
Finding Enclosures for Linear Systems using

Interval Matrix Multiplication in CUDA

Alexander Dallmann, Philip-Daniel Beck, and Jürgen Wolff von Gudenberg

University of Würzburg, Chair of Computer Science II
Am Hubland, D 97074 Würzburg, Germany
alexander.dallmann@uni-wuerzburg.de

Abstract. In this paper we present CUDA kernels that compute an in-
terval matrix product. Starting from a naive implementation we investi-
gate possible speedups using commonly known techniques from standard
matrix multiplication. We also evaluate the achieved speedup when our
kernels are used to accelerate a variant of an existing algorithm that finds
an enclosure for the solution of a linear system. Moreover the quality of
our enclosure is discussed.

Keywords: GPGPU, Interval arithmetic, Linear algebra, Parallel com-
puting

1 Introduction

Today graphics cards like the NVIDIA Tesla series are used in workstations
as well as supercomputers to speed up computations using the highly parallel
execution model of the GPU architecture. Especially linear algebra routines like
matrix computations can be accelerated by outsourcing the computation to the
GPU.

In this paper we present GPU routines to carry out interval matrix compu-
tations, as well as routines that perform a real matrix product with directed
rounding. Also a routine for matrix computation in two-fold working precision
is implemented using error-free transformations [1]. We then show how those
routines can be applied to speed up a variant of an existing algorithm [2] for
computing an enclosure for the solution of a linear system.

2 Related Work

In [2] the implementation of an algorithm that finds an enclosure for the solution
of a linear system is described. The computation of a matrix-matrix product on
CUDA in two-fold working precision is discussed in [1]. General optimizations
for CUDA Kernels with matrix multiplication as an example are formulated
in [3]. [4] discusses a parallel variant of the Interval Newton Method on CUDA.

3 Preliminaries

3.1 Notation

Throughout the paper we will denote intervals by [], e.g. [x]. Interval vectors
and matrices will be written with a bold letter, e.g. [x] or [A]. For an indepth
covering of interval arithmetic we refer to [5] and [6]

3.2 Computing a Verified Enclosure of a Linear System

Finding the solution of a real linear system A · x = b, with A ∈ R
n×n and

b,x ∈ R
n, is a common numerical problem used in various applications. The

result x̃ of a numerical algorithm is usually some approximation of the real
solution, having some unknown error term e, so that x = x̃+ e. Using interval
arithmetic an algorithm that finds verified enclosures of the solution x̂ can be
implemented. The verified enclosure itself is obtained by applying Brouwer’s
fixed-point theorem.

The method we adapted is described in [2], where more details are given. It
uses a Newton-like method to find an enclosure [y] for the residual of Ax. To
do so, the iteration scheme

yk+1 = Rd
︸︷︷︸

z

+(I −RA)
︸ ︷︷ ︸

C

yk, k = 0, 1, ...

is used, with R being an approximate inverse of A. By replacing all iterates with
interval vectors, a result from [7] can be applied for this equation, that says that

if [y]k
◦

⊂ [y]k+1 holds for any index k, R and A are regular and there exists a

unique solution y ∈ [y]k, where
◦

⊂ means contained in the interior.
Having found an approximate solution x̃ for the original linear system, the

enclosure of the residual can be used to give a verified enclosure of the solution
by x̂ ∈ x̃+ [y]k+1

4 Implementation

All routines are implemented in C++/CUDA using version 5.0 of the CUDA
SDK and use double-precision to carry out floating-point computations.

For interval computations directed rounding must be available. In CUDA
the rounding-mode can be specified on an instruction level [8] using intrinsic
functions [9]. Thus fine grained control over the rounding-mode is possible.

In order to speed up computation we use a tiled matrix multiplication as
shown in Figure 1. The result matrix is split into rectangular tiles and each tile
is computed by its own thread block. Due to hardware limitations, in our case,
the number of threads in a thread block is smaller than the number of cells in a
tile. It follows that every thread needs to compute multiple cells of the tile.

In [3] a scheme where every thread computes one or more rows of the tile
is described. The shared memory is used to reduce global memory access while
computing the rows. We adopted this approach for all our routines.

All routines have been tested with different tile and thread block sizes to
determine the fastest combination. The tile and thread block sizes are varied
between 256× 16 and 64× 8 and between 32× 4 and 16× 4 respectively.

