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ABSTRACT
The ever-growing flood of new scientific articles requires
novel retrieval mechanisms. One means for mitigating this
instance of the information overload phenomenon are col-
laborative tagging systems, that allow users to select, share
and annotate references to publications. These systems em-
ploy recommendation algorithms to present to their users
personalized lists of interesting and relevant publications.

In this paper we analyze different ways to incorporate so-
cial data and metadata from collaborative tagging systems
into the graph-based ranking algorithm FolkRank to utilize
it for recommending scientific articles to users of the social
bookmarking system BibSonomy. We compare the results to
those of Collaborative Filtering, which has previously been
applied for resource recommendation.

Categories and Subject Descriptors
H.3.5 [Information Systems]: On-line Information Ser-
vices—Web-based services; H.2.8 [Information Systems]:
Database Applications—Data Mining

General Terms
Design, Experimentation, Measurement

Keywords
Collaborative Tagging, FolkRank, Recommender

1. INTRODUCTION
One of the most noticeable innovations that emerged with

the advent of the Web 2.0 are collaborative tagging systems.
They allow users to annotate arbitrary resources with freely
chosen keywords, so called tags. The tags are used for nav-
igation, finding resources, and serendipitous browsing and
thus provide an immediate benefit for the user. Examples of
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collaborative tagging systems are Delicious1 for sharing web
links and BibSonomy2 for sharing publication references.

Of particular importance for every researcher are scien-
tific publications. Especially during the last years, the ever
faster growing number of published articles has led to the
well-known phenomenon of information overload. It has be-
come harder and more time-consuming for researchers to
keep track of the important publications in their respective
fields or to assemble comprehensive “related work” sections
for a new article. The search for previously published mate-
rial is often conducted on the web, using specialized search
engines, editorially controlled scientific databases, or sys-
tems of user-generated content on the matter of interest. To
the latter belong collaborative tagging systems like BibSon-
omy. They allow their users to annotate and share meta-
data about scientific articles and thereby help to mitigate
information overload. The users (presumably) post mostly
papers and scholarly work they found interesting and addi-
tionally categorize them with the tags. Still, the number of
resources posted by users to these systems makes it more
and more difficult to find or stumble upon interesting arti-
cles. One solution for this problem are recommender systems
that try to suggest interesting and relevant content to the
user. They employ data mining methods to leverage the wis-
dom of the crowds for personalized suggestions of resources.

In this paper we focus on the recommendation of scientific
publications to users of the social bookmark and publication
sharing system BibSonomy [1]. That is, given a user we aim
to provide a ranked list of publications that might be of rele-
vance to him. In particular, we investigate how the incorpo-
ration of additional knowledge about publications and users
can improve the recommendation quality of the FolkRank
algorithm [5]. FolkRank was found to be a well perform-
ing algorithm for tag recommendation [7] and therefore is
a favored candidate for recommending resources. Further,
it is relatively easy to adapt the underlying graph structure
or to change the preference vector to add additional infor-
mation. This paper presents research in progress that shall
pave the way for a comprehensive integration of metadata
into FolkRank that collaborative tagging systems often pro-
vide. In this respect its contributions are: (i) a validation
of previous results on the performance of Collaborative Fil-

1http://delicious.com/
2http://www.bibsonomy.org/
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tering, (ii) first results on the influence of different types of
metadata on the recommendation quality, and (iii) improved
FolkRank results by pushing similar users, recent resources,
and high-ranked resources.

This paper is structured as follows: We start with a re-
view of related work in Section 2. Then, in Section 3, we
describe the used algorithms and in Section 4 we introduce
the datasets underlying our analysis. The setup of the ex-
periments and some preliminary investigations are described
in Section 5 and the results are presented in Section 6. We
conclude with an outlook on future work in Section 7.

2. RELATED WORK
Resource recommendation in collaborative tagging sys-

tems has previously been discussed in the literature. Dif-
ferent tasks (e.g., producing recommendations given the ac-
tive user – like in this work – or given a query) as well as
different challenges (the coldstart problem of recommending
resources to new users, the unrestricted and ambiguous vo-
cabulary (tags), the sparsity of the data, etc.) have been
addressed in various ways. The methodology for the eval-
uation of resource recommenders also varies greatly in the
literature. This applies to the experimental setups, where
different methods for splitting the data or cross-validation
procedures are common, as well as to the evaluation mea-
sures. An overview on common measures is given in [9].

