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Abstract. Evaluating the explanations given by post-hoc XAI approaches
on tabular data is a challenging prospect, since the subjective judgement
of explanations of tabular relations is non trivial in contrast to e.g. the
judgement of image heatmap explanations. In order to quantify XAI per-
formance on categorical tabular data, where feature relationships can of-
ten be described by Boolean functions, we propose an evaluation setting
through generation of synthetic datasets. To create gold standard expla-
nations, we present a definition of feature relevance in Boolean functions.
In the proposed setting we evaluate eight state-of-the-art XAI approaches
and gain novel insights into XAI performance on categorical tabular data.
We find that the investigated approaches often fail to faithfully explain
even basic relationships within categorical data.

Keywords: Explainable AI · Evaluation · Synthetic data

1 Introduction

Black box classifiers such as deep neural networks (DNNs) have been established
as state-of-the-art in many machine learning areas. Even though they give strong
predictions, their models contain lots of non-linear dependencies, causing their
decisions to become untraceable. As a result, a branch of research in explainable
artificial intelligence (XAI) has developed, aiming to give local explanations for
single predictions of trained black box models in a post-hoc fashion [6].

Problem. While there are many approaches to acquire such explanations, no
unified evaluation method has been proposed so far. While easily comprehensible
domains like image and text classification use simple presentation of explanations
[3] and user studies [6], XAI behavior on tabular data is largely unexplored.

Objective. Post-hoc XAI explanations are inherently approximations, giving
simplified but not necessarily faithful insights into highly complex models [11].
Therefore, assessing the limits of these approaches is a central point of research
interest. We take a first step to investigate post-hoc XAI performance on DNNs
trained on tabular data, by developing a test setting for categorical tabular data,
where feature relationships can often be expressed via Boolean functions.
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Approach and Contribution. In this paper, we design synthetic datasets
reflecting typical relationships of real-world data such as logical AND, OR and
XOR connections between categorical attributes. We propose a definition of
feature importance in Boolean functions in the context of XAI to generate gold-
standard explanations for our datasets. Using this data, we present an evaluation
setting for XAI approaches, that allows for evaluation of data with underlying
complex feature relationships. This setting is used to analyze and compare eight
state-of-the-art XAI approaches. Evaluation on an expert-annotated real dataset
suggests that our results translate well to real data. We publish our datsets to
facilitate comparison of XAI approaches in a standardized evaluation setting.

2 Related Work

Aside from subjective image explanations [3] and resource intensive user studies
[6], several approaches have been used to evaluate XAI performance.

In [5,9] model faithfulness of their approaches is evaluated by explaining pre-
dictions of inherently explainable linear models and comparing obtained expla-
nations directly to the model. Performance of XAI approaches when explaining
non-linear classifiers, however, can not be assessed in this evaluation setting.

Additionally, [9] also evaluate the faithfulness of their local approximation
model by measuring if it corresponds to changed inputs in the same way as the
classifier it approximates. This evaluation can, however, only be performed on
XAI approaches that train a simplified classifier as a local approximation.

Perturbation-based evaluations, e.g. as used in [12], iteratively remove fea-
tures with the highest relevance from data and re-classify. Explanations are
rated higher, the faster the classification error increases. While perturbation-
based evaluation can be applied to classification tasks where the removal of
single features is expected to gradually impair the performance of the classifier,
this assumption does not hold for categorical tabular data in general.

