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Abstract—Today’s system developers and operators face the
challenge of creating software systems that make efficient use
of dynamically allocated resources under highly variable and
dynamic load profiles, while at the same time delivering reliable
performance. Benchmarking of systems under these constraints
is difficult, as state-of-the-art benchmarking frameworks provide
only limited support for emulating such dynamic and highly vari-
able load profiles for the creation of realistic workload scenarios.
Industrial benchmarks typically confine themselves to workloads
with constant or stepwise increasing loads. Alternatively, they
support replaying of recorded load traces. Statistical load inten-
sity descriptions also do not sufficiently capture concrete pattern
load profile variations over time.

To address these issues, we present the Descartes Load
Intensity Model (DLIM). DLIM provides a modeling formalism
for describing load intensity variations over time. A DLIM
instance can be used as a compact representation of a recorded
load intensity trace, providing a powerful tool for benchmarking
and performance analysis. As manually obtaining DLIM instances
can be time consuming, we present three different automated
extraction methods, which also help to enable autonomous
system analysis for self-adaptive systems. Model expressiveness
is validated using the presented extraction methods. Extracted
DLIM instances exhibit a median modeling error of 12.4% on
average over nine different real-world traces covering between
two weeks and seven months. Additionally, extraction methods
perform orders of magnitude faster than existing time series
decomposition approaches.

I. INTRODUCTION

Today’s cloud and web-based IT services need to handle
large numbers of concurrent users under highly variable and
dynamic load intensities. Customers access services indepen-
dently of each other and expect a stable Quality-of-Service
(QoS). In this context, any knowledge about a service’s load
intensity profile becomes a crucial information for managing
the underlying IT resource landscape. Load profiles with large
amounts of concurrent users are typically strongly influenced
by deterministic patterns due to human habits, trends, calendar
effects, and events. The performance evaluation of systems
under these dynamic conditions poses new challenges. Bench-
marking frameworks such as Faban1, Rain [2], and JMeter [8]
allow request injection rates to be configured either to con-
stant values, or to stepwise increasing rates (e.g., for stress
tests) or variable rates based on recorded workload traces.
The challenges arising when applying open workload mod-
els for benchmarking are not thoroughly addressed by these
frameworks, as varying load intensity profiles are a common
observation in real world systems and require consideration in
benchmarking.

In this paper, we introduce the Descartes Load Intensity
Model (DLIM). DLIM offers a fine-grained, structured and

1Faban http://faban.org

accessible MOF-based meta-model to describe load intensity
profiles by editing and combining piece-wise mathematical
functions. At a higher abstraction level, we propose the high-
level Descartes Load Intensity Model (hl-DLIM) to support the
description of load variations using a small set of parameters
to characterize seasonal patterns, trends, as well as bursts and
noise. A preliminary sketch of the initial ideas for these two
models has been presented in [19]. This work-in-progress de-
scription also misses in-depth validation of the then incomplete
models. DLIM can be used to define an arbitrary dynamic
load intensity profile that can be leveraged for benchmarking
purposes to evaluate the behavior of a system under different
dynamic workload scenarios (e.g., bursty workloads, seasonal
load spikes). This is useful in many use-cases, e.g. for both on-
line and off-line evaluation of the quality of system adaptation
mechanisms such as elastic resource provisioning techniques
in modern cloud environments. DLIM and hl-DLIM are both
MOF-based meta-models for load intensity description. This
allows the use of tools and techniques provided for model
driven development in conjunction with DLIM. As such, we
offer a model-to-model transformation from hl-DLIM to the
detailed DLIM. In contrast to pure regression approaches,
DLIM offers the advantage of classifying load intensity varia-
tions by type, as they are fitted to certain model elements. As
a result, models include additional type information, which is
useful when analyzing or modifying load intensity variations.
Further DLIM-based applications and developments in the
fields of benchmarking and system resource management at
run-time are enabled by providing automatic model extraction
processes. Specifically, we envision the use of automatically
extracted load intensity profiles as part of autonomic and self-
aware system management by employing them in the following
contexts:

• Load Forecasting: Automatically extracted load intensity
profiles can be used to forecast the changes in arrival
rates at run-time. This, in turn, enables pro-active resource
management and system adaptation.
• Anomaly Detection: A load profile model can serve as

a baseline for the on-line detection of anomalous load
behavior, such as unplanned bursts.
• Load Classification: The compact information about load

behavior contained within the model can be used to classify
profile categories, enabling dynamic distinction between
user or application types based on profile characteristics.

A load intensity profile, represented as a DLIM model
instance, can be created either manually by the user or it can be
extracted from a request arrival trace obtained by monitoring
a real-life production system. Given a trace, the trace can
be represented in a mathematical form as a compact DLIM
model instance. The latter captures the major properties of
the trace (e.g., burstiness, seasonality, patterns and trends)



and can be used at any time to automatically generate an
equivalent trace (exhibiting the same properties). Furthermore,
starting with an extracted model instance, the instance can
be easily modified to reflect a given target dynamic load
scenario under investigation, e.g., changing the frequency of
bursts or adding a given trend behavior. Load intensity profiles,
represented as DLIM model instances, can be used in a variety
of application scenarios, e.g., for emulating request/job arrivals
in benchmarking experiments, or for analysing mathematical
properties of real-life workloads (e.g., burstiness, seasonality).
In the latter case, load intensity profiles provide valuable
information for performance modeling and capacity planning
studies. Manual construction and maintenance of DLIM model
instances becomes infeasible in complex scenarios or at run-
time usage. hl-DLIM addresses this by providing a more
concise way for load intensity profile description. This enables
the quick and easy creation of an initial model instance. For the
easy creation of model instances based on real-world data, we
introduce and validate three automated DLIM model extraction
methods as presented in detail in Section VI: First, the Simple
DLIM Extraction Method (s-DLIM) for DLIM instances is
based on the idea of time series decomposition as taken in
Breaks For Additive Season and Trends (BFAST) [17]. Second,
the Periodic DLIM Extraction Method (p-DLIM) for DLIM
instances features various types of repeating patterns. Third,
the hl-DLIM Extraction Method extracts hl-DLIM instances
on a higher abstraction level than DLIM. We highlight as
major benefits of this work the new capabilities to accurately
automatically extract load intensity models (12,7% median
modeling error on average) from a representative set of nine
different real-world traces. Each extraction completes in less
than 0.2 seconds. These results demonstrate and validate the
capability of DLIM to capture realistic load intensity profiles.
An implementation of the models and extraction methods is
available as part of the LIMBO toolkit2. LIMBO’s architecture
and extensibility options are further described in [18].

