
SimLoss: Class Similarities in Cross Entropy

Konstantin Kobs, Michael Steininger, Albin Zehe, Florian Lautenschlager, and
Andreas Hotho

Julius-Maximilians University Würzburg
{kobs,steininger,zehe,lautenschlager,hotho}@informatik.uni-wuerzburg.de

Abstract. One common loss function in neural network classification
tasks is Categorical Cross Entropy (CCE), which punishes all misclas-
sifications equally. However, classes often have an inherent structure.
For instance, classifying an image of a rose as “violet” is better than
as “truck”. We introduce SimLoss, a drop-in replacement for CCE that
incorporates class similarities along with two techniques to construct
such matrices from task-specific knowledge. We test SimLoss on Age
Estimation and Image Classification and find that it brings significant
improvements over CCE on several metrics. SimLoss therefore allows for
explicit modeling of background knowledge by simply exchanging the
loss function, while keeping the neural network architecture the same.1

Keywords: Cross Entropy · Class Similarity · Loss Function.

Roses are red, violets are blue,
both are somehow similar, but the classifier has no clue.

(Common proverb)

1 Introduction

One common loss function in neural network classifiers is Categorical Cross En-
tropy (CCE). CCE tries to maximize the assigned target class probability and
punishes every misclassification in the same way, independent of other informa-
tion about the predicted class. Often, however, classes have a special order or
are similar to each other, such as different flowers in image classification. Includ-
ing class similarities using the inherent class structure (e.g., class order), class
properties (e.g., class names) or external information about the classes (e.g.,
knowledge graphs) in the training procedure would allow the classifier to make
less severe mistakes as it learns to predict similar classes.

In this work, we modify Categorical Cross Entropy and propose Similarity
Based Loss (SimLoss) as a way to explicitly introduce background knowledge
into the training process, as visualized in Figure 1. For this, we augment CCE
with a matrix containing class similarities and propose two techniques in order to
prepare such matrices that exploit certain class relations: class order and general

1 Code and additional resources: https://github.com/konstantinkobs/SimLoss.

https://github.com/konstantinkobs/SimLoss

2 K. Kobs et al.

Fig. 1: SimLoss includes knowledge about class relations in the loss function.

class similarities. We show on two tasks, Age Estimation (exploiting class order)
and Image Classification (exploiting semantic similarities using word embed-
dings), that SimLoss can significantly outperform CCE. We also show that tun-
ing the hyper-parameters of both generation techniques influences the model’s
performance on metrics measuring either more or less specific predictions.

Our contribution is twofold: First, we introduce a drop-in replacement for
CCE that incorporates class similarities to support the training of neural network
classifiers. Second, we describe two techniques to convert task-specific knowledge
into matrices that can be used in the proposed loss function.

2 Related Work

Previous work on including task-specific knowledge in classification is mostly
designed for specific use cases, requires modifications to the model architec-
ture or training procedure, or implicitly learns the information while training.
Sukhbaatar et al. implicitly learn a probability instead of a similarity matrix
(we provide an analysis of the relationship in the online material) that indicates
the chance of a falsely assigned class label in order to compensate for noise [13].
This, however, requires changes in the network architecture and a special train-
ing procedure. An analysis of the relation between probability and similarity
based matrices is further analyzed in the online resources. Related to tasks with
similar classes are tasks where classes have a taxonomic structure, which is called
hierarchical classification. Specifically designed loss functions and/or model ar-
chitectures use the fact that classes that belong to the same category are more
similar than others [1, 14]. Izbicki et al. exploit the geospatial relation between
areas on earth to automatically geotag input photos [5]. Their model learns to
predict a mixture of densities that spread across multiple areas instead of spe-
cific classes/areas. A number of task-specific methods try to use the inherent
class order of so-called ordinal classification tasks [3, 4]. For example, Niu et al.
use multiple binary classifications each indicating whether the value is greater
than the class value [11]. Model architectures incorporating semantic similarities
using word embeddings were shown to usually predict more similar classes if
they fail compared to models without similarity information [2, 12]. In contrast
to the related work, the use of SimLoss does not require special model architec-
tures and works on any common neural network classifier. This makes it easy to
explicitly support the training procedure with background knowledge.