3 Investigated XAI Approaches

Perturbation-based explanation approaches mask or remove input features
from data samples to observe the change in classifier output. While they pose
no architectural constraints on the classifier, they are computationally intensive.
LIME (Local Interpretable Model-agnostic Explanations) [9] uses perturbations
to explore the classifier outputs locally around a given input. It trains a local
linear classifier and uses the weights as scores of input feature relevance. Shapley
Value sampling [4] is based on the Shapley value from cooperative game theory,
a unique solution for distributing an achieved score onto cooperating players,
under a list of desirable criteria. Shapley value sampling approximates this NP-
complete problem with a sampling approach, evaluating the output of possible
feature value combinations through perturbation. (Kernel) SHAP (Kernel SHap-
ley Additive exPlanation) [6] uses a custom kernel for the LIME XAI approach,
in order to adapt LIME to approximate Shapley values.
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Gradient-based XAI approaches use the gradient of a gradient descent
based classifier to approximate explanations through few backpropagations, con-
siderably saving runtime in comparison to perturbation-based approaches. For
our evaluation, we use the implementations of [1]. Saliency maps [14] highlight
the most influential pixels using a first order approximation of the absolute gra-
dient of the predicted output with respect to the input for a specific data sample.
Gradient×Input [13] builds on the Saliency approach, multiplying the signed re-
sult of Saliency with the corresponding input feature. Integrated Gradients [15]
computes the average output gradients with respect to different inputs. Gra-
dients are computed for values on a linear path between the data sample and
an uninformative baseline input. ε-LRP (ε-Layerwise Relevance Propagation) [3]
defines the relevance of a neuron as all influence it has on the neurons of the next
layer, multiplied by these neurons’ activations for a specific data sample. In this
work we use the reformulated implementation by [1]. DeepLIFT [12], like LRP,
computes the relevance of a neuron by measuring the influence on neurons of the
next layer, additionally subtracting the influence of an uninformative baseline.

4 Data Generation Approach

Since categorical attributes can be binarized (e.g. one-hot encoding) to Boolean
features, we will focus on feature relationships modeled as Boolean functions.

In [7] a feature is considered influential in a sample if changing its value would
also change the function output. While this is intuitive on some inputs, on others
it assigns no influence to any feature. For example, consider the Boolean function
y = 0∧0 = 0, where no single feature can be changed to change y. In the context
of XAI, this would not allow to differentiate between the 0-inputs involved in
the function and irrelevant features. To address this, we adapt the influence
definition on basic Boolean operations (AND, OR, XOR) to assign influence to
both features, if no single feature can be changed to change the function output.
For more complex functions, we proceed as follows:

Definition 1. Let the Boolean function y be represented by a Boolean binary
expression tree [8]. For each data sample, we consider a child node c relevant to
the explanation of its parent operation-node o, iff the value of the subtree formed
by c, evaluated with respect to the sample, is relevant to the operation-node o.

We thereby distribute the relevance of a complex function by decomposing it into
its basic operations. We calculate their intermediate results for each data sample,
propagating the relevance of the entire function through all basic operations
down to its input features. The resulting explanations contain the input features
that most determine the output of complex Boolean functions.

When assessing XAI performance, we have to take into account that non-
matching explanations might be correct explanations of a weak classifier, instead
of a poorly performing XAI approach. For this, we train our classifiers in a 5-
fold stratified cross-validation setting, using only classifiers that reliably achieve
100% accuracy on training- and test-sets. Further, we generate synthetic datasets
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including every permutation of categorical attributes exactly once. This guaran-
tees that the test-sets contain permutations not seen during training, ensuring
that the classifier learned to perfectly generalize to the unseen test-data without
sensitivity to irrelevant inputs.

Following these restrictions, we expect XAI approaches to give the highest
scores to the relevant features. Thus, we consider a data sample to be correctly
explained, if the top scoring features given by an XAI approach match the rele-
vant features of the ground truth explanation.

5 Experiments

The following setup is used throughout all of our experiments.
Datasets are generated following the criteria of Sect. 4. We set a fixed

dataset size of n binary features, for which we include every permutation once
in the dataset, giving 2n data samples. We then generate the label for each data
sample with a Boolean function and generate the explanation of every data sam-
ple according to Sect. 4. Features that were not used in the generation of the
label hereby act as noise that XAI approaches may falsely consider relevant. All
following experiments use 12 binary features and 212 = 4096 data samples.

Classifier & XAI setup also follow Sect. 4. We encode our Boolean input
data with the values 1 for True and -1 for False, and train a feed forward neural
network with 5 layers, 20 neurons per layer, and ReLU activations in a 5-fold
stratified cross-validation setting. The classifiers reliably achieve 100% accuracy
on training- and test-sets for all evaluated datasets. For each cross-validation
fold, we compute the explanations of the test-data. We repeat the evaluation 10
times per dataset, reporting the average over the results.

Baseline Some XAI approaches replace classifier input features with unin-
formative values to observe classifier behavior with missing information. We let
LIME and SHAP extract their own baseline from the cross-validation training
data, using k-means clustering with k = 20 for SHAP. For the gradient-based
approaches, we use 0 as baseline value, as discussed in [2].