The rest of this paper is structured as follows: Section II
discusses existing workload modeling approaches, Section III
explains open workloads and our definition of load intensity.
Sections IV and V describe the two models in detail, with the
model instance extraction methods being discussed in detail
in Section VI. An evaluation of the proposed models and
extraction processes based on real world traces is conducted
in Section VII. The paper wraps up with our conclusions in
Section VIII.

II. RELATED WORK

Several approaches to describe and generate workloads
with variable intensity exist in literature. However, they differ
from our approach in the following key aspects: First, a set of
approaches works purely statistical using independent random
variables and therefore do not offer models describing load
intensity changes over time. Second, approaches for workload
or user behavior modeling model the structure of the actual
units of work they dispatch or emphasize the behavior of
users after their arrival on the system. In contrast, DLIM
models focus on the description of request or user arrivals,
not user behavior and impact after arrival. This is done by
combining both deterministic and statistical approaches, which

2LIMBO http://descartes.tools/limbo

goes beyond existing purely statistical modeling approaches.
We group related work into at least one of the following three
categories:

• User behavior models: [16], [14] and [2] propose work-
load models that capture the behavior and tasks triggered by
different types of users. [20] partition workloads according
to the user types, and then sample workload traces for
each user type to capture the user behavior. This differs
from our approach, which is focused on modeling user
arrival processes. We note that models like the above can
be easily combined with DLIM to further characterize the
user behavior after a request has arrived at the system and
a client session is started.
• Resource demand focused modeling, modeling the spe-

cific work units: These approaches focus on modeling the
units of work processed by the system and estimating
the system’s resource demands. [5] focus on modeling
bursty workloads, whereas [1] focus on file distribution and
popularity.
• Statistical inter-arrival models: These approaches capture

the workload intensity using statistical distributions. [6]
creates a statistical model for parallel job schedulers. [10]
models batch workloads for eScience grids and [11] as
well as [13] analyze workloads at multiple levels, such as
request and session level. These approaches differ from
our approach as they use independent random variables
to capture inter-arrival rate distributions. These random
variables do not describe changes in load intensity behavior
over time.
• Regression techniques, such as MARS [7], M5 trees [12],

or cubic forests [9] are capable of calibrating mathematical
functions to fit a measured arrival rate trace. In contrast
to DLIM, they do not convey the additional information
of the types and composition of load intensity variation
components.

The combined deterministic and statistical approach of
DLIM enables a better mapping between arrival rate variations
and their respective time-stamps. A composite piece-wise
mathematical function, as used in DLIM, can capture load
intensity profiles more effectively than independent random
variables. This approach also enables a better understanding
of a benchmark’s behavior for users intending to use DLIM
for benchmarking purposes. The drawback of a deterministic
model is the difficulty in capturing random behavior. For this
reason DLIM includes an optional random noise element,
which deviates from the otherwise deterministic functions
and enables a combined deterministic and statistical modeling
approach.

III. FOUNDATIONS

Both DLIM and hl-DLIM have been designed to capture
variations of load intensity in the form of user, job, or request
arrival rates. For this, they employ an open workload view.
Schroeder et al. [15] define open workloads as workloads,
in which new jobs arrive independently of job completions.
DLIM or hl-DLIM instances describe the intensity profile of
an open workload. They do not make any assumptions about
the completion times of the work units. This decision is based
on the assumption that users in a typical cloud environment are



unaware of one another and access a software service without
having any knowledge of other users’ behavior.

For this paper, we define load intensity as a function
describing arrival rates of workload units (e.g. users, sessions,
or requests) over time. We define the arrival rate r(t) at time
t as follows:

r(t) = R′(t)
with R(t) = |{ut0 |t0 ≤ t}|

where R(t) is the amount of work units ut0 with arrival time
t0 that have arrived up until time t. R′ is the derivative thereof.

IV. DESCARTES LOAD INTENSITY MODEL

The Descartes Load Intensity Model (DLIM) describes
arrival rates over time and is visualized in Fig. 1. A more
abstract preliminary sketch was initially presented in [19].
Specifically, the model is aimed at describing the variations
of work unit arrival rates by capturing characteristic load
intensity behaviors. DLIM achieves this by defining piece-wise
mathematical functions to approximate variable arrival rates,
with support for periodicity, flexibility to adapt and incorporate
unplanned events, and composability of model instances.

Fig. 1. The Descartes Load Intensity Meta-Model without the child
implementations of the abstract Noise, Burst, Seasonal, and Trend.

Being a composition of piece-wise mathematical functions,
DLIM uses a Sequence of functions as its central element.
Functions may be added or multiplied with one another
using mathematical operators. The result of this approach is
a sequence of function-trees, which describe the arrival rate
behavior during a time period as defined by the containing Se-
quence. Specifically, a Sequence carries a number of TimeDe-
pendentFunctionContainers, which describe the duration of
each interval and are executed in sequence. The containers,
in turn, contain the actual mathematical functions describing
the arrival rates. The Sequence’s execution repeats as many
times as indicated by the terminateAfterLoops attribute. Alter-
natively, the sequence repeats for the time indicated by the
terminateAfterTime attribute. If both are set, we calculate the
final duration as the minimum of either the looping time or the
specific terminateAfterTime attribute. Infinite sequences are not
allowed in order to guarantee termination. Any Function can
be combined with other Functions using a Combinator, which
results in a TimeDependentFunctionContainer carrying an en-
tire tree of functions. The TimeDependentFunctionContainer
describes its arrival rates for a set duration, after which the next
TimeDependentFunctionContainer in the parent Sequence’s list
is processed.

