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Abstract
In this paper, we introduce the Liquor-HGNN model, a novel approach for detecting and localizing
leaks in drinking water distribution networks (DWDNs) through the utilization of heterogeneous graph
learning. By leveraging a preprocessing model, our approach mounts the challenges posed by data
sparsity and sensor heterogeneity limitations. Liquor-HGNN outperforms all other approaches on the
same dataset in terms of Economic score. Here, the Economic Score function iterates over the detected
leakages, finds the closest pipes to each detected leakage, and calculates the score contribution for each
true detection based on the detected distance as well as on the starting time of the leakages. To the best
of our knowledge, Liquor-HGNN represents the first-ever application of a heterogeneous Graph Neural
Network (GNN) specifically tailored for leak detection in DWDNs.
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1. Introduction

Water pipe systems are crucial for providing clean drinking water to communities, but they are
prone to leaks and ruptures, leading to resource waste and damage [1]. Thus, detecting and
locating leaks in drinking water distribution networks (DWDNs) is essential for maintaining
the integrity and sustainability of these systems [2]. This paper introduces the Liquor-HGNN
model, a novel approach that utilizes heterogeneous graph learning to accurately identify the
start time of leaks and to pinpoint leaky pipes in DWDNs.

1.1. Background and Motivation

Leakage in the water distribution network is a major source of non-revenue water. Non-revenue
water refers to the discrepancy between the volume of water supplied to the distribution network
and the amount of water actually billed to customers. On average, non-revenue water accounts
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for approximately 35 percent of the total water supply [3]. This highlights the pressing need
for efficient leak detection methods in order to prevent wastage of resources and maintain the
overall quality and reliability of the water system.

1.2. Problem Statement and Relevance

Figure 1: Visualization of the underground pipelines with different sensor types (demand, pressure and
flow), demand patterns (here dividing between residential and commercial demand), the data collection
of GIS (Geo Information System) Coordinates and the Liquor-HGNN pipeline for leak detection and
localization.

Traditional visual inspection methods are impractical for underground pipelines, leading
to the installation of sensors in water distribution networks [4]. However, due to financial
and spatial limitations, these sensors are sparsely distributed across pipeline sections [5]. The
complexity and diversity of sensor data (e.g. the different sorts of sensors, that are used to
measure DWDNs like flow, demand or pressure sensors), along with the large distances between
sensors (see pipe sections in Fig. 1) and different types of leaks, pose challenges in accurately
determining the leaky pipe section and starting time of leaks. These different types of leaks
include background leaks, incipient leakages, as well as abrupt leakages such as medium pipe
bursts and large pipe bursts [6]. Additionally, the collected time-series data differ according to
the different measuring principles of sensors (see Fig. 1). Furthermore, nodes in the network
differ in their usage profiles [7], adding further complexity (see demand patterns on the left
side in Fig. 1). Despite the high complexity of the task, it is a worthwhile goal to adequately
meet the challenge of leakage detection and to satisfy the needs of the stakeholders ranging
from water utility companies, water management agencies until the general public [8].

1.3. Objectives

The primary objective is to develop an effective model for detecting leaks in water pipe systems.
The model should learn the relationships between different system components, including



sensor types (e.g. flow sensors, pressure sensors, demand measurements, smart meters [5]),
network information (i.e. pipe-attributes corresponding to edge-attributes like diameters, length,
roughness coefficients, as well as geospatial data like coordinates or elevation and physical
information), and user patterns (i.e. residential and commercial demand patterns, etc. [7]), to
accurately detect and locate leaks.

Expressed from a more technical perspective, the objective of the model is to predict the
edge-labels for leaky or non-leaky pipes at each time step based on the discrete spatio-temporal
graph snapshot to localize anomalies. The specific objectives and quantifiable criteria for the
success of the Liquor-HGNN approach are to localize leaks for all pipe sections (corresponding
to edges of a graph) using measurement information from only around 10 percent of the nodes,
to accurately forecast the start time of leaks and to propose an imputation method for handling
missing data through prior forecasts.

