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SUMMARY

Whereas prematurity is a major cause of neonatal mortality, morbidity, and life-
long impairment, the degree of prematurity is usually defined by the gestational
age (GA) at delivery rather than by neonatal morbidity. Here we propose a multi-
task deep neural network model that simultaneously predicts twelve neonatal
morbidities, as the basis for a new data-driven approach to define prematurity.
Maternal demographics, medical history, obstetrical complications, and prenatal
fetal findings were obtained from linked birth certificates and maternal/infant
hospitalization records for 11,594,786 livebirths in California from 1991 to
2012. Overall, our model outperformed traditional models to assess prematurity
which are based on GA and/or birthweight (area under the precision-recall curve
was 0.326 for ourmodel, 0.229 forGA, and 0.156 for small for GA). These findings
highlight the potential of using machine learning techniques to predict multiple
prematurity phenotypes and inform clinical decisions to prevent, diagnose and
treat neonatal morbidities.

INTRODUCTION

Prematurity or preterm birth (PTB) is the main cause of mortality in children under 5 years old and acute and

chronic complications in surviving infants (Blencowe et al., 2013; Cheong and Doyle, 2012). In pregnancies

at risk for PTB, such as those with preterm labor, preterm premature membrane rupture (PPROM),

preeclampsia or fetal growth restriction, decisions around timing, and mode of delivery or therapeutic in-

terventions are driven largely by risk predictions of neonatal morbidities based on the gestational age (GA)

alone. In addition, the severity of prematurity is often defined using specific GA thresholds such as

<28 weeks or <32 completed weeks (Who: Recommended Definiti, 1977). However, the evidence support-

ing the use of such thresholds is sparse (Higgins et al., 2005; Tyson et al., 2008), and difficulties in accurately

estimating GA may lead to inaccurate risk predictions (Lynch and Zhang, 2007). Whereas birth before

37 weeks of gestation is associated with poor neonatal outcomes andmortality (Blencowe et al., 2012), pre-

maturity and prematurity-related outcomes are likely to result from multiple etiologic pathways including

genetic, demographic, psychosocial, and environmental factors (Ge et al., 2013; Melamed et al., 2009; Sha-

piro-Mendoza et al., 2006; Yancey et al., 1996; Yeo et al., 2017) that are unlikely to be adequately repre-

sented by GA at delivery alone.

Several predictionmodels have been proposed to combine clinical data for the prediction of neonatal mor-

tality (Mcleod et al., 2020), overall illness severity (Dorling et al., 2005), or PTB (Ge et al., 2013; Neal et al.,

2020; Yeo et al., 2017), but there is a lack of tools to reliably identify infants at risk of prematurity-associated

morbidities beyond GA. The complexity of mechanisms involved and the relatively low prevalence of some

neonatal morbidities pose significant challenges that machine learning methods have the potential to

address, thus improving risk delineation to support clinical decisions and better prevent, diagnose, and

treat neonatal morbidities. Previous studies demonstrated the feasibility and potential of using machine

learning to build models for the prediction of adverse neonatal outcomes, such as mortality (Jaskari

et al., 2020), sepsis (Mani et al., 2014), intraventricular hemorrhage (IVH) (Zhu et al., 2021), and jaundice

(Daunhawer et al., 2019), or for monitoring relevant fetal vital signs such as heart rate and heart rate
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Table 1. Descriptive statistics of study population

Training dataset

(n = 2,000,000)

Validation dataset

(n = 2,000,000)

Test dataset

(n = 7,594,786)

Maternal characteristics

Age [years] 28 (23, 32) 28 (23, 32) 28 (23, 32)

Race/Ethnicity

Non-Hispanic White 630,210 (31.5%) 630,985 (31.5%) 2,400,043 (31.6%)

Non-Hispanic Black 125,883 (6.3%) 125,628 (6.3%) 478,152 (6.3%)

Asian 222,181 (11.1%) 222,553 (11.1%) 841,332 (11.1%)

Pacific Islander 10,293 (0.5%) 10,438 (0.5%) 38,983 (0.5%)

Hispanic 982,397 (49.1%) 981,378 (49.1%) 3,726,848 (49.1%)

American Indian/Alaskan 9,092 (0.5%) 9,027 (0.5%) 33,622 (0.4%)