Function is the abstract parent class to mathematical func-
tions contained within a TimeDependentFunctionContainer.
Being abstract, it cannot be instantiated. Instead a number of
non-abstract children are provided that can be used as Func-
tions. The most notable concrete Function is the Sequence,
which effectively means that any TimeDependentFunctionCon-
tainer may hold a Sequence in its Function tree. This contained
Sequence must be unique, preventing cyclical containment
dependencies. The other concrete Functions fall into one of
the following categories (each represented by their abstract
super-class): Seasonal, Burst, Noise, or Trend.

A Function holds a list of Combinators. A Combinator
allows the combination of this Function’s arrival rates with
the arrival rates generated by other concurrently running Func-
tions. The Combinator contains operators such as + and ∗.
Any Function contained within a Combinator is defined for
the exact same duration as its containing parent Function.

V. HIGH-LEVEL DLIM

DLIM offers a convenient way of structuring and order-
ing functions for the description of load intensity profiles.
However, from the standpoint of a human user, it provides
limited abstract knowledge about those variations, as the tree of
composite piece-wise mathematical functions may be difficult
to grasp. hl-DLIM addresses this issue by providing means
to capture load intensity variations with a limited number of
parameters. These parameters can then be used to quickly
define and characterize a load intensity model. Inspired by
the time-series decomposition approach in BFAST [17], hl-
DLIM is split into a Seasonal and Trend part. Additionally, as
hl-DLIM is intended for modeling load profiles, it features a
Burst and a Noise part. In contrast to DLIM, it is designed to
model a subset of the most common load variation profiles in
favor of better readability.

The Seasonal part describes the underlying composite func-
tion that repeats after every seasonal duration (e.g., every day
in a month long load intensity description). hl-DLIM describes
the seasonal part using the following parameters (as shown in
Fig. 2): period, number of peaks, base arrival rate level, first
peak arrival rate, and last peak arrival rate. Additional peak
arrival rates are derived using linear interpolation.
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Fig. 2. hl-DLIM Seasonal Part.

The Trend part describes an overarching function that
captures the overall change in the load intensity over multiple
seasonal periods. It does so by constructing a list of equi-
length Trend segments. These segments describe the respective
arrival rates at their start and end points. The arrival rate of
the Seasonal part is then interpolated to match the segment’s
arrival rate. In contrast to the Trend within BFAST, the hl-
DLIM Trend can interact with the Seasonal part either by
addition or multiplication. The Trend part is defined using



the following parameters: number of seasonal periods within
one trend (i.e. the length of a single trend segment), operator
(addition or multiplication), and the list of seasonal arrival
rate peaks. The latter defines the arrival rate at the beginning
and end of the Trend segments. The Trend segment functions
are defined so that they always begin and end at the largest
Seasonal Peak. As a result, the values contained in this list
define the resulting maximum peak after applying the Trend
at the corresponding point in time. The point in time at which
each arrival rate in this list is defined is always the time of the
largest peak in a Seasonal iteration.

The Burst part allows the definition of recurring bursts,
which are added onto the existing Seasonal and Trend behav-
ior. It is defined using the following parameters: First burst
offset, inter burst period, burst peak arrival rate, and burst
width.

The Noise part allows the addition of a uniform distributed
noise function defined by its Minimum Noise Rate and Max-
imum Noise Rate. Other Noise distributions can easily be
added to DLIM instances, which are obtained from hl-DLIM
instances via a model-to-model transformation.

VI. MODEL INSTANCE EXTRACTION

In this section, we present three methods for the extraction
of DLIM instances from arrival rate traces. Each method
requires a set of configuration parameters. Some of the steps of
the methods can be easily performed manually, others require
automation in order to be completed within a reasonable time
frame. We define the following three methods:

1) Simple DLIM Extraction Method (s-DLIM):
Extracts a DLIM instance. This process (and its resulting
DLIM instance) are inspired by the time-series decompo-
sition approach used in BFAST [17]. s-DLIM extracts a
repeating Seasonal Part and a non-repeating Trend Part.
The non-repeating Trend Part contains a list of Trend seg-
ments of fixed size, that interpolate between their start and
end arrival rate value. The Trend list extends throughout
the entire time duration for which the extracted model is
defined. Additionally, a Burst Part and an optional Noise
Part are extracted. s-DLIM is visualized in Fig. 3.

2) Periodic DLIM Extraction Method (p-DLIM):
This is a variation of the simple extraction process that
features multiple repeating trends. Again a DLIM instance
is extracted, however, in contrast to s-DLIM, p-DLIM does
not feature a single list of equal length Trend segments.
Instead it features multiple lists of Trends, each containing
a fixed number of Trend segments of (potentially) different
lengths.

3) hl-DLIM Extraction Method:
Extracts an hl-DLIM instance. This process is based on the
simple model extraction process and uses the information
extracted by the latter to derive the parameters needed to
construct an hl-DLIM instance.

A. Extracting a s-DLIM and p-DLIM Instance

The following sections describe the extraction of the differ-
ent model parts by s-DLIM and p-DLIM. These two processes
only differ in their approach to the extraction of the Trend Part.
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Fig. 3. Activity Diagram of the Simple DLIM Extraction Method (s-DLIM).