1.4. Method

To address the complex task of leakage detection, we propose the Liquor-HGNN model1. The
model selects the most suitable threshold based the Economic Score Metric, that is built upon
the metric of KIOS research center [6]. The Economic Score function iterates over the detected
leakages, finds close pipes to each detected leakage, and calculates the score contribution for
each true detection based on the detected distance and the number of true detections. Our
metric also applies a penalty if a leakage is not detected. The Liquor-HGNN model takes into
account the physical positions of nodes, their connections via edges as well as the user patterns
within the hydraulic demand distribution [7]. It leverages sparsely distributed sensor data and
incorporates a graph attention mechanism to focus on the most relevant parts of the graph.

Methodologically, our approach involves a preprocessing procedure to interpolate demand
values for every node. The demand over time is divided into different components, including
a global trend, seasonal fluctuations, and weekly and daily variations. These components are
derived from the predictions of the demand measurements and are separated according to their
demand patterns. The predictions are then multiplied with the steady-state demand or base
demand of each node [7].

To handle the heterogeneous graph structure, our model employs heterogeneous message-
passing layers. This enables the model to capture and utilize the diverse sensor types present in
the water pipe system as different node types in the network. The heterogenity allows to learn
from the various types of relationships present in the graph. To introduce different edge-weights
in heterogeneous graph neural networks, we use the HeteroConv wrapper [9]. This is described
partly in the appendix.

2. Related Work

In this section, we first review the 18 submissions made to the BattLeDIM challenge, which
serve as the main benchmarking results for the used dataset. The first submission is the
ensemble multivariate changepoint detection (EMCPD) by Cheng et al. [10]. This method

1https://github.com/MilanShao/Liquor-HGNN/blob/main/README.md
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combines six algorithms, including changepoint detection, non-parametric multiple changepoint
analysis, divisive hierarchical estimation, kernel changepoint analysis, and Bayesian estimation
of abrupt changes and trends. Huang et al. [11] propose a method consisting of five stages:
model decomposition, data partitioning, nodal demand calibration, calibration residual-based
leakage detection, and an improved vectorial angle method for leakage localization. The
Leakbusters team, represented by Daniel et al. [12], developed a method with two algorithm
components. The first component analyzes pressure differences between pairs of nodes using
SCADA data to identify leakage events. The model is trained on normal time periods, and the
reconstruction error is used to detect leakage events. Saldarriaga et al. [13] utilize a genetic
algorithm (GA) to identify leaks, while Wang et al. [14] from the Tsinghua Team employ a
multistage approach involving empirical mode decomposition, extraction of daily and weekly
seasonalities, and emitter representation. The Under Pressure team, represented by Steffelbauer
et al. [15], introduces a hierarchical approach for leak diagnosis. It involves demand calibration
using AMR data and measured flows, mathematical optimization for calibrating pipe roughness,
and the use of a dual network for leak start time detection and localization. Zhang et al. [16]
employ a fuzzy similarity priority ratio for leakage localization, while Romero et al. [17] from
the IRI team combine a model-based and data-driven methodology. Their approach determines
the usage of the two approaches based on the characteristics of the network’s different areas.
Min et al. [18] and Blocher et al. [19] both use clustering algorithms to solve the task, and
Liu et al. [20] employ an LSTM. Dopazo et al. [21] and Tan et al. [22] utilize machine learning
approaches.

Thewinning Tongji Team, represented by Li et al. [23], developed theMultiple Leaks Detection
and Isolation Framework (MLDIF). It employs a gradient iteration algorithm with variable steps
to calibrate model parameters for each zone and predicts water consumption using AMR
measurements.

Wu et al. [24] and Bhowmick et al. [25] both use time series data decomposition, while
Marzola et al. [26] spatially localize anomalies through an enumerative procedure. Barros et
al. [27] introduce a signal processing approach.