Parra and Brusilovsky [12], for instance, have a 3-point
relevance scale (relevant, somewhat relevant, and not rele-
vant) and hence use normalized discounted cumulative gain
(nDCG) as evaluation measure which is particularly designed
for this kind of scale. They also measure the precision in the
top k recommended items for a fixed number k. They eval-
uate Collaborative Filtering (CF) [14] (using Pearson corre-
lation as similarity measure) and BM25 [9] using data from
CiteULike. They asked seven users to manually judge the
relevance of their recommended articles. Cantador et al. [3]
apply tag similarity measures to build tag context vectors for
users and items which they in turn use for item recommenda-
tion. As evaluation measures they are using precision/recall
at k, MAP, and nDCG. The best results are achieved using
BM25, Collaborative Filtering is not considered. Similar to
their approach, we are employing the tag similarity mea-
sures evaluated in [10]. Another approach making use of
tag clusters to personalize recommendations is presented by
Shepitsen et al. [15] where a user is not only represented as a
tag vector, but as a vector of a (personalized) set of tag clus-
ters. The authors give evidence that a user-specific choice
of the set of clusters (compared to only one global cluster-
ing) yields better results on sparse data. A similar approach
is presented by Wartena and Wibbels [16] with the goal of
producing more diverse, topic-based recommendations. For
each cluster they employ item-based CF (with items being
represented by the tags that have been assigned to them)
and two approaches that use the similarity between user
and resources in the tag vector space. It turns out that the
clustering step indeed improves the recommendation perfor-
mance of each of the three methods and additionally enables
more diverse recommendations.

Bogers [2] presents a comprehensive evaluation of a variety
of recommendation algorithms on four different datasets and
investigates the inclusion of metadata to“aid the recommen-
dation process” as well as different hybridizations. Among
the chosen algorithms, Collaborative Filtering occurs in sev-

eral variations. We complement this analysis in evaluating
FolkRank on similar datasets, and pointing out ways to aid
also this algorithm with metadata as well as social data (user
groups) or usage data (recency of posts). Bogers compares
algorithms mainly using MAP (Mean Average Precision) –
a measure for a ranked lists of recommended items – and we
follow this example.

Gemmel et al. [4] build a weighted linear hybrid recom-
mender that incorporates four collaborative filtering vari-
ants, a recommender suggesting the most popular resources,
and an approach that directly recommends resources that
are similar to the user in the tag vector space. They com-
pare the hybrid’s performance to the pair-wise interaction
tensor factorization approach of [13] which had previously
been used for tag recommendation. The CF variants are
user-based, with similarities between users being computed
in the resource and in the tag vector space, and item-based,
with similarities between resources being computed in the
user and in the tag vector space. In contrast to plain CF
this kind of hybridization enables the inclusion of all three
dimensions. On all datasets the hybrid outperforms each
of the six contributing recommenders. The user-based CF
approach using the resource vector space contributes consid-
erably to the hybrid and performs better than or compara-
ble to the other contributing recommenders on their own. In
contrast to our approach no additional metadata is included.
We can repeat the observation that for user-based CF the
user similarities in the resource vector space work better
than those in the tag vector space. Similar to our inclusion
of group information into FolkRank, Lee and Brusilovsky [8]
incorporate information about the user’s groups into CF us-
ing mixed hybridization. Thereby, they combine user-based
CF with (Jaccard) similarity measured in the resource space
with recommendations from the group information, which in
turn are a fusion of recommendations based on the group’s
documents and on the group members’ documents. Similar
to [4] the hybrid outperforms all the baseline approaches.
An example for the benefit of metadata in tag recommen-
dations is given by Musto et al. in [11].

These previous findings suggest that the combination of
different dimensions and the incorporation of additional meta-
data can increase recommendation performance. As a cru-
cial next step we therefore evaluate several options for the
incorporation of metadata into FolkRank which was partic-
ularly designed to include all three dimensions of a folkso-
nomy.

