confirm with the description of
the classifier.

3.5 Skyp-Chain CRFs

Skyp-chain CRFs are a variant of skip-chain CRFs. But instead of creating addi-
tional edges between labels whose tokens are similar or identical, this approach
adds long-range dependencies based on the patterns occurring in the predicted
label sequence y and the classification result. Thus, the small modification of the
name. When applying skyp-chain CRFs for exploiting context-specific consisten-
cies, two additional differences to published approaches for skip-chain CRFs or
similar collective IE models can be identified:

1. There is no need to transfer local evidence to distant labels since we already
assume a homogeneous composition of the entities.

2. Useful observation functions for the skip edges cannot be specified, because
the relevance of certain properties is unknown.

We first define the set of additional edges that specify the positions of the
long-range dependencies using the positions Ub and Ue of Equation 9.

Eb = {(u, v) : u 6= v ∧ yu = yv ∧ u ∈ Ub ∧ v ∈ Ub}
Ee = {(u, v) : u 6= v ∧ yu = yv ∧ u ∈ Ue ∧ v ∈ Ue}
E = Eb ∪ Ee

(14)

The set Eb contains edges that connect the start label of an entity with all
other start labels of entities with the same type. The set Ee refers accordingly to
the links between the end labels of entities. Further, we introduce a parameter
me for controlling the model complexity that restricts the maximal amount of
additional long-range dependencies for each variable. E.g., for me = 2, a label
is only connected to the closest previous and following boundary of the same
entity type.

Our skyp-chain approach extends the linear-chain model with additional po-
tentials for edges defined in Equation 14. The conditional probability for the
assignment of the label sequence is given by

pθ (y|x) =
1

Z(x)

T∏
t=1

Φl (yt, yt−1,x)
∏

(u,v)∈E

Ψy (y, u, v) . (15)

An example of an unrolled graph of this model is depicted in Figure 3. Similar
to Equation 6, the additional potentials factorize to
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Author Author Author Title . . . Author Author Author Title . . .

yu-2 yu-1 yu yu+1 . . . yv-2 yv-1 yv yv+1 . . .

: GRMM : GRaphical . . . A . : Collective . . .

Fig. 3. An excerpt of a skyp-chain graph with erroneous labeling. Only one additional
edge for the end of the author is displayed. The likelihood of the sequence is decreased
because only position u − 2 and v but not u were identified as a boundary by the
classifier.

Ψy (y, u, v) = exp

{∑
k

λykfyk (y, u, v)

}
, (16)

resulting in the complete parameter set θ = θl ∪ θy with θ = θy = {λyk}
to be estimated for this model. In contrast to the skip-chain model, our feature
functions depend on the complete (predicted) label sequence y. The feature
functions consist again of an indicator function for the label configuration, but
not of an observation function on the input sequence. Instead we apply the
output functions of Equation 13 separately for the source and destination of the
skip edge.

Let us illustrate the skyp-chain model in an example for reference segmenta-
tion (cf. Figure 3). Let the input sequence be the reference section of this paper.
When the graph of the model is unrolled during inference, the most probable
label assignments are calculated. During this process we consider long-range
dependencies, e.g., for the end of the author entities (cf. labels yu and yv in Fig-
ure 3). Due to our additional potentials, label sequences with boundaries that
are identified by the classifier as consistently structured become more likely. In
Figure 3, the likelihood of the sequence is decreased in comparison to a graph
with an additional edge between the labels yu−2 and yv.

3.6 Parameter Estimation and Inference

We compute pθ (y|x) to decide which label sequence y is most likely for the
observed token sequence x, and to estimate the parameters θ of the model.
The applied inference technique, tree based reparameterization (TRP) [17], is
related to belief propagation and computes approximate marginals for loopy
graphs. TRP is also used in [15] for the original skip-chain models. Unfortunately,
severe convergence problems could be oberserved when applied on complex graph
structures. The parameters θ of our models are obtained using training data

D =
{
x(i),y(i)

}N
i=1

and maximum a-rrposteriori estimation. The log likelihood
L(θ|D) of the model parameters given the training examples is optimized with
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the quasi-Newton method L-BFGS and a Gaussian prior on the parameters as
in [15].

4 Experimental Results

We demonstrate the advantages of the presented approach in a five-fold cross
evaluation in two different real-world applications: The segmentation of refer-
ences and the template extraction in curricula vitae. First, both domains and
the real-world datasets are described and then we specify the settings of the
evaluation. Finally, we present and discuss the empirical results.

4.1 Datasets

Two datasets are utilized in the evaluation of this work. The dataset References
origins in a domain that is very popular for the evaluation of novel IE tech-
niques (cf. [1, 11–13]), whereas the dataset Curricula Vitae belongs to classical
IE problems of template extraction.