None of these approaches modeled the task using graph neural networks except for Gardars-
son et al. [28], who trained two Chebyshev polynomial kernel Graph Convolutional Networks.
Although they stated to gain a better economic score, their results have not been reproducable
according to the delivered code and have thus been excluded from the conducted experiments.

On the other hand, there is an increasing number of papers that use Heterogeneous Graph
Neural Networks (HGNN) for link prediction like HetGNN [29] or MTHetGNN [30].

3. Dataset Description

The BattLeDIM 2020 dataset [6] was created using a real water distribution network in Cyprus,
covering a pipe length of 42.6 km. It contains information on pipe breaks, water losses, and two
consumer types: residential and commercial, each with distinct demand patterns. The dataset
consists of 782 nodes, 33 of them equipped with pressure sensors providing measurements
every 5 minutes. The network consists of 905 pipe segments of steel pipes with a roughness
coefficient between 120-140 of approximately 50 meters length, that are used as edges of the



Graph Neural Network. All measurements for five-minute timesteps for 80 percent of the year
2018 are considered as training data, 20 percent as validation data and the full year of 2019 as test
dataset. Each node has a unique demand pattern for each consumer type, based on the statistical
characteristics. Additionally, 82 Automated Metered Readings (AMRs) offer aggregated demand
data (see Appendix). The dataset includes the physical network structure and coordinates of
the pipes, making it suitable for water network simulations with the Water Network Tool for
Resilience (WNTR), a Python package which supports pressure-driven demand simulations and
leakage modelling [7]. We predict leakages in the ISO 8601 time format YYYY-MM-DD hh:mm,
while the predicted location of the leakage is specified by the link ID.

4. Methodology

The methodology consists of the simulated-based preprocessing model for data interpolation
and the the heterogeneous graph neural network for leakage.

4.1. Data Input and Preprocessing for missing data

Our proposed approach uses a heterogeneous graph neural network (HGNN) [29] to incorporate
nodes with different node-types. As the water in water distribution networks is characterized
by a certain flow direction, we use a directed graph. A heterogeneous graph can be defined
as a tuple 𝐺ℎ = (𝐺, Φ, Ψ), where 𝐺 = (𝑉 , 𝐸) is a graph object with given nodes 𝑉 and edges
𝐸, Φ∶ 𝑉 → 𝒜𝑉 is a node type mapping function and Ψ∶ 𝐸 → 𝒜𝐸 is an edge type mapping
function. In the preprocessing step, missing demand values are predicted using the Neural
Prophet model [31]. We separate the nodes measuring the signals of the whole distribution
network into two sets of nodes, 𝑃 ⊂ 𝑉 containing all nodes with pressure measurements and
nodes with demand measurements 𝐷 ⊂ 𝑉. Accordingly we define a signal at time 𝑡 of the
pressure sensor of node 𝑣 as 𝑥𝑃𝑣 (𝑡) and 𝑥𝐷𝑣 (𝑡) as the signal of the demand sensor.

Note that demand of a node is dependent of its usage pattern. In this dataset usage is
distinguished between residential demand and commercial demand which differ in volume and
periodicity. In our experiment, nodes are either considered commercial or residential.

Due to the sparsity of data, ninety percent of the nodes lack any measurements, however,
their usage pattern (commercial or residential) is given. To address the sparsity of the data and
fill in missing demand values, the Neural Prophet model [31] is employed to learn and predict
demands for each given usage pattern. Neural Prophet decomposes the time series into several
components according to the following equation in order to find the best shaping functions.