SimLoss 3

3 Similarity Based Loss

Our proposed Similarity Based Loss (SimLoss) is based on the Categorical Cross
Entropy (CCE). CCE assumes that only one class is correct and is defined as

LCCE = − 1
N

∑N
i=1 log(pi[yi]), where N is the size of the dataset and pi[yi] is

the probability vector output of the network at the target index yi for the ith
example. To model additional knowledge, SimLoss adds a matrix S, which gives

LSimLoss = − 1

N

N∑
i=1

log

(
C∑

c=1

Syi,c · pi[c]

)
, (1)

where S ∈ [0, 1]C×C encodes class relations. Si,j is the similarity between classes
i and j. Si,j = 1 if and only if classes i and j are identical or interchangeable.

SimLoss is equal to CCE if S = Ic (identity matrix). Non zero values lead to
smaller losses when the network gives a high score to classes similar to the correct
one. For misclassifications, this leads the network to predict similar classes.
Matrix Generation We now propose two techniques to generate the matrix
S, which explicitly captures background knowledge about class relations. Our
techniques allow the modeling of class order and general class similarities.

Class Order: If classes have an inherent order, we can calculate class simi-
larities based on the distance between the class indices. As classes lying next to
each other are more similar, we construct the similarity matrix S as follows: As-
suming the same distance between neighboring classes, we define the reduction
factor r ∈ [0, 1) to be the rate at which the similarity will get smaller given the
distance to the correct class. The similarity matrix is then

Si,j = r|i−j| ∀i, j ∈ {1, . . . , C}. (2)

The smaller the reduction factor, the faster the entries converge to 0 with in-
creasing distance to the target class. If the reduction factor is set to 0, the matrix
becomes the identity, resulting in the CCE loss. The reduction factor is a hyper-
parameter of this technique, which can be tuned using a validation dataset to
optimize the model for different metrics, as we show in Section 4. As SimLoss
is equivalent to CCE when r = 0 (assuming 00 = 1), an optimized r will always
perform at least as good as CCE unless we overfit.

General Class Similarity: For some classification tasks, a similarity between
classes, such as class names, is available or can be defined. Then, we can use an
appropriate similarity measure sim : C×C → [0, 1] that returns the similarity for
two classes i, j ∈ {1, . . . , C} and calculate all entries of the similarity matrix S.
Such similarity measures can be manual, semi- or fully-automatic. Additionally,
we define a lower bound l ∈ [0, 1) as a hyper-parameter that controls the minimal
class similarity that should have an impact on the network punishment. We cut
all similarities below l and then scale them such that l becomes 0:

Si,j =
max(0, sim(i, j)− l)

1− l
∀i, j ∈ {1, ..., C}. (3)

Assuming only the diagonal of S are ones, converging l → 1 leads to the CCE
loss, as only the ones in the diagonal are preserved by the lower bound cut-off.