1) Extracting the Seasonal Part: The Seasonal Part of the
arrival rate trace is modeled using a Sequence of TimeDepen-
dentFunctionContainers and their Functions. Each Function
interpolates the corresponding peaks and lows within each
seasonal period. As a result, the following data needs to be
derived in order to build the Seasonal Part:

• Duration of the seasonal period
• Arrival rate peaks and their time-stamps
• Arrival rate lows and their time-stamps
• Function type used to interpolate between peaks and lows.

The seasonal period (length) is set by the user. It is usually
selected using meta-knowledge about the trace. A trace that
extends for multiple days and contains daily patterns, for
example, features a period of 24 hours. The peaks and lows are



Data: duration: seasonal period duration,

LIST: list of tuples ~t =
(
arrivalRate
timeStamp

)
,

rootSequence: root Sequence of the DLIM instance;

Function extractSeasonalPart()
MIN ← getLocalMinima (LIST);
MAX ← getLocalMaxima (LIST);
peakNum ← median(number of peaks within
each Seasonal iteration);
for i← 0 to peakNum− 1 do

peak [i].arrivalRate ← median(arrival rate of
all ith peaks ∈ MAX within each seasonal
iteration);
peak [i].timeStamp ← median(time stamp of
all ith peaks ∈ MAX within each seasonal
iteration);
/* In seasonal iterations with

more than peakNum peaks, the
ith peak is selected, so that
peaks are evenly spaced
throughout that seasonal
iteration. */

peak [i] ←
(

peak[i].arrivalRate
peak[i].timeStamp

)
;

end
for i← 0 to peakNum− 1 do

low [i].arrivalRate ← median(arrival rate of
all ith lows ∈ MIN within each seasonal
iteration);
low [i].timeStamp ← median(time stamp of
all ith lows ∈ MIN within each seasonal
iteration);
/* In seasonal iterations with

more than peakNum lows, the ith
low is selected, so that lows
are evenly spaced throughout
that seasonal iteration. */

low [i] ←
(

low[i].arrivalRate
low[i].timeStamp

)
;

end
for i← 0 to peakNum− 1 do

interpolatingFunction ← DLIM Function
starting at low [i], ending at peak [i];
rootSequence.append(interpolatingFunction);

end
end

Algorithm 1: Extracting the Seasonal Part

automatically determined by using a local minimum/maximum
search on the arrival rates within the trace. The local arrival
rate minima and maxima and their corresponding time-stamps
within a seasonal period constitute the peaks and lows. Since
the trace usually contains multiple seasonal periods, the re-
spective median arrival rate value is selected for each local
maximum and minimum within the Seasonal Part. Selecting
the median instead of the mean reduces the impact of outliers
on the extracted value. As a result, the derived functions
interpolate first between the first median low and the first
median peak, then between the first median peak and the
second median low, and so on. The last low must be of the

same arrival rate as the first low in order for the Seasonal Part
to repeat seamlessly. The type of the interpolating function
(linear, exponential, logarithmic, sin) can be selected by the
user, depending on his needs. According to our experience,
the sin interpolation usually results in a good model fit. The
Seasonal Part extraction is illustrated in Algorithm 1.

2) Extracting the Trend Part: The Trend Part consist of
a series of functions (trend segments) that are either added
or multiplied onto the Seasonal Part. Each trend segment
begins at the maximum peak of the Seasonal Part and ends at
the maximum peak of the Seasonal Part in a later Seasonal
iteration. This minimizes errors with trend calibration. The
trend extraction calibrates the trend in a way that the model
output arrival rate at the trend segment’s beginning (or end)
equals the trace’s actual arrival rate at the respective point
in time. The shape of the trend function (linear, exponential,
logarithmic, sin) is predefined as a sin-shape, but can be
changed on demand.

a) Trend Part for s-DLIM: The simple extraction pro-
cess features a list of equal-length trend segments. These
segments have a user defined duration that is a multiple of the
seasonal period. Like the seasonal period it is also selected
using meta-knowledge about the trace. These segments are
then calibrated at their beginning and end to match the arrival
rates in the trace. The s-DLIM Trend Part extraction is
displayed in Algorithm 2.

b) Trend Part for p-DLIM: The periodic extraction
process takes into account, that multiple repeating trends may
be part of the arrival rate trace. Examples are weekly and
monthly trends. Since repeating trends (like the Seasonal Part’s
dummy function) should end on the same arrival rate as the
arrival rate they started on (allowing seamless repetition),
each of these repeating trends contains at least two trend
segments. These trend segments’ duration is a multiple of the
seasonal period. Unlike the s-DLIM trend segments they are
not required to be of equal length, thus allowing odd multiples
of seasonal periods as total trend durations. The user selects
lists of at least two trend segment durations for each repeating
Trend Part.

3) Extracting the Burst Part: Extracting bursts is a matter
of finding the points in time at which significant outliers
from the previously extracted Seasonal and Trend parts are
observed in the trace. Once a burst is found, it is added to
the root Sequence and then calibrated to match the arrival
rate from the trace. Finding a burst requires the arrival rate
in the trace to differ significantly from the predicted value
based on the Seasonal and Trend parts. In order to eliminate
false positives due to Seasonal Parts that are offset time-wise,
the Seasonal Part used for the reference model in the burst
recognition activity differs from the actual extracted Seasonal
Part. The difference is that the Seasonal Part used in the burst
recognition activity does not interpolate between the peaks and
lows of the original arrival rate trace. Instead it interpolates
only between the peaks. This removes false positives due to
seasonal periods that are slightly offset in time, however, it
also eliminates bursts that do not exceed the current seasonal
peak. This trade-off is considered acceptable, since time-wise
offset seasonal periods are commonly observed.