3. ALGORITHMS
Here we recall the basics of three algorithms Collabora-

tive Filtering, adapted PageRank and FolkRank. A fourth
recommender, that serves as an additional baseline, sim-
ply recommends the most popular resources of the dataset.
To formally describe the algorithms we use the model of a
folksonomy (the structure underlying collaborative tagging
systems) as introduced in [5]: A folksonomy is a quadruple
F := (U, T,R, Y ), where U , T , and R are finite sets, whose
elements are called users, tags and resources, resp., and Y
is a ternary relation between them, i.e., Y ⊆ U × T × R,
whose elements are called tag assignments. The personomy
Pu of a given user u ∈ U is then the restriction of F to u, i.e.,
Pu := (Tu, Ru, Iu) with Iu := {(t, r) ∈ T ×R | (u, t, r) ∈ Y },
Tu := π1[Iu], and Ru := π2[Iu], where πi denotes the pro-
jection on the i-th dimension.
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3.1 Collaborative Filtering
With user-based Collaborative Filtering (CF) [14] new re-

sources are recommended to a user based on the preference
of like-minded users. Each user u is typically represented by
a vector ~xu that describes the user’s rating xu,r for every re-
source r, if it is known. Since the folksonomy data does not
contain explicit user ratings for resources, we interpret the
fact that a user bookmarked a resource as (Boolean) expres-
sion of the user’s interest in that resource. To this end we
reduce the ternary relation Y to a lower dimensional space
as described in [7]. The vector ~xRu ∈ {0, 1}R then represents
the resources the user u has bookmarked. For each r ∈ R
we set ~xRu,r = 1 if the user u has bookmarked the resource
r, 0 otherwise. We can also represent users by the tags they
have used with a vector ~xTu ∈ NT : for each t ∈ T we set
~xTu,t = |{r ∈ R | (u, t, r) ∈ Y }|. This variant is called CFT

in the sequel, the resource-minded one is called CFR.

3.2 FolkRank
FolkRank [5] consists of two steps: an adaptation of the

graph structure and a differential approach. First, F =
(U, T,R, Y ) is converted into an undirected tri-partite graph
GF = (V,E) where V = U ·∪T ·∪R and each triple (u, t, r) ∈ Y
yields three edges in E: {u, t}, {u, r}, and {t, r}. Each edge
is weighted with the number of triples containing its two
nodes. The weights ~w of the vertices of the graph for the
adapted PageRank (APR) are now iteratively computed as
fixpoint of the equation ~wi+1 ← dAT ~wi + (1 − d)~p, where
A is the row-stochastic version of the adjacency matrix of
GF, ~p is a preference vector and d ∈ [0, 1] determines the
influence of ~p. Choosing ~p = 1 yields a global ranking of all
folksonomy elements, while a topic-specific or personalized
ranking results from an assignment of preference to only cer-
tain interesting nodes (entries of ~p). In our experiments we
set d = 0.7 as in [7]. Finally, FolkRank is computed as the
difference between the APR result and the fixpoint of the
equation when d is set to 1, i.e., between the personalized
and the unpersonalized ranking.

3.3 FolkRank on an Extended Folksonomy
In this work we explore two opportunities to augment

FolkRank with further data. The first is the manipulation of
the underlying graph through inclusion of another dimension
M . The new structure, denoted F +M := (U, T,R,M, Y ′),
extends the folksonomy F where Y ′ is a relation Y ′ ⊆ U ×
T × R × M and each triple of Y is extended with those
elements of M that one of the elements of the triple is asso-
ciated with. If, e.g., M is a set of user groups and a user u is
member of two groups g and h then each triple (u, t, r) ∈ Y
is extended into two quadruples (u, t, r, g) and (u, t, r, h). If
the new dimension M is the set of publication venues, then
each triple (u, t, r) ∈ Y yields a quadruple (u, t, r, v(r)) with
v(r) being the venue of the publication r. Every time a triple
has no corresponding element in M (e.g., missing metadata
fields), we insert a new artificial element into that triple and
thus into M . The new element will be almost isolated in the
graph of F + M and thus be of little influence. The adap-
tation of APR and FolkRank to the new graph structure
is straightforward: Each quadruple (u, t, r,m) gives rise to
six edges: {u, t}, {u, r}, {r, t}, as before, plus {u,m}, {t,m}
and {r,m}. The second way of including further information
is the manipulation of the preference vector ~p. We simply
select users, tags, or resources that should receive preference

Table 1: The datasets, their sizes, and the number
of test users.

dataset users resources posts tags test
D12 5,132 483,945 543,890 149,034 –
D12,R 2,886 29,921 84,176 28,011 590
D12,UR 541 25,072 70,382 19,998 541
D08 1,211 71,705 92,545 28,023 –
D08,R 729 13,001 32,962 7,084 165
D08,UR 150 11,689 29,057 4,652 150

and assign appropriate values to their entries in ~p. Finally,
note that both adapted PageRank and FolkRank are compu-
tationally more expensive than Collaborative Filtering [7].