4 K. Kobs et al.

4 Experiments

In the following, we compare SimLoss to CCE by applying them to the same
neural network model with the same hyper-parameters for Age Estimation and
Image Classification. Age Estimation is an ordinal classification task with the
goal of predicting the age of a person given an image of their face. The classes
have an inherent order: two classes are more similar if they represent similar ages.
A misclassification is thus less harmful for nearer classes. In Image Classification,
the goal is to recognize an object shown in an image. Here, we use class name
word embeddings to model semantic class similarities. For example, classifying
an image of a rose as “violet” is less harmful than classifying it as “truck”.
Datasets and Resources For Age Estimation, we train neural networks on
the UTKFace [15] and AFAD [11] datasets, both containing human face images
annotated with their age. For UTKFace, we use all images for ages 1 to 90, while
AFAD has 61 age classes. We randomly sample training/validation/test sets us-
ing 60/20/20 splits. For Image Classification, we use the CIFAR-100 dataset [7].
We also use word embeddings from a word2vec model pretrained on Google
News [9] to calculate the semantic similarity between class names. Four class
names do not yield a word embedding and are therefore eliminated. Each re-
maining class has 450 training, 50 validation, and 100 test examples.
Evaluation Metrics To evaluate our method, we employ task-dependent eval-
uation metrics that focus both on correct predictions and the similarity of pre-
dicted and target class. For Age Estimation: Accuracy (Acc), Mean Absolute
Error (MAE), and Mean Squared Error (MSE). Accuracy captures exact predic-
tions, while MAE and MSE capture the distance to the target class, thus consid-
ering class order. Image Classification: Accuracy, Superclass Accuracy (SA), and
Failed Superclass Accuracy (FSA). Every example in the CIFAR-100 dataset has
a main class and a superclass (e.g., classes “rose” and “orchid” have the super-
class “flower”). Superclass Accuracy is the fraction of examples that are correctly
put into the corresponding superclass. This value is always at least as high as
Accuracy, as a correctly assigned class implies the correct superclass. Failed
Superclass Accuracy only observes misclassified examples, thus measuring the
similarity of misclassifications compared to the target class. A high FSA means
that if the model predicts the wrong class, the predicted class is at least similar
to the correct class. Accuracy only counts exact predictions, while SA and FSA
focus on the semantic similarity of the prediction to the target class.
Generating the Similarity Matrix Since Age Estimation has equidistant
classes, the similarity matrix can be built using Equation (2) without any mod-
ifications. In Image Classification, we define the similarity matrix as the co-
sine similarity simcos : w → [−1, 1] between class name embeddings, where
simcos(w,w) = 1. To ensure compatibility with the definition in Section 3, we
set sim(i, j) = max(0, simcos(wi, wj)) in Equation (3).
Experimental Setup Since SimLoss is a drop-in replacement for CCE, we
investigate the effects of changing the loss function on our example tasks. Recall
that we do not focus on task specific models, but rather on the evaluation of
SimLoss as a general loss function which can be used on various tasks. Both

SimLoss 5

classification tasks are typical examples for using CCE. For Age Estimation, we
take the Convolutional Neural Network (CNN) from [11] and change the output
size to be the dataset’s number of classes. The input images are resized to 60 px
by 60 px and the values of all color channels are standardized. We use the soft-
max function and apply the SimLoss loss function using the similarity matrix
introduced above. We study the effect of the reduction factor r by performing
grid search for r ∈ {0.0, 0.1, . . . , 0.9} on the validation set. Optimizing the net-
work using Adam [6] with a learning rate of 0.001 and a batch size of 1024, we
employ early stopping [10] with a patience of 10 epochs on the validation MAE.
We smooth random differences (e.g., by weight initialization) by averaging over
10 runs. For Image Classification, the LeNet CNN [8] is used. Global standard-
ization is applied to the color channels of the input images. We stop early if the
Accuracy on the validation set plateaus for 20 epochs of the Adam optimizer
with a learning rate of 0.001, and a batch size of 1024. We optimize the ma-
trix generation technique’s lower bound l ∈ {0.0, 0.1, . . . , 0.8, 0.9, 0.99} with grid
search and average 10 runs per configuration. l = 0.99 makes the loss equivalent
to CCE, cutting all similarities except the diagonal.

5 Results

Table 1 shows the resulting mean metrics for the validation and test sets given a
reduction factor r for both Age Estimation datasets. The best performing reduc-
tion factors on the validation and test set are always higher than 0.0, meaning
that SimLoss outperforms CCE. Choosing the reduction factor then depends on
the metric to optimize for. For UTKFace, a reduction factor of 0.3 leads to the
best validation Accuracy, while 0.8 or 0.9 optimize MAE and MSE, respectively.
For AFAD, r = 0.5 yields the best validation result on Accuracy, while r = 0.7
results in the best MAE and MSE. Overall, choosing a smaller reduction factor
r ≈ 0.4 optimizes the Accuracy, while larger r ≈ 0.8 optimizes MAE and MSE.
This is because large r lead to higher matrix values and thus smaller punish-
ments for estimating a class near the correct age. A model optimized for that is
favored by metrics that accept approximate matches, such as MAE or MSE.

A Wilcoxon-Signed-Rank-Test with a confidence interval of 5 % shows that
optimizing the reduction factor always leads to significant improvements over
CCE. Sometimes, however, choosing the reduction factor based on a specific
metric also results in a trade-off between the chosen and other metrics.