Other 1,323 (0.1%) 1,361 (0.1%) 5,085 (0.1%)

Missing/unknown 18,621 (0.9%) 18,630 (0.9%) 70,721 (0.9%)

Education

Some high school or less 595,377 (29.8%) 595,814 (29.8%) 2,257,225 (29.7%)

High school diploma/GED 542,869 (27.1%) 541,316 (27.1%) 2,062,298 (27.2%)

Some college 402,080 (20.1%) 402,262 (20.1%) 1,529,583 (20.1%)

College graduate or more 417,984 (20.9%) 419,258 (20.9%) 1,587,390 (20.9%)

Missing/unknown 41,690 (2.1%) 41,350 (2.1%) 158,290 (2.1%)

Parity

0 778,620 (38.9%) 776,915 (38.8%) 2,955,981 (38.9%)

1 628,421 (31.4%) 628,523 (31.4%) 2,386,792 (31.4%)

2 340,841 (17.0%) 342,372 (17.1%) 1,296,547 (17.1%)

3+ 250,513 (12.5%) 250,684 (12.5%) 949,593 (12.5%)

Missing/unknown 1,605 (0.1%) 1,577 (0.1%) 5,873 (0.1%)

Prenatal fetal findings

Gender

Male 1,022,913 (51.1%) 1,023,808 (51.2%) 3,882,528 (51.1%)

Female 977,075 (48.9%) 976,172 (48.8%) 3,712,177 (48.9%)

Missing/unknown 12 (0.0%) 20 (0.0%) 81 (0.0%)

Birthweight [Kg] 3.37 (3.03, 3.69) 3.34 (3.03, 3.69) 3.37 (3.03, 3.69)

Obstetrical complications

GA [days] 276 (268, 282) 276 (268, 283) 276 (268, 282)

GA %32 weeks 24,793 (1.2%) 25,008 (1.2%) 93,371 (1.2%)

GA >32 and %37 weeks 170,446 (8.5%) 170,023 (8.5%) 644,986 (8.5%)

GA >37 and <40 weeks 965,946 (48.3%) 964,362 (48.2%) 3,664,423 (48.3%)

GA R40 weeks 661,724 (33.1%) 663,515 (33.2%) 2,516,606 (33.1%)

Unknown GA 177,091 (8.9%) 177,092 (8.9%) 675,400 (8.9%)

SGA 189,532 (10.0%) 188,741 (10.0%) 719,093 (10.0%)

PTB 213,426 (11.7%) 213,385 (11.7%) 808,043 (11.7%)

Neonatal outcomes

RDS 30,621 (1.5%) 30,645 (1.5%) 116,644 (1.5%)

IVH 3,883 (0.2%) 3,877 (0.2%) 14,729 (0.2%)

NEC 1,527 (0.1%) 1,522 (0.1%) 5,839 (0.1%)

ROP 4,232 (0.2%) 4,237 (0.2%) 15,923 (0.2%)

BPD 2,737 (0.1%) 2,750 (0.1%) 10,401 (0.1%)

(Continued on next page)
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Table 1. Continued

Training dataset

(n = 2,000,000)

Validation dataset

(n = 2,000,000)

Test dataset

(n = 7,594,786)

PDA 17,056 (0.9%) 17,097 (0.9%) 64,545 (0.9%)

PVL 138 (0.01%) 141 (0.01%) 562 (0.01%)

Sepsis 18,969 (0.9%) 18,994 (0.9%) 71,827 (0.9%)

Pulmonary hemorrhage 585 (0.03%) 629 (0.03%) 2,323 (0.03%)

CP 36 (0.002%) 29 (0.001%) 141 (0.002%)

Pulmonary HTN 410 (0.02%) 421 (0.02%) 1,562 (0.02%)

Jaundice 269,534 (13.5%) 269,767 (13.5%) 1,023,709 (13.5%)

R1 outcome 297,988 (14.9%) 298,065 (14.9%) 1,131,381 (14.9%)

Summary of maternal and newborn characteristics, including neonatal morbidities, in the training and validation datasets.
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variability (Ponsiglione et al., 2021; Romano et al., 2013, 2016). However, a more holistic approach that

targets multiple prematurity-associated morbidities would provide a more comprehensive assessment

of infants’ risk and set the basis for precision medicine in the neonatal period.