We use the kernel template shown in Algorithm 1.1 for all our kernels. Only
the computation of the scalar product is varied according to the specific case.
Also kernels that don’t use tiling were developed to demonstrate the achieved
speed up.

A

B

C

}TILE_DIM_X

}

TILE_DIM_Y

}BLOCK_DIM_X

}

BLOCK_DIM_X

k

k

m

n }
}

}
}

Fig. 1. Model for multiplication of two matrics Cm×n = Am×k ·Bk×n.

Whenever appropriate the intrinsic FMA function [9] is used to speed up
computation and avoid additional round-off errors. All kernels are implemented
as C++ function templates and the decision for a concrete rounding-mode is
made at compile-time to reduce runtime overhead.

4.1 Interval Matrix-matrix Product

An interval matrix-matrix product was implemented using the tiling scheme
described before. Since an interval consists of two floating-point numbers for
the lower and upper bound, more shared memory and registers are used by the
kernel compared to a kernel that executes floating-point matrix-matrix product.
This results in smaller possible thread block sizes.

Algorithm 1.1 Basic kernel template for matrix-matrix multiplication that
implements configuration in Figure 1

Input: m, n, k, A, B, C

a tile, b tile, c tile ← positions of tiles.
results[TILE DIM Y]← 0 // initialize dot-product results with 0.
shared cache[BLOCK DIM X][TILE DIM Y]← 0 // shared memory cache
steps ← k/BLOCK DIM X
step← 0
while step < steps do

shared cache← load part of current sub-tile from b tile
results pos← 0
while results pos < TILE DIM Y do

// Compute next term of scalar product for every row element
results pos← results pos+ 1

end while
step← step+ 1

end while
c tile← results // store row of result back

4.2 Real Matrix-matrix Product with Directed Rounding

As of version 5.0, CUBLAS routines do not support directed rounding. We im-
plemented a matrix-matrix multiplication routine that makes use of intrinsic
functions to support all in IEEE-754 [10] specified rounding modes. As men-
tioned before the decision for a specific rounding-mode is made at compile-time
to ensure that no overhead occurrs. The routines were implemented using the
same kernel template shown in Algorithm 1.1 to achieve a good performance.

4.3 Matrix-vector Product as in Two-fold Working Precision

A matrix-vector product in higher precision is needed by the algorithm imple-
mented to demonstrate our routines. This is realized using error-free transfor-
mations to compute the dot product as in twice the working precision [11]. In [1]
an implementation of a matrix-matrix product using error-free transformations
is shown. We adapted this approach for our matrix-vector multiplication that
evaluates the dot-product in twice the working precision.

5 Verification Algorithm

In Section 3.2, we presented the basics for implementing an iterative a posteriori
method for calculating an enclosure of a solution x̂ of a linear system A ·x = b.
The start interval [x]0 of an iterative a posteriori interval method does not nec-
cessarily contain the correct solution x̂, but aims to find an enclosure after some
iteration steps. In this section we describe some details of our implementation.

Algorithm 1.2 gives an overview of all the neccessary steps.

Algorithm 1.2 LinSolve(A, b, [x]) [2]

1. Calculation of an approximate solution
2. Real residual iteration to improve approximate solution
3. Computation of enclosures [C] and [z] for C = I −RA and z = R(b−Ax̃)
4. Finding a verified enclosure of solution x̂

In step one, an approximate solution of x̃ is calculated, using an approxima-
tion of the inverse matrix R of A. We use existing routines from the MAGMA
library for calculating the inverse. Therefore matrix A is LU-factorized by using
Magama’s getrf routine. With Magma’s getri routine the inverse is subsequently
determined and x̃(0) is calculated as x̃(0) = R · b.

After that the approximate solution x̃(0) is refined using real residual itera-
tion. In every iteration step the scalar products are evaluated in two-fold working
precision to reduce rounding errors. The iteration is stopped after a fixed number
of iterations or if the desired accuracy is reached.

The symbol ⊟ is used to indicate that scalar products are evaluated in two-
fold working precision.

In step three, the verification step is prepared by calculating enclosures of
[C] and [z]. This step can be seen in Algorithm 1.3. Symbol ♦ means, that an
interval enclosure of the real result is calculated using directed rounding.

Algorithm 1.3 Computation of enclosures [C] and [z].