For the Image Classification task, Table 2 shows the results for the validation
and test set of the CIFAR-100 dataset given a lower bound l. On average, the
best performing model always has a lower bound of less than 0.99, again showing
that SimLoss outperforms CCE. Also, a statistical test reveals that l = 0.9 gives
significantly better results on the test set in terms of Accuracy and Superclass
Accuracy. Smaller lower bounds tend to reduce the Accuracy as the loss function
hardly punishes any misclassification. For l ≈ 1, the loss is equivalent to CCE,
forcing the network to predict the correct class, thus increasing Accuracy. In
between, the network is guided to predict the correct class but is also not pun-

6 K. Kobs et al.

Table 1: Validation and test results averaged over 10 runs on UTKFace and
AFAD. Accuracy (Acc) is given in percent. Best validation values are written
in bold. Statistically significantly different test values are marked by + or −, if
they are on average better or worse than CCE (i.e. r = 0.0).

UTKFace AFAD

r
Validation Test Validation Test

Acc MAE MSE Acc MAE MSE Acc MAE MSE Acc MAE MSE

0.0 15.23 7.09 122.12 14.47 7.39 131.65 11.17 4.05 32.61 11.22 4.10 33.64

0.1 15.43 7.06 119.87 14.48 7.29 127.18 11.21 4.06 32.75 11.30 4.10 33.73
0.2 15.94 7.06 121.28 14.57 7.27 127.13 11.40 4.09 33.52 11.37 4.15− 34.60−

0.3 16.25 6.95 117.67 15.17+ 7.19+ 125.70 11.34 4.10 33.53 11.38+ 4.16− 34.53−

0.4 16.13 6.95 117.52 15.46+ 7.18+ 125.74 11.33 4.10 33.44 11.45+ 4.16− 34.56−

0.5 16.10 6.89 115.59 15.09 7.18+ 123.94 11.44 4.06 33.02 11.49+ 4.13 34.21
0.6 15.62 6.83 112.85 14.34 7.09+ 120.34+ 11.26 4.01 31.99 11.31 4.05+ 32.84+

0.7 14.39 6.79 110.12 13.07 7.08+ 121.19+ 11.22 3.95 31.17 11.11 4.02+ 32.36+

0.8 13.50 6.74 108.80 12.57− 7.01+ 117.99+ 8.58 4.58 38.69 8.55− 4.64 39.78
0.9 9.69 6.90 106.23 9.16− 7.18+ 117.62+ 6.55 5.09 44.87 6.47− 5.15− 45.82−

ished severely for misclassifications of similar classes. This improves Superclass
Accuracy, which pays attention to more similar classes.

Analysis To understand the effect of SimLoss, we focus on Age Estimation
whose one dimensional classes are easy to visualize. We compare the best models
for UTKFace trained using SimLoss and CCE, i.e. r ∈ {0.0, 0.3, 0.8, 0.9}. For
each r, we plot the mean output distribution for all examples in the dataset as
well as the real age distribution, which is shown in Figure 2a. CCE (r = 0.0)
resembles the real age distribution the best, while higher reduction factors tend
to aggregate groups of multiple age classes. With a higher reduction factor,

0 20 40 60 80
0.0

0.2

0.4
r = 0.0
r = 0.3
r = 0.8
r = 0.9
real ages

a) All examples. CCE fits the real data
distribution the best.

0 20 40 60 80
0.0

0.2

0.4

0.6
r = 0.0
r = 0.3
r = 0.8
r = 0.9

b) All examples of class “30”. The grey line
indicates the target age.

Fig. 2: Mean probability distribution output for different r. High reduction fac-
tors lead the network to choose only few representative classes.