The aim of this study was to develop and validate amulti-task deep neural networkmodel to simultaneously

predict a comprehensive range of neonatal morbidities while leveraging a population-based cohort of

approximately 12 million livebirths in California from 1991 to 2012. Our ultimate goal is to derive a one-

dimensional data-driven index of prematurity, compressing information contained in hospitalization re-

cords, to inform prenatal clinical decisions better than standard GA-based methods.

RESULTS

Descriptive statistics of the study population

The 11,594,786 million livebirths were randomly split into training, validation, and test datasets, each con-

sisting of 2,000,000, 2,000,000, and 7,594,786 livebirths, respectively (Table 1). The prevalence of neonatal

morbidities in the two datasets ranged from 13.5% (jaundice) to 0.002% (CP) with 14.9% of newborns in both

training and test datasets reporting more than one morbidity.

Correlation networks, obtained using Pearson’s, polychoric, or tetrachoric correlation coefficients, as

appropriate, showed strong associations between RDS, IVH, NEC, ROP, BPD, PDA, sepsis, and jaundice

(Figure S8A). supporting the multi-task approach used. Among clinical data, GA, birthweight, and sponta-

neous andmedically indicated PTB showed the strongest correlations with these outcomes (Figures 1B and

S8B).

The deep NN models outperform traditional methods

The full and reduced models outperformed the traditional models in the prediction of each individual

outcome, always exceeding the AUPRC of a random classifier by at least an order of magnitude (Figures 2

and S10; Tables S5 and S6). Only when predicting CP the GA-based model showed a greater AUPRC

compared with the full model (2.2 E-04 vs. 1.0 E-04), not the reduced model (2.9 E-04).

The overall test AUPRC was 0.326 (G1.7 E-04) for the full model, 0.300 (G1.7 E-04) for the reduced model,

and 0.229 (G1.5 E-04), 0.156 (G1.3 E-04), and 0.212 (G1.5 E-04) for GA, SGA, and PTB, respectively (the

AUPRC of a random classifier would be 0.135; Figure S9). The overall test AUC was also higher for the

full [0.963 (G5.0 E-05)] and reduced [0.960 (G5.4 E-05)] models compared with traditional models [GA:

0.950 (G6.3 E-05); SGA: 0.922 (G9.5 E-05); PTB: 0.942 (G6.5 E-05)].

Variable importance

Furthermore, we investigated the importance of each variable in the prediction of morbidities. Among the

26 clinical variables, birthweight, spontaneous, and medically indicated PTB showed the highest overall

test AUPRC across morbidities: 0.251, 0.230, and 0.205, respectively. On the other hand, maternal age

(overall test AUPRC: 0.140), prior miscarriage (0.142), and infant sex (0.143) showed the lowest univariable

prediction performances (Figure S1).
iScience 25, 104143, April 15, 2022 3



Figure 1. Schematic of the study design and correlations between neonatal morbidities

(A) Schematic of the study design.

(B) Correlation network between neonatal morbidities and clinical variables: edges are drawn between pairs of neonatal morbidities/clinical variables that

are correlated with the absolute value of the correlation coefficient exceeding 0.1; green (red) edges indicate positive (negative) correlations, AND the width

of the edges is proportional to the correlation coefficient.
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The overall test AUPRC and AUC of the full model (i.e., the one including all the 26 clinical variables) were

0.325 and 0.963, respectively. After removal of the seven clinical variables with the lowest average AUPRC

(maternal age, prior miscarriage, infant sex, maternal education, parity, payer status, and smoking), perfor-

mances were still similar to those of the full model with an overall test AUPRC of 0.322 and AUC of 0.966

(Figure S2). By further excluding maternal race, the overall test AUPRC dropped to 0.315. The model based

on the 10 features with the highest univariable overall test AUPRC (i.e., birthweight, spontaneous, and

medically indicated PTB, CS, preeclampsia, chorioamnionitis, pre-gestational DM, SGA, gestational