References This dataset for the segmentation of references was introduced in
previous work [7] and consists only of complete reference sections of real publi-
cations, mainly from the computer science domain. The application behind this
dataset consists mainly in the identification of Bibtex fields in crawled pub-
lications, which can be used to improve scientific search engines or to analyze
citation graphs. The dataset contains 566 references in 23 reference sections with
overall 15 different labels and is comparable to datasets of previous publications
with respect of size, label and feature set, e.g., Peng et al. [11]. For the evalua-
tion in this paper, we reduced the label set for the identification of the entities
Author, Date, Title and Venue, which are sufficient for the targeted appli-
cation. The dataset can be freely downloaded5. We skip a detailed description
of the features and refer to the archive because it contains all applied features.

Curricula Vitae The IE task of this dataset is to identify the time span and
company for which the author of these documents worked in a stage of his or
her life (employments). This information can be used to improve the search
for suitable future employees for certain projects. The data set consists of 68
curricula vitae and is annotated with 896 companies or sectors6 and 937 time
spans in overall 921 stages of life. We use the label Date for the time span
and the label Client for the companies or sectors. The feature set extends the
feature set of the dataset References with additional domain-specific features
like the number of the line, the position within a line and keywords for company
prefixes/suffixes and date indicators. Unfortunately, we can not publish this
dataset due to non-disclosure agreements.

5 http://www.is.informatik.uni-wuerzburg.de/staff/kluegl_peter/research/
6 The authors of the curricula vitae sometimes anonymize the actual name of a com-

pany and replace it with the sector in which the company is located.
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4.2 Evaluation Measure

The performance of the presented models is measured with the F1 score. Let tp
be the number of true positive labeled tokens and fn and fp respectively the
number of false negatives and false positives tokens. Precision, recall and F1 are
then defined as:

precision =
tp

tp+ fp
, recall =

tp

tp+ fn
, F1 =

2 · precision · recall
precision+ recall

.

For the dataset References we present the F1 score combined for all labels,
whereas we distinguish the labels Date and Client for Curricula Vitae.

4.3 Settings

All models are trained with identical settings and features. In order to minimize
the model complexity of the skyp-chain approach, we set me = 2. We used 11
(for References) and 12 (for Curricula Vitae) manually selected feature func-
tions in a window of five tokens as attributes for the rule learner. The learned
descriptions had a maximum of three attributes and a minimum quality score
of 0.01. For the dataset References, only the boundaries for the labels Author,
Date, Title are considered. Our implementation of the CRFs is based on the
GRMM package [14].

4.4 Results

We compare the proposed models to a linear-chain CRF (base line). Additionally,
we have applied the stacked approach with exact inference of [7] for a comparable
model. However, its evaluated F1 score was surprisingly lower than our base line.
An analysis revealed that the different implementations of CRFs and the varying
definition of an instance influenced the results. We have also considered different
variants of skip-chain CRFs, but none of them returned noteworthy results. As
a consequence, we compare our models only with the base line.

The results of the five-fold cross evaluation are depicted in Table 1 for the
dataset References and in Table 2 for the dataset Curricula Vitae. The comb-
chain models achieve overall an average error reduction of over 30% and increased
the measured averaged F1 score by at least 1%, 9% for the label Client. The
skyp-chain model provides more challenges for the inference technique and is only
able surpass the comb-chain results for the label Date of the dataset Curricula
Vitae. In the evaluation of the remaining label, the average error reduction is
14%.

If the comb-chain model is compared to the skyp-chain model, then it be-
comes apparent that the skyp-chain model with the applied inferencing technique
TRP has no advantages when exploiting consistencies even at the cost of a com-
putationally more expensive inference. Table 3 and Table 4 contain the average
evaluation time for one fold. In general, it takes longer to train models with the
larger dataset Curricula Vitae.
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Table 1. F1 scores for the seg-
mentation of references

References
All

Linear Chain 0.966

Comb Chain 0.976
Skyp Chain 0.972

Table 2. F1 scores for template extraction in cur-
ricula vitae

Curricula Vitae
Date Client

Linear Chain 0.944 0.725

Comb Chain 0.962 0.814
Skyp Chain 0.962 0.764

Table 3. Average time for one fold
(References)

References

Linear Chain 0.03h

Comb Chain 0.17h
Skyp Chain 0.53h

Table 4. Average time for one fold
(Curricula Vitae)

Curricula Vitae

Linear Chain 0.11h

Comb Chain 0.27h
Skyp Chain 0.97h

4.5 Discussion

The evaluated results of the presented IE models have a valuable influence on
real-world applications. An error reduction of 30% considerably improves the
quality of automatically extracted entities in the database and reduces the work-
load to correct possible IE errors. The reported increase of the accuracy and the
corresponding error reduction of the presented models compete well with pub-
lished approaches for Collective IE, joint inference in IE or other models that
exploit long-range dependencies.