Data: duration: seasonal period duration,

LIST: list of tuples ~t =
(
arrivalRate
timeStamp

)
,

MAX: list of local maxima in LIST,
trendSequence: root Sequence of all Trend segments;

Function extractTrendPart()
largestPeakOffset ← offset of peak with largest
arrival rate within a seasonal iteration;
largestPeakArrivalRate ← arrival rate of peak
with largest arrival rate within a seasonal iteration;
iterations ←
LIST.lastTuple.timeStamp/duration;
for i← 0 to iterations do

a ← nearestTuple(MAX,
i ∗ duration + largestPeakOffset);
trendPoint [i] = a/largestPeakArrivalRate;

end
trendSequence.append(constant trendPoint [0]
with duration largestPeakOffset);
for i← 0 to iterations do

interpolatingFunction ← DLIM Function
starting at trendPoint [i], ending at trendPoint
[i+1];
trendSequence.append(interpolatingFunction
with duration duration);

end
trendSequence.append(constant trendPoint
[iterations] with duration
(duration− largestPeakOffset));

end
Function nearestTuple(tuple list L, time)

returns the tuple ~t =
(
arrivalRate
timeStamp

)
∈ L with

minimal d← |L.timeStamp− time|;
end

Algorithm 2: Extracting the Trend Part using s-DLIM

4) Extracting the Noise Part: The Noise Part extraction
consists of two steps: Noise reduction and the calculation fo
the noise distribution. The idea behind our approach is to first
reduce the noise observed within the arrival rates contained in
the trace, and then reconstruct the reduced noise by calculating
the difference between the original trace and the filtered one.
Having filtered the noise, the extraction of the Seasonal Part,
Trend Part, and Burst Part are then performed on the filtered
trace. This has a significant impact on the extraction accuracy
of these parts, and thus on the overall accuracy of the extracted
model instance, especially when extracting hl-DLIM instances,
as will be shown later in the model accuracy evaluation
(Section VII). Depending on the trace, the overall accuracy
of the DLIM extraction can be improved by noise elimination.
In this case, we recommend applying noise extraction, even if
the extracted noise component itself is deleted later on.

a) Noise Reduction: Noise is reduced via the applica-
tion of a one dimensional Gaussian filter on the read arrival
rates. A Gaussian filter has a kernel based on the Gaussian
distribution, it thus has the following form (as defined in [4]):

G(x) = 1√
2πσ

e−
x2

2σ2

Data: LIST: list of read tuples ~t =
(
arrivalRate
timeStamp

)
;

Function calculatNoiseDistribution()
FILTERED LIST ←
applyGaussianFilter(LIST);
for i← 0 to |LIST| − 1 do

difference[i] ← LIST [i].arrivalRate -
FILTERED LIST [i].arrivalRate;

end
distribution ← normal distribution with
mean(difference) and
standardDistribution(difference);

end
Algorithm 3: Calculating the Noise distribution.

We choose the kernel width depending on the Seasonal
period (duration of a single seasonal iteration) and the expected
number of peaks (local maxima) within a Seasonal period:

KernelWidth = SeasonalPeriod
ExpectedMax#SeasonalPeaks

A Gaussian filter’s kernel width is defined as:

KernelWidth = 6 · σ − 1

As a result, the standard deviation is:

σ =
SeasonalPeriod

ExpectedMax#SeasonalPeaks+1

6

b) Calculating the Noise Distribution: The Noise Part
is modeled as a normally distributed random variable. This
variable is added to the DLIM instance’s root Sequence. The
normal distribution’s mean and standard deviation are calcu-
lated as the mean and standard deviation of the differences
between the filtered arrival rate trace. This is illustrated in
Algorithm 3.

s-DLIM and p-DLIM both only support the extraction
of normally distributed noise. Other noise distributions are
not supported. hl-DLIM extraction, however, supports the
extraction of uniformly distributed noise.

B. Extracting an hl-DLIM Instance

The hl-DLIM extraction is similar to s-DLIM extraction.
This section only highlights the differences between those two
processes.

1) Seasonal Part: hl-DLIM is restricted to only support
peaks with an equal distance from one another. The arrival
rates of such peaks are linearly interpolated between the first
peak’s arrival rate and the last peak’s arrival rate. When
extracting an hl-DLIM instance from an arrival rate trace, the
difference thus lies in the interval containing peaks and in
the search for the maximum and minimum peak. The interval
containing peaks is calculated as the time difference between
the first and the last peak, the first peak’s arrival rate is then
set either to the minimum or maximum peak (depending on
whether the first median peak has a greater or a smaller arrival
rate than the last median peak in the trace) and the last peak
is set to the corresponding counter-part.

2) Trend Part: Extracting the Trend Part is done almost
identically as in the simple model extraction process, since
hl-DLIM defines its Trend Part as a list of arrival rates at
the beginning and end of each trend segment, identically to



the arrival rate list extracted in s-DLIM. The only difference
is the offset before the first trend segment begins. The trend
segment always ranges from the maximum peak within one
seasonal period to the maximum peak within a following sea-
sonal period. The simple model extraction process allows this
maximum peak to be any seasonal peak. hl-DLIM, however,
only allows the first or last peak to be the maximum peak. As
a result the time offset for the first trend segment is slightly
different.

3) Burst Part: Bursts are detected and calibrated using the
same peak-only Seasonal Part as in s-DLIM. While the other
model extraction processes modeled each burst individually,
hl-DLIM only supports recurring bursts. Thus, only the first
burst offset and the inter burst period are extracted, as well as
only a single burst arrival rate. The first burst offset is selected
based on its time-stamp, whereas the period between recurring
bursts is calculated as the median inter burst period from the
independent bursts. The burst arrival rate is also calculated as
the median burst arrival rate.

4) Noise Part: In hl-DLIM, noise is extracted using our
previously described filtering approach, thus having the same
noise reduction side-effects as in the other model extraction
processes. hl-DLIM, however, only supports a uniformly dis-
tributed random variable as noise. In order to eliminate outliers,
the minimum and maximum value of the respective uniform
distribution are selected as the 10th and 90th percentile of the
difference between the filtered and unfiltered arrival rates.