4. DATASETS
The dataset we use for our evaluation is based on the reg-

ular dumps of the publicly available data of the social book-
mark and publication sharing system BibSonomy. There
are several BibSonomy datasets available for research pur-
poses.3 We use D12, the most recent – and thus larger – one
(called “2012-01-01” on the web page) and D08, the one from
the ECML PKDD Discovery Challenge 2008 (“rsdc08train”),
which was also used by Bogers in [2]. The generation of the
dataset dumps is described in [6] including a more in-depth
description of the data from 2008.

For our analysis we only use the publication references
and ignore the bookmarks as we are especially interested in
recommending scientific articles. We restrict each of the two
datasets to two subsets using the following procedure: We
remove all triples (u, t, r) from Y where the resource r has
been bookmarked by less than two users and then remove
entities that do not occur in at least one of the remaining
triples. The resulting datasets are called D12,R and D08,R

and have the property that each resource that might be left
out during the evaluation occurs at least once in the da-
taset and thus can still be selected for recommendation by
any of the algorithms. We create even smaller datasets by
further removing all triples (u, t, r) from D12,R and D08,R

where the user u has less than 20 resources in his person-
omy. Thus we exclude users with only a short usage history.
We repeat both removal procedures iteratively until in the
resulting datasets D12,UR and D08,UR each remaining user
has at least 20 resources and each resource occurs at least
twice. These restrictions are commonly used (e.g., in [2, 7])
and yield a more dense dataset without too many outliers.
The difference to the p-core used in [7] is that we do not
require that a tag appears in a certain minimal number of
posts. The sizes of the datasets can be found in Table 1.

In several experiments we add further data as new dimen-
sion M to the folksonomy F (Section 3.3) denoted by F+M .
As in BibSonomy users are required to specify for each re-
source (besides the title) its authors and its year of publi-
cation, these where considered. In the author dimension we
used either the first authors, the last authors, or all authors
(and editors, if no authors are given). Author names were
either normalized to their first name’s initial plus lastname
or to only their lastname. The according data structures are
(F + publication year), (F + authors), (F + authors (last-
name)), and so on. One of the most often filled fields are
the booktitles of proceedings and the journal for articles and

3https://www.kde.cs.uni-kassel.de/bibsonomy/dumps/
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we use them combined as the “venue” of a publication (F +
venue). Available for all posts is also the year a resource was
posted, resulting in (F + posting year). Choosing the venue
and author dimensions is based on the rationale that usually
a journal/conference or an author is focussed on a specific
subdiscipline of a larger field of science and a researcher who
is interested in one article of that area might be interested
in the other ones from the same area, too. Selecting the
years reflects the idea that often a certain topic is investi-
gated heavily by several researchers during a (short) period
in time and thus contemporary articles might be related.

We exploit social ties among users by including the groups
that some are members of (F + group), usually combining
users with similar interests (e.g., from the same institute).4

Finally, we make use of the semantic structure among the
tags to create sets of similar tags. For that purpose we
calculate co-ocurrence-based similarities between tags fol-
lowing the procedure described in [10] and create a graph
where each tag is connected to its most similar tag. We
then assign to each tag its weakly connected component in
that graph as additional metadata (F + similar tags). In the
variation of this scenario (F∗ + similar tags) we completely
omit the tag dimension from the folksonomy and replace it
by the dimension of the tag-graph’s components.

5. EXPERIMENTS
In this section we discuss the setup of the experiments.

5.1 Evaluation Methodology
Since it is difficult to get information on the relevance of

recommendations from the users themselves, we treat their
history of posted publications as gold-standard. Hence, the
relevance of a recommended publication is judged by the
fact whether or not the user has posted this publication.