DM, and OVD) yielded an overall test AUPRC of 0.315 and an average AUC of 0.962. A progressive

decrease in both AUPRC and AUC was observed when the number of clinical variables left in the model

further decreased. According to the feature permutation experiment, birthweight (AUPRC and AUC

decreased by 10.8% and 0.43%, respectively), CS (4.7% and 0.26%), OVD (1.5% and 0.12%), and maternal
4 iScience 25, 104143, April 15, 2022
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Figure 2. Model performance in terms of precision and recall

Precision-recall curves (AUPRCs) in the test data set for the full model (black solid line), the reduced model (grey solid line), and the logistic regression

models considering gestational age (blue dotted line), SGA (red square) and PTB (green dot). The horizontal light grey dashed line represents the expected

precision-recall curve for a random classifier and depends on the prevalence of the morbidity.
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race (1.6% and 0.06%) were the clinical variables appearing to have the strongest importance in the predic-

tion of morbidities returned by the model (Figure S3).
The reduced model as a one-dimensional score of neonatal health

As a one-dimensional score, the reduced model achieved good predictive performances for each

morbidity of interest. Whereas AUPRCs and AUCs were generally lower than those of the full model

(excluding CP, for which the reduced model performed better than the full model), the reduced model

showed greater AUPRCs and AUCs compared with models based on GA, SGA, and PTB (Figure S4, and

Tables S4 and S5). The score significantly correlated with the number of neonatal morbidities [Spearman’s

rho (95% confidence interval) = �0.273 (�0.273, �0.272)], as it progressively decreases with the increase in

the number of neonatal morbidities observed (Figures S6). For each neonatal morbidity, the score was

lower in livebirths with the given morbidity compared with those without (Figure S7).

Moreover, the score obtained by the reduced model appeared to correlate with birthweight, CS, GA, SGA,

preeclampsia, spontaneous and medically indicated PTB, and, to a less extent, pre-gestational DM and

chorioamnionitis (Figure S5).
DISCUSSION

Our model, trained on a large administrative dataset of more than 11 million livebirths, simultaneously pre-

dicted the risk of several neonatal morbidities, some of which are relatively rare, with good accuracy and

precision. The benefits of using machine learning were further enhanced by the multi-task approach that

exploits the pathological mechanisms that may be shared across multiple neonatal phenotypes. This led

to significant improvements in terms of both discriminative ability and precision-recall compared with

traditional risk models based on GA and/or birthweight and whose predictions of morbidities are obtained

from separate independent models.

Whereas GA plays a central role in fetal development, the fetal development rate may vary from fetus to

fetus and may be affected by genetic, clinical, and environmental factors (Wen et al., 2004). Our findings

suggest that incorporating GA and phenotypical/clinical data into prematurity risk predictions using

state-of-the-art machine learning approaches would result in more accurate characterizations of multiple

neonatal morbidities. According to our model, established factors such as birthweight and caesarian de-

livery, but also operative vaginal delivery andmaternal race appeared to contribute significantly to risk pre-

dictions, independently of GA, highlighting the potential role of obstetrical procedures and socio-cultural

aspects in the development of neonatal morbidities.

We also explored the utility of a one-dimensional data-driven index obtained as the output of an interme-

diate layer of the deep NN, which compresses the information contained in the clinical variables that is

considered to be useful in the prediction of all neonatal morbidities. Interestingly, this one-dimensional

score appeared to outperform traditional one-dimensional scores based on GA and/or birthweight, and

corelated with the number of morbidities that an infant eventually develops (Figure S6). This finding sug-

gests that a new data-driven index that combines several clinical factors and goes beyond GA and/or birth-

weight can improve the identification of infants at high risk of prematurity-associated morbidities.

Our model showed the potential to accurately predict most of the morbidities considered, with AUCs

exceeding 0.90 and AUPRCs more than 10 times those of the respective random classifier. Nevertheless,

other morbidities such as CP, jaundice, pulmonary HTN, and PDA remain difficult to predict as indicated

by AUCs between 0.66 and 0.79. The clinical variables used may not fully capture the etiological mecha-

nisms underlying these morbidities. Therefore, further investigations incorporating information comple-

mentary to that provided by clinical data, such as biological information contained in genetic, genomic,

and proteomic data, into similar data-driven approaches ensure a better understanding of biological

mechanisms and improve risk predictions.
6 iScience 25, 104143, April 15, 2022
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In conclusion, our data-driven index of prematurity has the promise to improve the prediction of neonatal

morbidities and identify high-risk infants who may not otherwise be identified based on the GA alone. This

would be an important step toward the optimization of neonatal care, especially in high-risk pregnancy,

and the reduction of the burden of severe and potentially life-impacting neonatal morbidities.