VII. MODEL ACCURACY EVALUATION

We evaluate the presented model extraction methods based
on nine different real-world Web server traces covering be-
tween two weeks and seven months. The traces all are strongly
influenced by human usage patterns. The extraction methods
are applied to these traces in order to extract DLIM instances
and compare them to the corresponding original traces by
computing the relative median errors.

s-DLIM and hl-DLIM extraction are applied to extract
model instances for all traces. For these extraction methods we
also separately evaluate the effect of noise extraction, including
noise reduction. The shape of the interpolating functions is
always selected as the DLIM SinTrend, meaning that sin-flanks
are always used for the interpolation between arrival rate peaks
and lows. We chose SinTrend because it fits closest to the
original trace in the majority of cases. For the same reasons,
ExponentialIncreaseAndDecline is always selected for Burst
modeling (it is a child of Burst in the DLIM meta-model).
Trends are selected to be multiplicative since this way they
have a lower impact on arrival rate lows and a relatively high
impact on arrival rate peaks (contrary to additive Trends, which
have a constant impact on both). We do this, since arrival
rate lows vary less than arrival rate peaks according to our
observations.

s-DLIM is also configured with varying Trend lengths. Best
results are expected at Trend length of one Seasonal period,
whereas lower accuracy is expected at the longest evaluated
Trend length of three Seasonal periods. For traces with a
duration greater than one month, we also apply p-DLIM. p-
DLIM is configured to extract weeks as a periodic Trend list
with two Trend segments of the length of 3 and 4. Additionally,

it extracts a bi-weekly period with a Trend list using two Trend
segments of the length of 7. Finally, it extracts a monthly (4-
week) period with a Trend list using two Trend segments of
the length of 14.

We evaluate the model extraction accuracy by computing
the relative errors for each pair of corresponding entries in the
extracted model instance and trace. The median of the relative
error values is presented in this paper. The mean relative error
is prone to deflection by positive outliers. Moreover, we com-
pare the extraction error and run-time on commodity hardware
(Core i7 4770, 16 GB RAM) against the BFAST time-series
decomposition [17] (which returns split data as opposed to a
descriptive model). To enable a fair comparison, we configured
BFAST to extract one seasonal pattern and not more than one
trend per day. In contrast to DLIM, where seasonal patterns are
represented by piece-wise interpolating functions, in BFAST’s
output, the seasonal pattern is represented as a less compact
discrete function.

A. Internet Traffic Archive and BibSonomy Traces

The first batch of traces was retrieved from The Internet
Traffic Archive3. The Internet Traffic Archive includes the
following traces: ClarkNet-HTTP (Internet provider WWW
server), NASA-HTTP (Kennedy Space Center WWW server),
Saskatchewan-HTTP (University WWW server), and World-
Cup98 (official World Cup 98 WWW servers). Additionally,
we used a six week long trace of access times to the social
bookmarking system BibSonomy [3], beginning on May 1st
20114. All traces were parsed to arrival rate traces with a
quarter-hourly resolution (96 arrival rate samples per day).

Table I shows the relative median errors for s-DLIM, p-
DLIM, and the hl-DLIM extraction for different configurations.
It also displays run-time of the overall most accurate extraction
configuration (s-DLIM, ignoring noise, trend length 1) as an
average value over ten runs. In cases in which BFAST decom-
position terminated, errors and run-times are also displayed for
BFAST. The ClarkNet and NASA extraction results show that
s-DLIM provides the best accuracy, especially with a Trend
length of 1. Noise reduction does not seem to help for this
particular trace during the DLIM extraction. The result does
not improve when extracting the noise, as noise generated by a
random variable does not reproduce the exact measured results
and increases the absolute arrival rate difference between trace
and model. We trace the discrepancies between the extracted
model instance and the original trace to three major causes:

• In some cases, bursts are not detected with full accuracy.
• The NASA server was shut down for maintenance between

time-stamps 2700 and 2900. The extraction methods do not
have contingencies for this case.
• Deviating Seasonal Patters are a major cause of inaccuracy

in the extracted models. The extraction methods all assume
a single, repeating Seasonal Part. Depending on the trace,
this assumption may be valid to a different extent. In this
case, the extracted Seasonal pattern is able to approximate
most days in the trace, but a number of significant de-
viations occur. Manual modeling in the DLIM editor can

3Internet Traffic Archive: http://ita.ee.lbl.gov/
4The request log dataset is obtainable on request for research purposes:

http://www.kde.cs.uni-kassel.de/bibsonomy/dumps/



TABLE I. MODEL EXTRACTION ERRORS FOR THE INTERNET TRAFFIC ARCHIVE AND BIBSONOMY TRACES.
Trace 1. ClarkNet 2. NASA 3. Saskatchewan 4. WorldCup98 5. BibSonomy

relative relative relative relative relative
Extraction Parameters median (%) median (%) median (%) median (%) median (%)
p-DLIM, noise extracted too short 32.223 43.293 52.304 37.387
p-DLIM, noise eliminated too short 28.944 35.831 53.316 35.378
p-DLIM, noise ignored too short 23.633 35.663 53.495 36.264
s-DLIM, Trend length 1, noise extracted 21.195 26.446 35.551 19.735 26.988
s-DLIM, Trend length 1, noise eliminated 17.509 23.56 26.492 16.882 21.479
s-DLIM, Trend length 1, noise ignored 12.409 18.812 29.171 12.979 23.831
s-DLIM, Trend length 2, noise ignored 14.734 20.8 30.273 15.691 26.786
s-DLIM, Trend length 3, noise ignored 14.919 27.577 32.085 19.161 28.218
hl-DLIM, Trend length 1, noise extracted 20.105 26.541 37.942 16.093 27.513
hl-DLIM, Trend length 1, noise eliminated 19.361 24.539 33.24 15.66 25.433
hl-DLIM, Trend length 1, noise ignored 72.924 55.575 80.792 43.957 42.268
BFAST 12.243 no result no result no result no result
average s-DLIM run-time (ms) 4.2 25.2 118.8 11.8 125
average BFAST run-time (ms) 76276 no result no result no result no resultWorldCup98,5s-DLIM,5trend5length51,5noise5ignored5Arrival5Rates
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Fig. 4. Arrival rates of the original WorldCup98 trace (blue) and the extracted DLIM instance (red) using s-DLIM with a Trend length of 1 and ignoring noise.