For each pattern type c for commercial and r for residential, we use all nodes 𝑣 ∈ 𝐷 to learn a
Neural Prophet Model and predict the demand �̂�𝐷c (𝑡) and �̂�𝐷r (𝑡) at a given time 𝑡 as:

�̂�𝐷c (𝑡) = 𝑇c(𝑡) + 𝑆c(𝑡) + 𝐸c(𝑡) + 𝐹c(𝑡) + 𝐴c(𝑡) + 𝐿c(𝑡) (1)

�̂�𝐷r (𝑡) = 𝑇r(𝑡) + 𝑆r(𝑡) + 𝐸r(𝑡) + 𝐹r(𝑡) + 𝐴r(𝑡) + 𝐿r(𝑡) (2)

where, 𝑇•(𝑡) - Trend at time 𝑡, 𝑆•(𝑡) - Seasonal effects at time 𝑡, 𝐸•(𝑡) - Event and holiday
effects at time 𝑡, 𝐹•(𝑡) - Regression effects at time 𝑡 for future-known exogenous variables, 𝐴•(𝑡) -
Auto-regression effects at time 𝑡 based on past observations, 𝐿•(𝑡) - Regression effects at time 𝑡



Figure 2: Results of the predicted values �̂�𝐷• (𝑡) (blue fit) in comparison to the black doted measured
values 𝑥𝐷• (𝑡) for residential and commercial patterns.

for lagged observations of exogenous variable for each usage pattern • ∈ {c, r}. Neural-Prophet
is a special type of generalized additive models (GAM), that decomposes the time series into the
above mentioned six types of components. The trend component uses an automatic changepoint
detection, while seasonality makes use of Fourier term decomposition. For events the automatic
given holidays of each country are taken. For the calculation of regression effects a real-valued
regressor is used. The auto-regression effects are modelled by the so called AR-Net, which is a
fully connected neural network [31]. This adds non-linear effects to the additive model. For the
loss function the Huber loss is used, while the learning rate is optimized within a range test.
Adam is used as optimizer.

In the next step, we adopt the base demand 𝑥base𝑣 calculation by Klise et al. [7] and multiply it
with the predicted value to get overall demand �̃�𝐷𝑣 for a node 𝑣:

�̃�𝐷𝑣 (𝑡) = {
𝑥base𝑣 ⋅ �̂�𝐷c (𝑡) if 𝑣 has commercial pattern

𝑥base𝑣 ⋅ �̂�𝐷r (𝑡) if 𝑣 has residential pattern
(3)

In Fig. 2 the fit of the predicted values �̂�𝐷• (𝑡), represented by the blue line, is plotted against
the actual measured values 𝑥𝐷• (𝑡). We predict the demand values of the entire network to obtain
a representative distribution, while the pressure values are still only taken at the nodes with
pressure measurements without interpolation.

4.2. Heterogeneous Graph Learning

We separate between the two node-types 𝒜𝑉 = {NP, P}, where nodes of type NP only have the
demand values (from demand preprocessing or given demands) and nodes of the node-type P
additionally have the pressure measurements 𝑥𝑃𝑣 (𝑡). Thus the feature vector xj(𝑡) for a node 𝑗 is
given as:

xj(𝑡) =

⎧
⎪

⎨
⎪
⎩

𝑥𝑃𝑗 (𝑡) || 𝑥𝐷𝑗 (𝑡) if 𝑗 ∈ 𝑃 and 𝑗 ∈ 𝐷
𝑥𝑃𝑗 (𝑡) || �̃�𝐷𝑗 (𝑡) if 𝑗 ∈ 𝑃 and 𝑗 ∉ 𝐷
�̃�𝐷𝑗 (𝑡) if 𝑗 ∉ 𝑃 and 𝑗 ∉ 𝐷
𝑥𝐷𝑗 (𝑡) if 𝑗 ∉ 𝑃 and 𝑗 ∈ 𝐷

(4)



Here, || denotes the concatenation operator. Additionally we denote four edge types, each
representing a connection between two node types. Thus we have 𝒜𝐸 = {(P, P), (NP,NP),
(NP, P), (P,NP)}. We then compute the heterogeneous graph convolution by using the GAT-
Conv [32] at a given time 𝑡.

In the following, we omit the time parameter for brevity as we predict leakages for each point
in time individually.