To be comparable to Bogers [2] we evaluate the algorithms
using the LeaveXPostsOut setup and with MAP (Mean Av-
erage Precision) as quality score function. That is, one user
u ∈ U is selected and a set Xu of posts out of their per-
sonomy is withheld from the dataset. We then train each
recommender algorithm on the remaining data (including
the chosen user’s other posts). Each algorithm’s recom-

mendation R̃(u) is computed as a ranked list of resources

R̃(u) = (ru,1, ru,2, . . . , ru,n) such that the resources that are
supposedly of interest to the chosen user are better ranked
than others and ru,1 is the most highly recommended re-
source to user u. The number of recommended resources n
depends on the algorithm and is bound by the number |R| of
all resources within the dataset. It is assumed that a good
recommender would rank many of the withheld posts in Xu

within the first positions of the ranking.
The complete LeaveXPostsOut procedure is repeated for

a set of several users Û ⊆ U . The resulting MAP score
for an algorithm is calculated as the mean of the average
precisions in each run of the algorithm (one for each selected
user). More formally, we have

MAP :=
1

|Û |

∑
u∈Û

1

|Xu|

n∑
i=1

precision(Xu, i) · δ(Xu, ru,i) ,

where δ(Xu, ru,i) indicates whether the resource ranked at

4For both datasets we use the group memberships of 2012
as the older ones are not availabe.

position i is one of the withheld resources of the user u and
precision(Xu, i) is the fraction of withheld resources of user
u within the first i positions of the produced ranking:

precision(Xu, i) :=
1

i
|{ru,1, ru,2, . . . , ru,i} ∩Xu| .

A nice property of MAP is that one does not have to specify
a fixed number of recommended items n. One can simply
produce an ordered list of all resources (if the recommender
algorithm allows that) in the order in which they would be
recommended.

In our scenario we withheld for each user with more than
20 posts in their personomy their 10 most recent posts. The
resulting numbers of test users are given in the last column
of Table 1. Note that on the datasets D12,UR and D08,UR

this means that every user is considered in the evaluation.
This setup has several advantages: By withholding the most
recently posted resources the setup is closer to the real ap-
plication, e.g., as opposed to withholding arbitrarily selected
posts. Compared to evaluation methods where the dataset
is divided only once into a fixed training set and a fixed test
set (used in traditional classifier evaluation), the LeaveX-
PostsOut method is unbiased by the selection of those users
in the test set as each user (with enough posts) is considered
in the evaluation. This advantage is of importance especially
on small datasets where one can not consider an arbitrarily
chosen (small) sample of users to be representative for the
whole dataset. Finally, by testing only on users with more
than 20 posts, we avoid the so called cold start problem of
having to recommend resources to users, of whom only little
is known about their interests.

Our setup is slightly different to that used by Bogers in [2].
He splits the dataset into a test and a training set by arbi-
trarily selecting 10% of the users (i.e., 15 users) as Û , and

then for each such user u ∈ Û selects ten arbitrarily cho-
sen resources Xu for testing. The remaining users and the
remaining posts of the chosen users form the training set.
While parameters of the evaluated algorithms are optimized
using a ten-fold cross validation on the training set, the fi-
nal evaluation of an algorithm’s performance is conducted
only on the test set Û . In our experiments we found that
different selections of 10% of U as test users Û yield strong
fluctuations of the resulting MAP scores (e.g., ranging from
0.0986 to 0.1906 in ten different but arbitrary 10%-splits of
the D08,UR dataset) due to the rather small size of the test
dataset. We therefore deviate in our setup from [2] in the
way described above, yielding higher scores (see Section 6.1).