Limitations of the study

Study limitations include the lack of more recent data (after 2012) and that the data were only available for

one US state. These may limit generalizability of our findings to other culturally and socially different US

states and countries, and more recent changes in prenatal and neonatal care.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Administrative data from the California Office

of Statewide Health Planning and Development

Open Data Datasets Archive - HCAI

Birth certificates from the California Department

of Health Care Services

Accessing Protected DHCS

Data for Research (ca.gov)

Software and Algorithms

R The Comprehensive R Archive Network (r-project.org) version 3.6.3
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Nima Aghaeepour (naghaeep@stanford.edu).
Materials availability

This study did not generate new unique reagents. Pre-existing data access policies outlined by the the Cal-

ifornia Office of Statewide Health Planning and Development (OSHPD), and the California Perinatal Quality

Care Collaborative (CPQCC) govern data access requests. Requests will be reviewed by the steering com-

mittees from each organization prior to providing access. Code is available at the following link https://

nalab.stanford.edu/a-data-driven-health-index-for-neonatal-morbidities/. Further information and re-

quests for resources should be directed to and will be fulfilled by the Lead contact, Nima Aghaeepour,

PhD (naghaeep@stanford.edu)

Data and code availability

d De-identified human data can be requested to the California State Biobank, the California Office of

Statewide Health Planning and Development (OSHPD), and the California Perinatal Quality Care Collab-

orative (CPQCC).

d All original code is available at the following link: https://nalab.stanford.edu/a-data-driven-health-

index-for-neonatal-morbidities/.
METHOD DETAILS

Study population

The study’s source population from the Office of Statewide Health Planning and Development (OSHPD)

consisted of 11,594,786 million livebirths in the state of California (US) from 1991 to 2012. These data

contain linked birth certificates from California Vital Statistics records along with maternal and infant hos-

pitalization records for nearly all inpatient deliveries(Herrchen et al., 1997). Livebirths with an implausible

birthweight for the corresponding GA(Alexander et al., 1996) were excluded and those included in the

analytical sample were randomly split into training, validation and test datasets.
Clinical data and neonatal morbidities

The deep neural network model described here aimed at predicting the following neonatal morbidities

selected for being associated with prematurity: respiratory distress syndrome (RDS), intraventricular hem-

orrhage (IVH), necrotizing enterocolitis (NEC), retinopathy of prematurity (ROP), bronchopulmonary

dysplasia (BPD), patent ductus arteriosus (PDA), periventricular leukomalacia (PVL), sepsis, pulmonary hem-

orrhage, cerebral palsy (CP), pulmonary hypertension (HTN), and jaundice. Data on the twelve neonatal

morbidities considered were obtained from the 2015 International Classification of Diseases, Ninth Revi-

sion, Clinical Modification (ICD-9-CM) codes recorded onmaternal and infant hospitalization clinical notes.

The validity and accuracy diagnosis and procedures extracted from maternal discharge notes and birth
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certificates has been extensively studied and reported to bemoderate to high across Californian hospitals .

ICD-9-CM codes used to identify each neonatal morbidity are shown in Table S1.

ICD-9-CM diagnostic and procedure codes from maternal and infant hospitalization records along with

complication and procedure codes recorded on the birth certificate were used to define the 26 clinical vari-

ables, plus gestational age (GA) at delivery that was used to stratify the training, validation and test data-

sets to develop GA-specific neural networks (NNs), used to develop predictions of the twelve neonatal

morbidities. The complete list of clinical variables, information on how each variable was defined and

descriptive statistics (including number and proportion of missing values) in the final analytical sample

(i.e. training, validation and test datasets combined) are reported in Table S2.
Model development and training