̂x(e)i = ∑
𝑗∈𝒩 +

𝑒 (𝑖)
𝛼 (𝑒)𝑖,𝑗 Θ

(𝑒)xj (5)

Here 𝒩 +
𝑒 (𝑖) again denotes the neighbors of node 𝑖 along edges of type 𝑒 ∈ 𝒜𝐸, potentially

including the node 𝑖 itself, || denotes the concatenation operator and xj is the recorded feature

at node 𝑗. Here Θ(𝑒) is the weight matrix associated with the attention mechanism for each
edge type 𝑒. Please note that, automatically generated node or edge tensors are created upon
initial access and are indexed using string keys. Node types are represented by unique string
identifiers, while edge types are defined using a triplet format, signifying the edge type and the
two node types it connects. This design allows for varying feature dimensionalities for each
type within the data object.

The attention coefficients 𝛼 (𝑒)𝑖,𝑗 [32] are computed as

𝛼 (𝑒)𝑖,𝑗 =
exp(LeakyReLU(a(𝑒)

⊤
[Θ(𝑒)xi||Θ(𝑒)xj]))

∑𝑘∈𝒩 +
𝑒 (𝑖) exp(LeakyReLU(a(𝑒)

⊤
[Θ(𝑒)xi||Θ(𝑒)xk]))

(6)

where Θ(𝑒) and a(𝑒) are learnable parameters. In the next step we aggregate the features from
each edge type in the following way:

Figure 3: Liquor-HGNN Network Architecture for one layer. Signals from the two types of nodes 𝒜𝑉 =
{P,NP} are processed separately through four different edge types𝒜𝐸 = {(P, P), (NP,NP), (NP, P), (P,NP)}.
Features from different nodes are merged during the aggregation step of the message passing.



̂xi = ReLU(∑
𝑒∈𝒜𝐸

̂x(e)i ) (7)

We stack consecutive heterogeneous message-passing layers (see Fig. 3) of this type in our
model, using the predicted features of the previous layer ̂xi as input for the next layer. After
applying the last layer, we calculate embeddings for each edge using the output node embeddings
of the last message-passing layer in the graph decoder by applying a single fully-connected
layer. For a given edge 𝑘 connecting nodes 𝑖 and 𝑗 with node embeddings ̂xi and ̂xj respectively,
we have:

logits𝑘 = 𝜎(W[ ̂xi|| ̂xj] + b) (8)

where W, b are learnable parameter matrices.
Different threshold values are then tested over the logits to convert them into binary predic-

tions. For each threshold value, a custom economic score is calculated based on the detections
made by the model. The economic score takes into account both the true positive detections
and their distances from the actual leak location. The higher the economic score, the better
the model performs. In order to set the threshold for separating leaky from non-leaky edges
on the validation split, we used our own implementation of the Economic Score metric2 based
on the KIOS research metric of the challenge. This KIOS Economic Score metric adopts a
purely economic perspective. In this perspective, the water utility assesses its gains based on
the money saved from successfully detecting water leaks. Additionally, the utility takes into
account the expenses associated with dispatching a repair crew each time they need to search
for a leak. A valid detection is one that identifies a link ID situated within a predefined distance
from the actual leak site, and the reported start time of the leakage incident falls within the
duration of the same leak. The predefined distance corresponds to the operational capability
of the close-range equipment employed by the repair crew [6]. As the Economic Score metric
consists of more than 1200 lines of code and two pages of formula in the original version, we
refer to the source for further information.

The edge embeddings calculated by W[ ̂xi|| ̂xj] + b are used as input for the Sigmoid layer in
eq. (8) with the binary cross entropy (BCE) loss with logits as loss function, which gives a score
indicating how normal (0) or anomalous (1) an edge is. The decision if an edge 𝑘 is considered
leaky is then made according to a threshold 𝜏.

leaky𝑘 = {
0 logits𝑘 < 𝜏
1 logits𝑘 ≥ 𝜏

(9)

5. Experiments

We conducted experiments on the BATTleDIM dataset under challenge conditions in order to
maintain strict comparability [6].