5.2 Preliminary Observations
Collaborative Filtering as well as the considerations fol-

lowing in Section 6.2 are based on the rationale that users
that are (somehow) similar to the user at hand are valuable
sources to find resources for recommendation. Therefore,
we investigate for different well-known similarity functions
how many of the most similar users one needs in order to
find many of the withheld items in Xu within their person-
omies (i.e., to yield a high coverage of those items). Fig-
ure 1 shows, for different similarity functions, how many of
the withheld resources can be found in the neighborhood of
the most similar users for different neighborhood sizes. We
tested the Cosine similarity as well as similarities based on
Manhattan and on Euclidean distance, both on represen-
tations of the user-profiles as resource vectors and as tag
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Table 2: The smallest neighborhood sizes to yield
a given minimum level of average coverage (cov) of
the left out resources. Displayed are the results for
Cosine similarity on all datasets based on Boolean
resource (res) or tag (tag) vectors.

cov D12,R D08,R D12,UR D08,UR

of Xu (2,886 users) (1,211 users) (541 users) (150 users)

in % res tag res tag res tag res tag
30% 3 11 2 6 1 4 1 2
50% 12 114 7 38 5 30 3 11
60% 24 230 14 69 10 54 6 18
80% 154 631 47 165 54 174 18 46
90% 1,473 1104 222 280 173 300 43 87

vectors. We also distinguished between Boolean representa-
tions (a user has a resource/tag at least once or not at all)
and non-Boolean vectors. In the latter, the vector entries are
the numbers of tags that a user assigned to a resource or the
numbers of resources that a user tagged with a tag, respec-
tively. Note, that in the Boolean case the order of similar
users according to Euclidean and Manhattan distance are
identical. Also, since we withhold ten items for each consid-
ered user, a hypothetical perfect similarity measure would
only require neighborhoods of at most ten similar users to
cover all ten withheld items – which is an (extreme) upper
bound for achieving coverage with as few similar users as
possible.

Figure 1(a) examplary shows the resulting coverage curves
for the largest considered dataset D12,R using resource vec-
tors to represent users. The results for the other three da-
tasets are similar. For comparison, Figure 1(b) shows the
best performing similarities (the four variants with Cosine
similarity) for the smallest dataset D08,UR. Table 2 displays
neighborhood sizes for five coverage levels for the Cosine
similarity.

In all cases, the neighborhoods based on Cosine similar-
ity contain (on average) more of the desired resources than
those based on other similarities. The resource vector space
seems to be more suitable than the tag vector space. The
choice of Boolean over non-Boolean vectors does not yield a
large gain, but in all cases the Boolean versions of the Co-
sine similarity yield comparable or slightly higher coverage
especially for the smaller neighborhoods. The fraction of
covered resources rises quickly to approximately 80% (60%)
for the resource (tag) vector space. Adding further users
then yields smaller gains in coverage until finally the neigh-
borhoods containing all other users have complete coverage
– as a consequence of the dataset construction each resource
occurs in at least two user profiles.

6. RESULTS
In the following we present the resulting MAP scores for

our algorithms in different parametrizations.

6.1 Comparison of Approaches
We start with an evaluation of differently parametrized

versions of the CFR and CFT variants of Collaborative Fil-
tering and FolkRank. For CFR and CFT we selected – ac-
cording to the results in Section 5.2 – the Cosine similarity
measure and different neighborhood sizes. FolkRank was
evaluated in its original version (FolkRank F) and making
use of further (social, semantic, or metadata) dimensions M
as described in Section 3.2 (FolkRank F+M). The results of
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Figure 1: The average coverage of the withheld re-
sources in differently sized neighborhoods of similar
users according to Cosine similarity and Manhattan
and Euclidean distance in Boolean and non-Boolean
user profiles as tag or resource vectors.

these experiments are listed in Table 3. As can be seen,
CFR performs better than FolkRank and FolkRank better
than CFT . FolkRank also yields significantly better results
than APR in all experiments (therefore only the baseline
is reported in the table). All algorithms have higher MAP
scores than the “most popular” baseline. Further, regular
FolkRank (F) performs best among the different versions
(with the exception of (F + first authors) on D12,UR). On
average the included metadata does not improve FolkRank’s
MAP values. The worst scores result from including the
posting and the publication year. Since only few posting
years (since BibSonomy’s start in 2006) can occur in the
dataset and users tend to post publications that appeared
recently, these dimensions consist of only few nodes. The
thereby induced connections between nodes of the other di-
mensions seem to be not meaningful for the recommendation
scenario at hand. We can further observe that on each da-
taset the combinations with normalized author names yield
better scores than using only the authors’ last names. Again
this might be due to nodes of the additional dimension con-
necting too many nodes in the regular three dimensions.