5.1 Evaluation of basic Boolean operations

We initially evaluate the behavior of XAI approaches on datasets where two
features are linked by common Boolean operations AND (∧), OR (∨) or XOR
(⊗) in Table 1. We find that most XAI approaches fail to fully explain even the
linear Boolean AND and OR operations, with only LIME and SHAP finding the
most relevant features for each sample. Results on the XOR dataset show that
LIME, due to training a local linear model around the sample, fails to give good
explanations when the underlying local function is non-linear. SHAP appears to
improve on LIMEs behavior, correctly matching the gold standard explanations
with its kernel-based Shapley value adaptation of LIME.

Detailed analysis We take a closer look at the input permutations causing
problems to the XAI approaches. We find that falsely explained samples for all
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Table 1: XAI performance in percent correctly explained samples after Def. 1.

approach ∧ ∨ ⊗ (⊗) ∧ (⊗) synthetic real

LIME 100.00 100.00 43.76 10.12 100.00 84.78
Shapley sampling 99.83 99.92 69.10 56.34 79.79 77.15
SHAP 100.00 100.00 100.00 95.01 98.12 93.34
Saliency 95.81 95.69 85.99 55.55 59.86 59.12
Gradient×input 97.66 97.06 75.81 57.31 69.47 69.49
Integrated gradients 99.64 99.56 73.02 57.73 76.46 76.27
ε-LRP 97.66 97.06 75.84 57.34 69.48 69.71
Deeplift 99.67 99.59 73.28 58.83 75.48 76.77

gradient-based approaches and Shapley sampling on the AND and OR datasets
are caused by issues with y = 0 ∧ 0 and y = 1 ∨ 1. In this case, the mentioned
approaches consider one of the two features as irrelevant, even though both fea-
tures are equally important to the label. Additionally, the Saliency approach
shows issues on unequal inputs, where one feature speaks against the prediction
outcome. Since the gradient of the output with respect to this feature is neg-
ative, the Saliency’s absolute gradient causes this negatively influencial feature
to overshadow the relevant feature. On the non-linearly separable XOR dataset,
all approaches show a similar amount of errors for each input permutation.

5.2 Evaluation of Boolean functions with multiple variables

Using our relevance definition (Def. 1), we investigate XAI performance on com-
plex Boolean functions. Results of the function y = (f1 ⊗ f2) ∧ (f3 ⊗ f4), shown
as (⊗) ∧ (⊗) in Table 1, indicate that XAI performance deteriorates with an
increased number of relevant features involved. To test this, we create similar
datasets with increasing numbers of variables that may impact the output label.

Linearly separable Boolean functions. Since XAI performance on ba-
sic operations suggests different XAI behavior on linear and non-linear Boolean
functions, we first investigate XAI performance with increasing function com-
plexity on linear functions. For this, we generate eight datasets using the function
y = ((((f1 ∧ f2) ∨ f3) ∧ f4) ∨ ...), appending 3 to 10 relevant features as label.
To validate that the used datasets are linearly separable, we ensure that a linear
Support Vector Machine can perfectly separate each dataset.

The average results on each dataset are shown in Fig. 1a. We find LIME to
be able to fully explain all samples of datasets with up to 6 relevant features.
Both LIME and SHAP are capable of explaining a large amount of samples
in all tested datasets. Shapley sampling and all gradient-based methods show
difficulties with explaining functions with more then 2 variables involved, with
performance declining further with more than 3 variables. The small inclines in
explanation score with increased function complexity may be explained by all
datasets consisting of a total of 12 variables. This means that when 10 variables
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(a) Linear AND & OR operators (b) Non-linear XOR & AND operators

Fig. 1: XAI performance on datasets with multiple relevant features. Performance
in percent of correctly explained samples according to Def. 1.

are involved in the function, randomly assigning the 2 non relevant variables the
lowest scores may occur more often then with 6 relevant and irrelevant variables.