For the training phase, we used 80 percent of the 2018 data, while the remaining 20 percent
served as the validation split to set the threshold. To evaluate the final model performance, the
complete 2019 dataset was held back as an independent test set.
2https://github.com/MilanShao/Liquor-HGNN/blob/main/models/liquor_gnn.py
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Table 1
Results on the BattleDIM dataset

Team Name True Positive Rate (%) False Positives Economic Score

Liquor-HGNN 47.83 46 271,584
Tongji-Team 56.52 3 264,873

Under Pressure 65.22 4 260,562
IRI 43.47 1 210,772

Leakbusters 47.83 7 195,490
Tsinghua 47.83 5 167,981
UNIFE 43.47 4 127,626

To ensure the Liquor-HGNN model’s optimal configuration, we conducted hyperparameter
optimization (HPO). The selected hyperparameters for Liquor-HGNN include ten layers, 50
epochs, 64 hidden channels, a tuned learning rate of 0.00109, and a batch size of 512. We have
been testing different convolutions in preliminary experiments including GATConv, SAGEConv,
GraphConv and LEConv. The best results have been gained by GATConv. Therefore we use it
in the results section.

6. Results

The following section presents the results of benchmarking experiments conducted on the
BattleDIM dataset, comparing against other submissions in the BattleDIM 2020 challenge. Table
1 ranks the participants based on their Economic Score [6].

The best economic score was reached by Liquor-HGNN with a Score of 271,584. Following
closely behind was the first place team of the challenge, with an Economic Score of 264,873. In
summary, the benchmarking results showcase the effectiveness of Liquor-HGNN.

7. Discussion

The BattleDIM Challenge 2020 introduced a metric [6] to evaluate leakage detection algorithms
in water supply networks. This metric considers spatial and temporal characteristics of predicted
pipe leakages, aiming to capture their economic impact. However in our experiments, optimizing
for this metric seems to introduce unintended and non-intuitive artefacts as for example a
model with lower TPR and higher FPs can nevertheless result in a better economic score. The
stringent penalties for undetected or late-identified leakages may inadvertently increase false
predictions without proportional consequences. This can impose additional costs on water
suppliers. Moreover, the metric only evaluates the initial prediction and does not account for
potential improvements over subsequent time steps. This is further distorted by the hierarchical
order of evaluation, in which the first detected time-step is taken more into account than the
ones that follow in chronological order. The optimization of the model towards a high economic
score comes along with an increasing number of false values, which are not ranked high for the



penalty calculation. When we use different metrics like F1, Precision, Recall, Balanced Accuracy
or AUC-ROC to set the threshold on the validation split the model is optimized towards a higher
True Positive rate and focuses more on eliminating false predictions. The highest True Positive
Rate we gained was 82,61 percent. If we manually tune the threshold on the validation set, we
have been able to gain an Economic Score of 326,521 as highest value but at the cost of 138
False Positives. This means, that if the model is optimized to predict as much as possible as
true value the Economic Score rises, but the False values also go up. Nevertheless, the metric’s
integration of spatial and temporal failures is commendable, catering to the specific needs of
water distribution networks. To ensure fair evaluations, future enhancements should strike a
balanced approach, considering both false predictions and missed leakages while incorporating
iterative performance improvements. By addressing these concerns, the metric could be further
refined to effectively capture the real-world challenges faced by leakage detection algorithms.

8. Conclusion

We have gained the highest Economic Score for the Liquor-HGNN approach in comparison to the
other challenge submissions. We demonstrated the effectiveness of the localization of leakages
in sparsely measured water distribution networks. We further integrated Liquor-HGNN with a
demand prediction pre-processing model that leverages the underlying physical information of
the hydraulic system. This combination enabled us to overcome the challenges posed by sparse
data in complex sensor distribution networks.
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9. Appendix

9.1. Edge Weight Assignment

In the case of the used LEConv, edge-weights can be assigned to the edges. But unfortunately,
this has not been possible for heterogeneous graphs, as they have different edge-types and
dimensions. We therefore use the generic HeteroConv wrapper [9] to perform the message
passing from node xi(𝑡) to node xj(𝑡) for the different edge types. For the binary weight
assignment, a convention for an unweighted graph is adopted where the adjacency matrix 𝐴 of
two nodes 𝑣 and 𝑢 𝐴𝑣𝑢 equals 1 if the edge 𝑒𝑣𝑢 exists in the graph, and 0 otherwise.