Input: A, R, x̃
[C]← ♦(I −R ·A);
d← ⊟ (b−A · x̃) ;
[d err]← ♦ (b −A · x̃− d) ;
[z]← ♦ (R · d+R · [d err]) ;
return [C], [z]

During the verification step shown in Algorithm 1.4, the algorithm tries to
calculate an enclosure for the real residual ŷ using an interval residual iteration.
Since we are using an a posteriori method, the starting interval may not contain
the searched fixed-point. The iteratees converge towards the fixed-point, but
may not contain it. Using ǫ-inflation this problem can be reduced.

After an enclosure for the residual has been computed an interval containing
the exact solution x̂ can be obtained [x̂] = x̃+ [ŷ].

6 Performance Measurements

Our performance tests were executed on a NVIDIA Tesla C2070 GPU with
CUDA compute capability 2.0 and Fermi architecture. The host was running a
Gentoo Linux 64 Bit system with an Intel Xeon E5504 quad-core CPU with 2

Algorithm 1.4 VerificationStep [2]

Input: [ŷ], [z], [C]
ǫ← 1000; pmax ← 10; p← 0; [ŷ](0) ← [z];
repeat

[ŷ](p) ← [ŷ](p) · ǫ; {ǫ-Inflation}

[ŷ](p+1) ←
(

[z]+ [C] · [ŷ](p)
)

;

IsVerified ←
(

[ŷ](p+1) ◦

⊂ [ŷ](p)
)

;

p← p+ 1;
until IsVerified or (p ≥ pmax)
[ŷ]← [ŷ](p);
return [ŷ], IsVerified ;

GHz and 8 GB RAM. NVidia Driver version 304.64 and CUDA SDK 5.0 were
installed. For comparison with CXSC we used version 2.5.3.

6.1 BLAS Routines

In Figure 2 the performance of our fastest matrix-matrix multiplication kernel is
compared to the current CUBLAS dgemm operation. As can be seen we reach a
peak performance around 207 GFlops while CUBLAS peaks around 310 GFlops.
Our kernel reaches roughly 66% of the CUBLAS kernel performance so there is
still room left for improvements. We assume that it should be possible to produce
still faster versions of our interval routines.

2
5
6

5
1
2

1
,0
2
4

2
,0
4
8

4
,0
9
6

150

200

250

300

Matrix size

G
F
lo
p
s

cublas

directed rounding

Fig. 2. Performance of our matrix-matrix multiplication implementation that supports
directed rounding compared to current CUBLAS.

When computing an interval matrix-matrix product every computation has
to be carried out for the upper and lower bound. It follows that such a kernel
needs more registers and shared memory as a corresponding floating-point kernel.
When reaching the maximum usable registers a CUDA kernel spills over into
global memory. Additional store and load instructions will be generated that
slow down the computation. In Figure 3 we compare kernels that use different
tile and thread-block sizes. Details about the kernels can be found in Table 1.

No. Block Tile Regs SM W/SMP GFlops Speedup

1 32x4 128x8 57 4096 16 205 3.94
2 32x4 128x16 63 1 8192 16 153 2.94
3 16x4 64x8 61 2048 16 209 4.02
4 8x8 8x8 36 0 16 52 1

Table 1. A table showing resource allocation for kernels with different dimensions.
Performance and Speedup against the routine without tiling are given for a problem
size of 4096×4096. SM = Shared Memory; Regs = Registers; W/SMP = Warps/Shared
Multiprocessor

Although all kernels reach the same occupancy of 16 warps per multipro-
cessor kernel 2 is a lot slower because the maximum register limit is reached
and additional store and load instructions to global memory are neccessary to
correctly run the kernel. Kernel 1 and 3 are almost equally fast but since in ker-
nel 3 the thread-block consists only of 64 threads it needs less shared memory,
8 blocks instead of 4 can be scheduled which seems to result in slightly better
overall latency-hiding.

6.2 Verification Algorithm

For measurement of our verification algorithm implementation, we used routines
from LAPACK to create random integer test-matrices. With these test-matrices
we measured performance for our optimized CUDA implementation averaged
over 10 test runs. For each run the measured time contains data transfer of ma-
trices to the GPU, run time of the solving algorithm as well as copying back
results from the GPU. Figure 4 and 5 shows time measurements of our imple-
mentation and the reference CXSC implementation for matrix sizes of 256 up to
8192. The maximum matrix size was limited by available memory on the GPU.