Our model consisted of GA-stratified multi-task deep neural networks (NNs). NNs are a family of

computing systems based on a collection of connected units or nodes, which receive a signal (input

data or the signal returned by previous units), process it and then transmit it to the following units. Units

are aggregated into layers, and each layer may perform different transformations on their inputs. Signals

travel from the first layer (the input layer), to the last layer (the output layer containing the object of the pre-

diction). NNs were chosen to obtain risk-prediction of the twelve neonatal morbidities given their ability to

process vast amount of data, to learn and model complex non-linear relationships that can be generalized

to unseen data, and because they do not require strict assumptions regarding the distribution of input vari-

ables and their associations (Subasi, 2020). In the presence of multiple outcomes, multi-task learning allows

to predict multiple outcomes at the same time (Caruana, 1997). By leveraging the underlying mechanisms

that are common among morbidities, the knowledge learned in predicting one morbidity is shared when

predicting other morbidities. In order to obtain risk predictions independent from GA and to allow the

model to predict neonatal morbidities with similar accuracy regardless of the GA, learn mechanisms linking

input features and neonatal morbidities that go beyond GA, and predict morbidities with similar accuracy

regardless of the GA, the training, validation and test datasets were each split into five subsets according to

GA: GA %32 weeks, GA >32 and %37 weeks, GA >37 and <40 weeks, GA R40 weeks, and unknown GA.

Then, five multi-task deep neural networks (NNs) were trained using each of these five subsets of the

training dataset separately. EachNN consisted of a set of sequential layers shared across all themorbidities

followed by one independent set of sequential layers for each of the twelve neonatal morbidities consid-

ered. The following layers characterize the set of shared layers:

- a masking layer to inform the model what values should be skipped when processing the data

because missing.

- a batch normalization to transform the input data so that the mean is close to 0 and the standard

deviation is close to 1.

- a 16-unit densely-connected layer with ‘tanh’ activation.

- a 32-unit densely-connected layer with ‘relu’ activation.

- a 32-unit densely-connected layer with ‘tanh’ activation (bottleneck layer).

- dropout layer to randomly set 30% of the input units to 0 to help prevent overfitting.

The output of the last layer in the set of shared layers is fed as input of twelve independent sets of layers

(one for each neonatal morbidity). The following layers characterized thesemorbidity-specific sets of layers:

- a 16-unit densely-connected layer.

- dropout layer to randomly set 30% of the input units to 0.

- a 16-unit densely-connected layer.

- dropout layer to randomly set 30% of the input units to 0.

- A one-unit layer with ‘sigmoid’ activation, containing the prediction for that morbidity.
10 iScience 25, 104143, April 15, 2022
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Each multi-task deep NN was trained on the respective subset of the training dataset defined by GA, using

a batch size of 512, Adam optimization, binary cross-entropy loss with early stopping (training was stopped

after 10 consecutive epochs with no improvement in validation loss) or stop after 100 epochs. Validation

loss was calculated on the corresponding subset of the validation dataset defined by GA. The model

with the lowest validation loss across all epochs was retained. Each NN was trained on the respective sub-

set of the training dataset defined by GA with early stopping when validation loss stopped improving.

Moreover, as hypothetical data-driven index of prematurity, a one-dimensional score (‘reduced model’)

was derived from a multi-task NN with a similar architecture to that of the full model, as output of a sin-

gle-unit bottleneck layer (Figure 1A). We trained a multi-task deep NN with the same architecture

described previously without GA-stratification and including GA as input feature, and replacing the

32-unit bottleneck layer with a single-unit layer, to investigate the extent to which the information con-

tained in the clinical variables could be compressed into a single score to then evaluate how this score

would predict all the neonatal morbidities of interest. Associations of clinical variables and neonatal mor-

bidities with the single-unit output of the bottleneck layer were then investigated using correlation net-

works. Test AUPRC and AUC to predict neonatal morbidities of the bottleneck output (hereafter called

‘reduced model’) were also calculated and compared to those of the full model and the traditional models

based on GA, SGA and PTB.