To assign weight values based on hydraulic loss, various equations are employed. The pipe-
length is defined as 𝑙𝑣𝑢 and the diameter of the pipe is defined as 𝑑𝑣𝑢 as well as the slope of the
pipe as 𝑠𝑣𝑢.

For a hydraulic loss weighted graph, the edge weight is determined using different equations.
Thus, its hydraulic state is estimated at every intersection of the network by processing the
physical time-series signals in conjunction with topological information about the piping system.
For example if we denote the Hazen-Williams equation, we have:

ℎ𝑒𝑎𝑑𝑙𝑜𝑠𝑠ℎ𝑤 = 10.67 (
velocity

𝐶
)
1.852 l𝑣𝑢

d𝑣𝑢
4.87 (10)

where the velocity is taken from the WNTR tool [7]. The same applies for the following
equations.

Darcy-Weisbach equation:

ℎ𝑒𝑎𝑑𝑙𝑜𝑠𝑠𝑑𝑤 = friction factor
𝑙𝑣𝑢
𝑑𝑣𝑢

velocity2

2 ⋅ 9.81
(11)

Prony equation:
ℎ𝑒𝑎𝑑𝑙𝑜𝑠𝑠𝑝𝑟𝑜𝑛𝑦 = 𝐴 ⋅ velocity2 + 𝐵 ⋅ velocity (12)

Manning’s equation:

ℎ𝑒𝑎𝑑𝑙𝑜𝑠𝑠𝑚𝑎𝑛 =
1
𝑛2

(
velocity
𝑟√s𝑣𝑢

)
2
3

(13)

Hagen-Poiseuille equation:

ℎ𝑒𝑎𝑑𝑙𝑜𝑠𝑠ℎ𝑝 =
128 ⋅ viscosity ⋅ l𝑣𝑢 ⋅ velocity

𝜋 ⋅ d4𝑣𝑢
(14)

Energy equation:

ℎ𝑒𝑎𝑑𝑙𝑜𝑠𝑠𝐸 = elevation difference + friction headloss (15)

The friction factor in the Darcy-Weisbach equation is calculated iteratively based on the
Colebrook-White equation. The initial friction factor is set to 0.2083 as a starting point in
literature [33], because it is close to the friction factor value for a smooth pipe. According to



the Economic Score metric the best headloss equation for edge-weight assignment is taken
automatically. The headloss value for each link is then stored in the equivalent tensor of each
equation. The edge weights for each relation according to the edge types are then computed as
the exponential function of the negative of the headloss values.

The edge-weights associated with the best performing hydraulic head-loss equation for
the four edge types at layer 𝑙 are then denoted as weights 𝒲xi(𝑡),𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑠,xj(𝑡), where 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑠
denotes the relation and the node features xi(𝑡) and xj(𝑡) as well as GATConv are introduced
earlier. In the edge-weight dictionary the edge-weights are stored according to the edge-types.
These edge-weights are then used during message passing in the HeteroConv layers, where the
LEConv layers are applied to compute the updated node features.
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9.3. BattleDIMWater Network Visualization



Figure 4: BattleDIM Challenge Water Distribution network with demand measurements in Area C, a
valve layer without measurements in Area B and sparsely distributed pressure measurements in Area A,
colours represent the elevation of the edges [6].



Figure 5: BattleDIM Challenge distribution of nodes with pressure measurement (=red nodes) versus
nodes without pressure measurement (=blue nodes) [6].

Figure 6: BattleDIM Challenge distribution of nodes in Area C with demand measurement (=red nodes)
versus nodes without demand measurement (=blue nodes) [6].
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