Besides the fact that our implementation uses the GPU, the main difference
between our CUDA implementation and the compared CXSC implementation
is the quality of scalar-product calculation. CXSC uses exact evaluation of dot
products which results in tight enclosures of the exact floating-point dot product
result. The drawback of this approach is that exact evaluation is computation

1 Register limit is reached. Additional access to global memory is neccessary.

2
5
6

5
1
2

1
,0
2
4

2
,0
4
8

4
,0
9
6

50

100

150

200

Matrix size

G
F
lo
p
s

16x4/64x8

32x4/128x8

32x4/128x16

without tiling

Fig. 3. Performance of interval matrix-matrix multiplication routines with different
block and tile dimensions.

intensive. In order to reduce accumulation of errors we use two-fold working
precision for dot product calculations where appropriate, still rounding-errors
accumulate and therefore, our enclosure is getting wider as matrix dimensions
increase. For a random testcase this effect can be seen in Table 2. Since we use
random integer test matrices CXSC finds the exact solutions, represented as
point-interval vectors while the width of our results increases with the problem
size. Overall, our implementation is less accurate, but as speedup also shows,
much faster than CXSC.

Size Width(CUDA) Width(CXSC) Speedup

256 7.92 · 10−11 0 257
512 2.9 · 10−10 0 1,023
1,024 7.13 · 10−9 0 3,522
2,048 1.39 · 10−8 0 6,900
4,096 4.53 · 10−8 0 9,158
8,192 1.89 · 10−7 0 11,129

Table 2. Interval vector width for optimized CUDA implementation and CXSC im-
plementation for one test case

5 10 15 20

256

512

1024

2048

4096

8192

1.7 · 10
−2

3.43 · 10
−2

0.1

0.44

2.7

18.03

Time [s]

S
iz
e

double

Fig. 4. Performance measurement results
for the linear system solver using the op-
timized CUDA implementation

0

50
,0
00

1
· 1
0
5

1.
5
· 1
0
5

2
· 1
0
5

2.
5
· 1
0
5

3
· 1
0
5

256

512

1024

2048

4096

8192

4.39

35.05

353.37

3,037.29

24,763.6

2.01 · 10
5

Time [s]

S
iz
e

double

Fig. 5. Performance measurement results
for CXSC - C++ Verified Toolbox imple-
mentation

7 Conclusion

In this paper we developed interval matrix routines on CUDA and successfully
applied them to an existing method for finding enclosures of solutions for lin-
ear systems. Applying common optimization techniques from floating-point ma-
trix multiplication improved the performance of those routines. Implementing a
known algorithm for finding the solution of a linear system showed that promis-
ing speedups can be achieved using the GPU. Since our routines suffer from
loosing accuracy compared to exact but more computation intensive evaluation,
investigations into exact evalution of scalar products on the GPU are planned
in the future.

References

1. Fujimoto, N.: Economical Two-fold Working Precision Matrix Multiplication on
Consumer-Level CUDA GPUs. In: Architecture and Multi-Core Applications
(WAMCA), 2011 Second Workshop on. (2011) 24–29

2. Hammer, R.: C++ Toolbox for Verified Computing. Springer (1995)
3. Cui, X., Chen, Y., Mei, H.: Improving Performance of Matrix Multiplication and

FFT on GPU. In: Parallel and Distributed Systems (ICPADS), 2009 15th Inter-
national Conference on. (2009) 42–48

4. Beck, P.D., Nehmeier, M.: Parallel Interval Newton Method on CUDA. In: Applied
Parallel and Scientific Computing. Volume 7782 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2013) 454–464

5. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer
(2001)

6. Alefeld, G., Herzberger, J.: Introduction to interval computations. Computer
science and applied mathematics. Academic Press (1983)

7. S. M. Rump: Kleine Fehlerschranken bei Matrixproblemen. (Universität Karlsruhe
1980)

8. NVIDIA Corporation: Parallel Thread Execution ISA (Version 3.1) http://docs.
nvidia.com/cuda/pdf/ptx_isa_3.1.pdf.

9. NVIDIA Corporation: NVIDIA CUDA C Programming Guide (Version 5.0) http:
//docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

10. IEEE 754-2008: IEEE Standard for Floating-Point Arithmetic (2008)
11. Ogita, T., Rump, S., Oishi, S.: Accurate sum and dot product. SIAM Journal on

Scientific Computing 26(6) (2005) 1955–1988