SimLoss 7

Table 2: Validation and test results over 10 runs with early stopping on the
modified CIFAR-100 dataset. Best validation values are written in bold. Statis-
tically significantly different test values are marked by + or −, if they are on
average better or worse than CCE (i.e. l = 0.99).

l
Validation Test

Accuracy SA FSA Accuracy SA FSA

0.99 46.89 % 55.78 % 16.73 % 39.51 % 49.22 % 16.05 %

0.90 47.42% 56.32 % 16.95 % 40.15 %+ 49.93 %+ 16.36 %
0.80 46.37 % 55.38 % 16.80 % 39.49 % 49.32 % 16.22 %
0.70 46.95 % 55.92 % 16.90 % 39.86 % 49.63 % 16.25 %
0.60 47.28 % 56.44% 17.39 % 40.00 % 50.00 % 16.67 %+

0.50 46.36 % 56.18 % 18.28 % 39.26 % 49.40 % 16.70 %+

0.40 38.03 % 50.58 % 20.28 % 32.18 %− 44.58 %− 18.30 %+

0.30 28.65 % 43.76 % 21.18% 24.43 %− 38.90 %− 19.13 %+

0.20 21.66 % 37.97 % 20.80 % 18.54 %− 33.68 %− 18.58 %+

0.10 16.40 % 31.68 % 18.31 % 14.25 %− 28.70 %− 16.85 %
0.00 2.80 % 8.37 % 5.77 % 2.53 %− 8.06 %− 5.71 %−

the number of spikes decreases and the distances between them increase: The
model chooses representative classes to which it mainly distributes the output
probability mass. This becomes apparent in Figure 2b, where we plot the mean
output distribution for all examples of age 30. The network with r = 0.9 focuses
its probability output to the two nearest representative classes, in this case “26”
and “35”. The Accuracy of the network decreases, as the output probability
mass is not on the correct class, but the distance of the prediction to the correct
class is smaller than for CCE. Representative classes are apparently chosen such
that frequent items receive more probability mass from the model. A higher
reduction factor therefore leads to a coarser class selection. This can be explained
by the optimization objective of the loss function. The loss should be smaller
for misclassifications of similar classes than for dissimilar classes. Representing
multiple similar classes as one class and predicting it more often for similar
classes does not lead to the smallest possible loss value. However, the loss gets
smaller compared to predicting dissimilar classes, as the punishment should be
smaller for classifying a similar class. In the case of Age Estimation, predicting
an age that lies close to the correct age will decrease the Accuracy, but perform
better than CCE on MAE and MSE. In Image Classification, selecting one or
multiple representative classes leads to smaller Accuracy but to higher Superclass
Accuracy and Failed Superclass Accuracy than CCE. Higher similarities in the
matrix thus guide the network to make coarser predictions, improving metrics
that accept predictions of similar classes. The results from Section 4 also show
that keeping the loss near CCE by choosing the similarity matrix conservatively
can improve on specific prediction metrics such as Accuracy as well.

8 K. Kobs et al.

6 Conclusion

In this work, we have presented SimLoss, a modified Categorical Cross Entropy
loss function that incorporates background knowledge about class relations in
form of class similarities. We have introduced two techniques to prepare similar-
ity matrices to exploit class order and general class similarity that can be used
to significantly improve the performance of neural network classifiers on differ-
ent metrics. Also, SimLoss helped with predicting more similar classes if the
model misclassified an example. In our analysis, we found that SimLoss forced
the model to focus on choosing representative classes. The number of repre-
sentative classes can be implicitly tuned by a hyper-parameter. While finding
the best hyper-parameter and similarity metric can be computationally expen-
sive and non-trivial, SimLoss can incorporate arbitrary similarity metrics into a
classifier.

References

1. Cesa-Bianchi, N., Gentile, C., Zaniboni, L.: Incremental algorithms for hierarchical
classification. Journal of Machine Learning Research 7(Jan), 31–54 (2006)

2. Frome, A., Corrado, G.S., Shlens, J., Bengio, S., Dean, J., Mikolov, T., et al.:
Devise: A deep visual-semantic embedding model. In: NIPS (2013)

3. Fu, Y., Huang, T.S.: Human age estimation with regression on discriminative aging
manifold. IEEE Transactions on Multimedia 10(4), 578–584 (2008)

4. Guo, G., Mu, G., Fu, Y., Huang, T.S.: Human age estimation using bio-inspired
features. In: CVPR. IEEE (2009)

5. Izbicki, M., Papalexakis, E.E., Tsotras, V.J.: Exploiting the earth’s spherical ge-
ometry to geolocate images. In: ECML-PKDD (2019)

6. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

7. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Tech. rep., Citeseer (2009)

8. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

9. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

10. Morgan, N., Bourlard, H.: Generalization and parameter estimation in feedforward
nets: Some experiments. In: NIPS (1990)