Non-linearly separable Boolean functions. We also evaluate perfor-
mance on eight non-linearly separable datasets generated using the function
y = ((((f1⊗f2)∧f3)⊗f4)∧ ...) with 3 to 10 relevant features used for label gen-
eration. As seen in Fig. 1b, all approaches show lower performance compared to
the non-linear XOR dataset (see Table 1). While SHAP still maintains stronger
performance than other approaches on non-linear datasets throughout the ex-
periment, its performance deteriorates when more than 3 features influence the
label. All other approaches show poor performance on all datasets. The fluctua-
tion between scores with increasing complexity may be caused by the alternating
label-generation: If the last operator in the outermost brackets of the function
is an AND, then for all samples that evaluate to x ∧ 0 with the entire previous
term x = 1, the only relevant variable for this sample is the last 0. Therefore
XAI approaches only have to find the last variable 0 as explanation, simplifying
the problem down to a basic AND operation for several input permutations.

5.3 Application scenario

Next, we choose a setting from the intrusion detection domain, to show that our
findings can be applied to realistic settings. A method to synthetically create
flow-based network traffic is proposed in [10], where a flow describes a network
connection between two hosts and contains attributes like transport protocol
and TCP-flags. In this setting, only flows which represent TCP traffic are al-
lowed to set any TCP-flags, creating the task of validating whether samples
resemble valid network traffic. While transport protocol and TCP-flags can be
represented as binary attributes with a set of predefined rules, the complexity of
the problem is low enough to create expert-annotated labels. In this experiment,
we use N-WGAN-GP from [10] to create 2048 correct and 2048 incorrect flows.
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Each flow is represented by six categorical (TCP flags) and two categorical, one-
hot-encoded features (weekday, protocol), six numerical features (bytes, packets,
duration, time, source- and destination-port) and two values encoded with mul-
tiple numeric features (IP-addresses). The six TCP flags and the protocol are
considered as relevant. To create a comparable synthetic setting, we generate a
dataset using the function y = (f1 ∨ −(f2 ∨ f3 ∨ f4 ∨ f5 ∨ f6 ∨ f7)). We then
evaluate the XAI approaches on both datasets.

The results, marked as ”synthetic” and ”real” in Table 1, indicate a simi-
lar ranking of the XAI approaches with respect to their performance on both
datasets. We observe that, while all perturbation-based approaches perform
worse on real data, LIME achieves considerably better results on synthetic data
in comparison to the real setting. This may be due to its local linear approxima-
tion that benefits more from the equal distribution of different sample permuta-
tions in the synthetic data. This experiment suggests that XAI performance on
our synthetic datasets closely resembles real world application scenarios.

6 Discussion

Evaluation of eight post-hoc XAI approaches shows that many approaches fail
to give satisfactory explanations even on basic categorical tabular data. The
gradient-based approaches used in this work all show weaker performance than
perturbation-based methods. While the approaches LIME and SHAP are both
capable of well explaining basic linearly separable Boolean functions, only SHAP
is capable of explaining non-linearly separable functions with up to 3 variables.
Overall, we find that investigated approaches struggle to explain more complex,
as well as non-linear Boolean functions. The datasets generated for these exper-
iments may be used to gain first insights into XAI performance on categorical
tabular data and will therefore be made available as benchmark datasets.3

7 Conclusion

In this paper, we investigated XAI performance on categorical tabular data,
proposing a setting in which XAI approaches can be evaluated independently of
classifier performance using synthetic datasets with gold standard explanations.
We generated benchmark datasets containing typical relationships between bi-
nary attributes such as AND, OR and XOR, as well as explanations according
to a novel definition of relevance of features in Boolean functions.

Using these datasets, we empirically evaluated eight state-of-the-art XAI
approaches. We found that many approaches fail to capture simple feature re-
lationships such as non-linear XOR connections, with performance decreasing
with increasing relationship complexity. Overall, we found the tested gradient-
based approaches to yield worse results than the perturbation-based methods.
By evaluating an expert-annotated dataset from the intrusion detection domain

3 http://www.dmir.uni-wuerzburg.de/projects/deepscan/xai-eval-data/

http://www.dmir.uni-wuerzburg.de/projects/deepscan/xai-eval-data/
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and comparing the results to explanations from synthetic data, we showed that
the findings on our synthetic datasets can be applied to realistic data.
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1. Ancona, M., Ceolini, E., Öztireli, C., Gross, M.: A unified view of gradient-based
attribution methods for deep neural networks. In: NIPS 2017 - Workshop on In-
terpreting, Explaining and Visualizing Deep Learning. ETH Zurich (2017)
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