Combining F with only the first authors is better than
with the last authors and both are better than combining
F with all authors. Often the first author of a paper is the
one contributing most and the last author a supervisor or
department head of the other authors. It therefore seems
intuitive that papers of the same first author are more in-
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Table 3: MAP scores of the different algorithms in different parametrizations evaluated on the four datasets.
The last three lines contain the respective highest scores for each variant of preference manipulation and in
braces the respective numbers of elements that got additional preference.

algorithm / variant D12,R D08,R D12,UR D08,UR

most popular (baseline) 0.0060 0.0129 0.0070 0.0127
C

F
R

k = 4 0.1103 0.1394 0.1147 0.1406
k = 5 0.1101 0.1382 0.1147 0.1402
k = 10 0.1093 0.1413 0.1205 0.1521
k = 100 0.1122 0.1296 0.1163 0.1394
k = |U | − 1 0.1142 0.1365 0.1215 0.1395

C
F

T

k = 4 0.0623 0.0809 0.0605 0.0881
k = 5 0.0621 0.0811 0.0596 0.0811
k = 10 0.0633 0.0728 0.0581 0.0755
k = 100 0.0511 0.0555 0.0516 0.0575
k = |U | − 1 0.0489 0.0595 0.0538 0.0646

adapted PageRank (APR) 0.0661 0.0583 0.0702 0.0620

F
o
lk

R
a
n
k

F 0.0900 0.1183 0.0988 0.1289
F + authors 0.0850 0.1025 0.0964 0.1151
F + authors (lastname) 0.0777 0.0962 0.0881 0.1083
F + first authors 0.0895 0.1134 0.1020 0.1262
F + first authors (lastname) 0.0768 0.1022 0.0876 0.1139
F + last authors 0.0861 0.1076 0.0970 0.1201
F + last authors (lastname) 0.0729 0.0989 0.0825 0.1099
F + posting year 0.0684 0.0876 0.0694 0.0897
F + publication year 0.0716 0.0817 0.0749 0.0847
F + venue 0.0801 0.1012 0.0884 0.1150
F∗ + similar tags 0.0812 0.1080 0.0913 0.1212
F + similar tags 0.0782 0.1007 0.0862 0.1134
F + group 0.0846 0.1167 0.0927 0.1278
preference to similar users (1) 0.0991 (1) 0.1231 (1) 0.1087 (1) 0.1337
preference to recent resources (9) 0.1035 (62) 0.1329 (11) 0.1125 (49) 0.1478
preference to reinforced resources (50) 0.0917 (17) 0.1223 (15) 0.1020 (38) 0.1358

teresting to a user than papers which have any authors in
common.

The inclusion of the users’ groups works better on the
two datasets D12,UR and D08,UR that are reduced in both
the user and the resource dimension. We conjecture that
many users with less than 20 resources (which are not in
these datasets) use the system less than other users with
more resources and are thus less likely to engage in groups
with like-minded users. Finally, replacing the tag dimension
in (F∗ + similar tags) is better than adding components of
similar tags as a fourth dimension (F + similar tags).

In summary, none of the additional dimensions helps Folk-
Rank to perform better than CFR. However, several of these
dimensions yield comparable results and are thus worth fur-
ther investigation.

In comparison to the results of [2] we yield higher scores
for the same algorithms (e.g., 0.1406 instead of 0.0865 for
CFR with neighborhoods of size 4). We conjecture that
this is due to differences in the datasets (as we could not
reproduce a dataset with exactly the properties reported in
[2]) and the different setups: our scores are based on the
whole set of users instead of a random sample of only 15
users.

6.2 Exploiting Similar Users
The good results of CFR compared to FolkRank on all

datasets motivated us to integrate the successful strategy of
using similar users into FolkRank. We achieve this by modi-

fying the preference vector ~p in FolkRank. For a target user
u we select the k most similar users (according to the Cosine
similarity measure) and insert their similarity value to u as
weight into ~p. The results for different neighborhood sizes k
are depicted in Figure 2. All scenarios profit from the inclu-
sion of at least small neighborhoods (the top scores are re-
ported in Table 3). On each dataset, FolkRank achieves the
best results when only the single most similar user is getting
additional preference. This yields better values than Folk-
Rank without additional preference. Increasing the neigh-
borhood size decreases the MAP scores even below the score
of the plain FolkRank already for smaller neighborhoods.
Although APR can not compete with FolkRank, it is worth
noting that it profits even more from the inclusion of sim-
ilar users, also for larger neighborhoods. This shows that
the similarity structure is not already completely captured
by the structure of the graph GF underlying FolkRank. As
expected – considering the findings in Section 5.2 – using
the Euclidean distance to construct the neighborhoods did
only decrease the recommendation quality.