circumvent this problem, as DLIM itself supports mixes
of multiple seasonal patterns. We are currently working
on extending the automated extractors to make use of this
feature. Ideas range from the inclusion of additional meta-
knowledge, such as calendar information, to the imple-
mentation of seasonal break detection, as introduced in
BFAST [17].

In the case of the Saskatchewan-HTTP extraction, noise
reduction improves the s-DLIM results. However, overall the
results are not as good as they are for the other traces. The
major explanation for the relatively poor results is once more
the Seasonal pattern deviation. Since the Saskatchewan-HTTP
trace extends over 7 months, the Seasonal patterns have a lot
of room for deviation. The model extractors fail to capture
this. This leads to an additional error in the Trend calibration,
as trends are supposed to be calibrated, so that the greatest
Seasonal peak in every Seasonal iteration matches the trace’s
nearest local arrival rate maximum. Since the Seasonal pattern
deviation causes the extracted Seasonal peak’s time of day
to not match the trace’s Seasonal peak’s time of day, the
calibration takes place at the wrong point of time. This also
explains why a majority of extracted days have a lower peak
then their counterparts in the original trace.

The major deviation from the trace’s Seasonal patterns also
explains why s-DLIM performs better using noise elimination
for the Saskatchewan-HTTP extraction. Noise reduction helps
to mitigate the effect of seasonal pattern changes over time,
thus reducing the effect of the Seasonal pattern deviation.

Similarly to the Saskatchewan trace, s-DLIM extraction
of the BibSonomy trace also improves with noise filtering.
We explain this through the observation that the BibSonomy
trace features a significant number of bursts, occurring at a
relatively high frequency, as well as significant noise (as seen
in Fig. 5). Without filtering, some of these bursts are included
in the seasonal pattern by the s-DLIM extractor, distorting
the extracted seasonal pattern. When applying noise reduction,
the influence of these bursts is diminished. Therefore, the
extracted seasonal pattern is more stable, leading to increased
accuracy as major bursts are still extracted during s-DLIMs
burst extraction. The BibSonomy trace demonstrates that s-
DLIM (and also p-DLIM) are capable of dealing with traces
featuring a significant amount of noise.

p-DLIM performs well compared to the other two extrac-
tion processes. p-DLIM assumes that all trends repeat. In the
case of the NASA trace, this assumption seems to be relatively
accurate. Even for the Saskatchewan trace, p-DLIM performs
relatively well when compared to s-DLIM.

The hl-DLIM extraction shows an entirely different pic-
ture. Considering that hl-DLIM uses only a small number of
pre-defined parameters, the extracted hl-DLIM instances are
surprisingly close to the detailed DLIM models. Contrary to
what was observed in the DLIM extraction, however, the hl-
DLIM extraction strongly relies on noise reduction. If the
noise is ignored and not filtered, hl-DLIM extraction accuracy
drops dramatically. This can easily be attributed to the linear
interpolation between the extracted peaks. Since hl-DLIM
interpolates between the highest and lowest peak (thus only
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Fig. 5. Arrival rates of the original BibSonomy trace (blue) and the extracted DLIM instance (red) using s-DLIM with Trend length 1 and noise reduction.

extracting two peaks), the non-filtered trace offers a high
number of noisy peaks with minimal impact on the overall
arrival rate. The filtered version, however, only offers a few
remaining peaks, which have a much higher impact on the
overall arrival rate. Applying noise reduction forces the hl-
DLIM extractor to only consider the peaks with significant
impact rather than accidentally choosing outliers as peaks.

The WorldCup98 extraction results are notable in that s-
DLIM and hl-DLIM extraction perform relatively well, where-
as p-DLIM performs worst for all considered traces. The obvi-
ous cause of this is the observation that the WorldCup98 trace
does not feature recurring trends and only features increasing
trends. The s-DLIM and hl-DLIM extraction methods can
handle this easily, whereas p-DLIM cannot.

Comparing the accuracy of our extraction methods with
that of BFAST proves difficult, given that, for four of the five
considered traces, BFAST did not terminate within 1.5 hours,
which would make BFAST execution at least 45000 time
slower than s-DLIM in these cases. However, the ClarkNet
trace extraction, shows that our extraction methods exhibit
accuracy comparable to the accuracy of BFAST in cases
where BFAST terminates in a reasonable amount of time.
To eliminate the possibility of BFAST not terminating due to
configuration errors on our side, we ran the same configuration
on shortened versions of the respective traces. BFAST’s time-
series analysis of these shortened traces terminated, however,
the latter are too short to meet our criteria of sufficiently long
traces with recurring seasonal patterns and trends.

B. Wikipedia Traces

The second batch of traces was retrieved from the Wiki-
pedia page view statistics5. They were parsed from the project-
count dumps, which already feature arrival rates with an hourly
resolution. We restrict our analysis to the English, French,
German and Russian Wikipedia projects, covering four of the
six most requested Wikipedia projects and being distributed
over different time-zones. All traces are from December 2013,
with the exception of the English Wikipedia trace, which
is from November 2013. The English December 2013 trace

5Wikipedia traces: http://dumps.wikimedia.org/other/
pagecounts-raw/2013/

exhibits a major irregularity during the 4th day, which we
attribute to a measurement or parsing error. While the French,
German, and Russian Wikipedia projects are mostly accessed
from a single time zone, the English Wikipedia is retrieved
from all over the world. Thus, evaluating the impact of access
behavior over different time zones and helping to assess how
well the DLIM extraction methods deal with local vs. global
access patterns.