11. Niu, Z., Zhou, M., Wang, L., Gao, X., Hua, G.: Ordinal regression with multiple
output cnn for age estimation. In: CVPR (2016)

12. Norouzi, M., Mikolov, T., Bengio, S., Singer, Y., Shlens, J., Frome, A., Corrado,
G.S., Dean, J.: Zero-shot learning by convex combination of semantic embeddings.
arXiv preprint arXiv:1312.5650 (2013)

13. Sukhbaatar, S., Bruna, J., Paluri, M., Bourdev, L., Fergus, R.: Training convolu-
tional networks with noisy labels. arXiv preprint arXiv:1406.2080 (2014)

14. Wu, C., Tygert, M., LeCun, Y.: Hierarchical loss for classification. arXiv preprint
arXiv:1709.01062 (2017)

15. Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversarial
autoencoder. In: CVPR (2017)

16. Zhang, Z., Sabuncu, M.: Generalized cross entropy loss for training deep neural
networks with noisy labels. In: NIPS (2018)

SimLoss 9

Appendix

Relation between Similarity and Probability-based Matrices in
SimLoss

Some works use a loss function similar to our proposed SimLoss. Instead of
similarities, the matrix S consists of probabilities, such that each row sums to
one [5,13]. We will call this loss Lprob. We discuss the relation between both loss
versions — similarity versus probability matrix — in this appendix.

We can show that both similarities and probabilities in the matrix lead to the
same gradients: We can transform our loss LSimLoss into Lprob by dividing each
similarity matrix entry by the row’s sum. This loss depends on the network’s
output — the probability distribution p — as well as the corresponding target
class indices y. It can be written as:

Lprob = − 1

N

N∑
i=1

log

(
C∑

c=1

1∑C
c′=1 Syi,c′

Syi,c · pi[c]

)

= − 1

N

N∑
i=1

log

(
1∑C

c′=1 Syi,c′

C∑
c=1

Syi,c · pi[c]

)

= − 1

N

N∑
i=1

[
log

(
C∑

c=1

Syi,c · pi[c]

)
− log

(
C∑

c′=1

Syi,c′

)]

= − 1

N

N∑
i=1

[
log

(
C∑

c=1

Syi,c · pi[c]

)]
+

1

N

N∑
i=1

[
log

(
C∑

c′=1

Syi,c′

)]

= LSimLoss +
1

N

N∑
i=1

[
log

(
C∑

c′=1

Syi,c′

)]
.

The second summand leads to different loss function values for both matrices.
It does not depend on the probability output p. Therefore, when calculating the
gradients with respect to p, this term becomes zero:

∂

∂p
L′SimLoss =

∂

∂p
LSimLoss .

Both LSimLoss and Lprob yield the same gradients when optimizing the model.
If the largest values in the matrices are on the diagonal, both matrix variants will
have the same parameters when reaching the global optimum [16]. Even though
both methods theoretically lead to the same results, our method is less restrictive
since it does not require a probability distribution per row. For example, while
similarities can be calculated for each class pair independently, a probability
distribution needs to be normalized over all values in the row prior to use. For

10 K. Kobs et al.

tasks with a large number of classes, the similarity matrix might not need to be
stored but could be calculated on the fly, while probabilities would cause larger
computational costs. Especially on edge devices with very limited memory, this
is an advantage of our method.

Another advantage of similarities compared to probabilities is that, because
the diagonal of the similarity matrix consists of ones, a value of zero can be
reached by the loss function, making the loss value more interpretable. A loss
value of zero always means that the probability mass of the neural network
output vector is put into the correct class, even if there are similar classes.
Normalizing such a matrix to ensure probability distributions per row would
always yield larger loss values, even if the correct class is predicted with 100 %
probability. Therefore, LSimLoss always has a lower bound of zero, which gives
an interpretable impression of the training status. In a probability matrix based
loss, such an interpretation is not given as the lower bound of the loss depends
on the probability distributions in the matrix rows. A loss value of zero can only
be achieved when using the identity matrix. This, however, would be equivalent
to Categorical Cross Entropy and would not allow for including background
knowledge into the model.

	SimLoss: Class Similarities in Cross Entropy