6.3 Exploiting Recent Resources
In the next experiment we took into account that a user’s

interest may vary during the use of the system. Thus it
seems reasonable to expect that recently posted resources
are an indicator for resources a user might be interested in
next. Like in the experiment with similar users in the previ-
ous section, we modify the preference vector ~p of FolkRank
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Figure 2: MAP scores for FolkRank and APR with
additional preference for neighborhoods of similar
users using the Cosine similarity on Boolean re-
source vectors. The straight lines show the accord-
ing MAP score without additional preference.

by assigning the same weight to all considered recent re-
sources. The diagrams in Figure 3 show the resulting MAP
scores, the top values are again reported in Table 3. On the
two more recent datasets D12,R and D12,UR, the scores rise
immediately above the score of the plain FolkRank, while
on the datasets from 2008 they first decrease but then also
exceed the baseline (for three or more recent resources) and
even some of the CFR results. In general, the scores are com-
parable to those of CFR. The optimal values are achieved
at very different sizes. Including larger numbers of recent
resources yields constant results. This phenomenon can in
part be explained by the fact that often users do not even
have that many resources to be used in ~p. Again APR results
also improve significantly but not to the level of FolkRank.

6.4 Exploiting High-Ranked Resources
The last modification of FolkRank in this work follows

the idea of reinforcing relevant publications to find further
related and thus possibly also relevant publications. We
achieve this through two runs: From the first run of the
regular version of FolkRank we collect the k best-ranked
resources and give them preference (as before in ~p) in a sec-
ond run of FolkRank (or a run of APR). Giving additional
preference to only one resource lets the MAP scores drop
on average (Figure 4). However, using larger k values lets
the score increase and again exceed the score of the regular
FolkRank without a second run, although not by as much
as when using recent resources.
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Figure 3: The MAP scores for FolkRank and APR
where the k most recent resources get preference
(equally distributed). The straight lines show the
according MAP score without additional preference.

7. CONCLUSION AND FUTURE WORK
In our experiments we yield better results than Bogers in

[2] for CF, presumably due to the slightly different setup.
For the inclusion of metadata in FolkRank we find that it
does not improve the overall recommendation performance,
and generally FolkRank results are below those of CFR but
better than those of CFT . However, some of the additional
dimensions (authors or groups) yield comparable results.
Like shown in [2], different recommenders perform differ-
ently on different datasets. Hence a reasonable next step
would be to compare the more successful metadata strate-
gies on other datasets and to investigate whether certain
users can benefit more from the inclusion of certain kinds
of data than others. For the inclusion of similar users we
find that small neighborhoods are suitable to improve Folk-
Rank recommendations. For the selection of users into these
neighborhoods as well as for Collaborative Filtering the Co-
sine similarity is the measure of choice. We also show that
the recency of a post is a valuable indicator for the current
interests of a user. Including recent resources yields the best
results of FolkRank in our experiments.

For future work we plan to investigate the performance
of FolkRank in different parametrizations on other data-
sets and specifically to analyze which users profit more from
which algorithms or from which kind of included metadata.
To truly capture the recommendation performance we plan
an online evaluation in BibSonomy, since offline evaluations
can only determine how well an algorithm can retrieve re-
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Figure 4: The MAP scores for FolkRank and APR
where the k most highly ranked resources (up to 50)
of a FolkRank run are entered as preferred items
into a second run. The straight lines show the MAP
score for FolkRank with only one run.

sources a user has already found without the algorithm’s
help. Another aspect for further experiments is to determine
optimal parameters for the inclusion of data, e.g., for choos-
ing the preference weights in ~p or the numbers of included
similar neighbors or recent resources. Finally, despite the
weaker performance when further dimensions are included,
it might well turn out that certain combinations of the here
proposed methods yield actually better results. More pre-
processing (e.g., normalizing the venues) or densifying the
tag dimension further by using other methods to create sets
of similar tags are also valuable options for future work.
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