The Wikipedia extraction results in Table II confirm many
of the observations made with the Internet Traffic Archive
traces. Noise extraction is most useful for hl-DLIM extraction;
Trend length of 1 as part of s-DLIM performs best. The overall
accuracy, however, is significantly better than for the Internet
Traffic Archive traces since the Seasonal pattern deviation,
while still relevant, exhibits less impact than before.

The Russian Wikipedia trace differs from the other Wiki-
pedia traces. Noise reduction also improves s-DLIM, while,
as usual, being useful for hl-DLIM extraction. The overall
accuracy is similar to the other Wikipedia trace extractions.
For this single trace, however, the Seasonal patterns are shaped
in such a way that the noise reduction lessens the impact of
the Seasonal pattern deviation.

The extraction results for the English Wikipedia trace
exhibit by far the best overall accuracy across all examined
traces. The reason for this is the unusually high arrival rate base
level. Since wikipedia.org is accessed globally at all times, the
load intensity variations on top of the base level have little
impact on the relative load variations in general. As a result,
all modeling errors are also relatively small.

In terms of accuracy, our extraction processes perform as
well as the BFAST decompositions. s-DLIM performs better
than BFAST for both the German and French Wikipedia
traces. Here, s-DLIM’s accuracy profits from its support of
multiplicative trends. BFAST does, however, provide better
accuracy for the English and Russian traces. In these cases
BFAST’s sophisticated trend calibration mechanisms outper-
form s-DLIM. s-DLIM is, however, significantly faster than
BFAST. Running on the same machine, LIMBO’s s-DLIM
implementation performed on average 8354 times faster than
BFAST’s R implementation and returned results in all cases
in less than 0.2 seconds.



TABLE II. WIKIPEDIA.ORG MODEL EXTRACTION ERRORS.

1. German 2. French 3. Russian 4. English
Trace Wikipedia Wikipedia Wikipedia Wikipedia

relative relative relative relative
Extraction Parameters median (%) median (%) median (%) median (%)
s-DLIM, Trend length 1, noise extracted 11.215 10.472 9.964 7.764
s-DLIM, Trend length 1, noise eliminated 10.511 8.566 9.912 7.838
s-DLIM, Trend length 1, noise ignored 8.538 7.6 11.251 4.855
s-DLIM, Trend length 2, noise ignored 9.956 8.973 11.683 5.27
s-DLIM, Trend length 3, noise ignored 11.771 9.813 11.42 7.23
hl-DLIM, Trend length 1, noise extracted 11.898 8.503 12.392 7.75
hl-DLIM, Trend length 1, noise eliminated 1 11.393 8.373 12.496 7.961
hl-DLIM, Trend length 1, noise ignored 13.126 10.816 13.31 8.868
BFAST 11.223 8.511 5.809 2.302
average s-DLIM run-time (ms) 3.9 3.5 5.8 3.2
average BFAST run-time (ms) 23518 23630 23803 21517fr.wikipedia.org, s-DLIM, trend length 1, noise ignored Arrival Rates
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Fig. 6. Arrival rates of the original French Wikipedia trace (blue) and the extracted DLIM instance (red) using s-DLIM with Trend length 1 and ignoring noise.

VIII. CONCLUSIONS

This paper presents the Descartes Load Intensity Model
(DLIM) for capturing load profiles by a structured combina-
tion of piecewise mathematical functions. We introduce three
methods enabling the automated extraction of DLIM instances
from existing arrival rate traces:

• Simple DLIM Extraction (s-DLIM): Extracts DLIM in-
stances from existing arrival rate traces. s-DLIM exhibits
an accuracy with an average median error of 12.4% when
optimizing the extraction configuration for each trace.

• Periodic DLIM Extraction (p-DLIM): Extracts
DLIM instances from existing arrival rate traces. In con-
trast to s-DLIM, the trends within p-DLIM instances are
intended to be repeated. This enables p-DLIM’s use in load
intensity forecasting.

• hl-DLIM Extraction: Extracts hl-DLIM instances from
existing arrival rate traces. Due to hl-DLIM’s restrictions,
this method is less accurate than s-DLIM. The limited
accuracy, however, can be improved by applying noise
reduction during the extraction process.

The results of our evaluation showed that the proposed
model extraction methods are capable of extracting DLIM in-
stances with good accuracy from nine different real-world load
intensity traces. The model extraction performs best for the
Wikipedia traces. Extracted Seasonal patterns match the trace’s
days well and the overlaying Trends are precisely calibrated.
Concerning the Internet Traffic Archive traces, we identified

the seasonal pattern deviations for traces extending over several
months as a major challenge for future work. Changes of
daily usage patterns over the course of these particularly long
traces lead to a decrease in accuracy. Nevertheless, the median
error remains below 27%. Furthermore, the BibSonomy trace
demonstrates that the extraction mechanisms are robust and
capable of dealing with noisy arrival rate patterns. In addition,
the results show that DLIM itself is capable of accurately
capturing real-world load intensity profiles, independent of the
explicit extraction processes we introduce.

As part of future work on LIMBO and the model in-
stance extraction methods, we plan the implementation of
more advanced model refinement and calibration features.
Our primary target will be the mitigation of the effect of
Seasonal pattern deviation. Another avenue of future work will
be the adaptation of the model instance extraction methods
for workload forecasting. The relative accuracy of p-DLIM
compared to s-DLIM in the NASA and Saskatchewan traces
already shows that further work on the use of p-DLIM for
load intensity forecasting is warranted. We are also working
on extending LIMBO to provide compatibility with additional
existing benchmarking frameworks.
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