The performance time of the presented models is in our opinion fast enough
for the planned applications, but can still be increased with further optimizations
or faster inference and learning techniques.

5 Related Work

In this section, we give a short overview of the related work, which can be
categorized into Information Extraction (IE) publications about:

– Collective IE for Named Entity Recognition (NER).
– Collective IE with respect to structured texts.
– Collective IE with context-specific consistencies.
– Improved IE models in general, evaluated for the segmentation of references.

Collective IE is an active and popular field of research and thus we can only
discuss some representatives of each category.

Models of collective approaches for NER are often motivated by two assump-
tions: The labeling of similar tokens is quite consistent within a given context



14 Peter Kluegl et al.

or document since those mentions mostly refer to the same type of entity. The
discriminative features to detect the entities are sparsely distributed over the
document. Thus, the accuracy for different mentions of an entity can be im-
proved by leveraging and transferring their local context to distant positions.

Bunescu et al.[2] use Relational Markov Networks and model dependencies
between distant entities. They apply special templates in order to assign equal
labels if the text of the tokens is identical. The skip-chain approach introduced
by Sutton et al.[15] extends linear-chain CRFs with additional factors for long-
range dependencies. They link the labels of similar tokens and provide feature
functions that combine evidence of both positions by which missing context can
be transferred. Finkel et al. [4] criticize the usage of believe propagation and
apply Gibbs sampling for enforcing label consistency and extraction template
consistency constraints. All of these approaches with higher order structures
fight the exponential increase in model complexity and are forced to apply ap-
proximate inference techniques instead of exact algorithms. Kou et al. [8] and
Krishnan et al. [9] have shown that stacked graphical models with exact infer-
ence can compete with the accuracy of those complex models. They reduce the
computational cost by applying an ensemble for two linear-chain CRFs where
they aggregate the output of the first models in order to provide information
about related instances or entities to a stacked model.

Yang et al. [19] and Gulhane et al. [5] presented work about IE in webforums
and websites. The first approach applies Markov Logic Networks to encode prop-
erties of a typical forum page like attribute similarities among different posts and
sites. The second approach developed an Apriori-style algorithm and assumes
that values of an attribute distributed over different pages are similar for equal
entities and the pages of one website share a similar structure due to the creation
template. In contrast to our models, both approaches are domain-dependent and
rely on prior knowledge about the structure.

In previous work [7], we proposed stacked CRFs in combination with rule
learning techniques to exploit context-specific consistencies. The output of the
first CRF was utilized to learn the manifestation of feature functions for the
stacked CRF. The approach was evaluated only for the segmentation of ref-
erences and achieved a significant error reduction compared to a linear-chain
CRF. The stacked CRFs with feature induction during inference is similar to
the comb-chain model. However, we developed a novel quality function and uti-
lize the classification result to add new potentials instead of only normal features
for a label transition. The skyp-chain approach further increases the model com-
plexity and adds edges for long range dependencies.

The segmentation of references is a widely used domain for the evaluation
of novel machine learning and IE models. The work of Peng et al. [11] provides
a deep analysis of different settings and established linear-chain CRFs as the
state-of-the-art for the segmentation of references. Approaches for joint infer-
ence [12, 13] combine different tasks within a model. Here, the accuracy of the
labeling can be increased when entity resolution and segmentation are jointly
performed. Finally, Bellare et al. [1] present a semi-supervised approach for ref-



Collective Information Extraction with Context-specific Consistencies 15

erence segmentation by encoding expectations in higher-order constraints that
cover more expressive and structural dependencies than the underlying model.

6 Conclusions

Exploiting context-specific consistencies can substantially increase the accuracy
of sequence labeling in semi-structured documents. We presented two approaches
based on CRFs, which combine ideas of stacked graphical models and higher-
order models like skip-chain CRFs. Both approaches outperform the common
models and have a valuable impact for real-world IE applications. The comb-
chain CRFs are able to achieve an average error reduction of about 30% in two
datasets.

For future work, two interesting improvements can be identified: On a tech-
nical level, the usage of newer inference techniques for factor graphs like Sample-
Rank [18] should be able to avoid some of the described problems. On a more
conceptual level, a joint inference approach like [13] that combines labeling and
consistency identification within a probabilistic graphical model has the poten-
tial to gain further advantages in the evaluated domains.
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