For comparison purposes, three separate logistic regression models were trained using the training data-

set, considering GA, small for GA (SGA: birthweight <10th percentile for GA and sex22) and PTB

(GA<37 weeks), respectively. These models resemble algorithms traditionally used to estimate the risk

of prematurity-associated morbidities and quantify the severity of PTB.
Ensemble methods to combine predictions from the five GA-specific NNs

The five multi-task deep NNs were used to predict the risk of each of the twelve neonatal morbidities in all

livebirths in the test dataset, regardless of GA. Therefore, for each livebirth in the test dataset, five risk pre-

dictions for each morbidity were obtained. Several methods to combine these five risk predictions and

obtain a single final risk prediction for each of the twelve morbidities were investigated

1. Average: the simple average across the five risk predictions.

2. Weighted average: a weighted average of the five risk predictions with a 40% weight to the risk pre-

diction obtained from the GA-specific NN corresponding to the GA of the livebirth, a 20% weight to

risk predictions obtained from the adjacent GA-specific NNs, and a 10% weight to risk predictions

obtained from the other GA-specific NNs. For livebirths in the unknown GA group, a 50% weight

was assigned to risk prediction obtained from the NN trained on livebirths with unknown GA and

a 12.5% weight was assigned to each risk prediction obtained from the other GA-specific NNs.

3. Stacked prediction: for each livebirth, the risk prediction obtained from the GA-specific NN corre-

sponding to the GA of that livebirth was used.

4. Logistic regression: using the training dataset, a series of logistic regression models (one for each

neonatal morbidity) was trained to predict each morbidity using the five risk predictions. These

models were then used to obtain the final risk predictions for the livebirths in the test dataset.

5. NN: using the training dataset, a series of deep NNs (one for each neonatal morbidity) was trained to

predict each morbidity. Each of the twelve NNs took the five risk predictions for that morbidity as

input before a 3-unit densely-connected layer with ‘relu’ activation and a single-unit output with ‘sig-

moid’ activation. A batch size of 512, Adam optimization, binary cross-entropy loss, up to 100 epochs

with early stopping after 10 consecutive epochs with no improvement in validation loss were used.

The model with the lowest validation loss across all epochs was retained.

The area under the precision-recall curve (AUPRC) and area under the receiver operating characteristic

curve (AUC) were used to evaluate the performance of these five ensemble methods in predicting each

neonatal morbidity. In addition, an overall AUPRC and AUC were calculated to evaluate performances

across all the twelve morbidities. The risk predictions of the twelve neonatal morbidities obtained from

the ensemble methods were stacked to form a unique vector of risk predictions. Similarly, the twelve

morbidity variables were stacked to form a unique morbidity vector. Overall AUPRC and AUC were
iScience 25, 104143, April 15, 2022 11
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calculated using these two stacked vectors. These AUPRCs and AUCs are shown in Table S3. Stacked pre-

diction showed the highest overall AUPRC and AUC as well as for several individual morbidities; therefore,

it was selected as our final model.
Comparison of the deep NN to standard approaches

In order to demonstrate the ability of NNs to learn complex non-linear relationships compared to standard

regression techniques, we compared the predictive ability of our model to that of similarly-trained models

that predict the neonatal morbidities using the same input features: standard multivariable logistic regres-

sion, multi-task logistic regression and multivariate random forest. Multi-task logistic regression was per-

formed using the R package ‘RMTL’ with default hyperparameters (i.e. L21 regularization with l1 = 0.1 and

l2=0) and extends the multi-task approach to linear regression (Cao et al., 2019). Multivariate random for-

est was implemented using the ‘IntegratedMRF’ R package with default hyperparameters. Multivariate

random forest allows to incorporate the correlations between neonatal outcomes into traditional random

forest approaches and has been shown to perform better than traditional random forest when outcomes

are correlated (Rahman et al., 2017).

Briefly, for each of the twelve neonatal morbidities, GA-stratified models (standard logistic regression,

multi-task logistic regression and multivariate random forest) were built with the neonatal morbidities as

outcomes and all the demographic and clinical variables as predictors. Predictions were then stacked using

the risk prediction obtained from the GA-specific model corresponding to the GA of each livebirth. Missing

data were replaced with the mode or the mean, as appropriate. Models were trained on the training data-

set and performances were evaluated on the test dataset.

Our model outperformed the other approaches in the prediction of all the twelve neonatal morbidities

(Table S4). Overall AUPRC and AUC of our model were greater than those of standard logistic regression

(AUPRC: 0.326 vs 0.310, AUC: 0.963 vs 0.961), multi-task logistic regression (AUPRC: 0.130, AUC: 0.935), and

multivariate random forest (AUPRC: 0.266, AUC: 0.878).

All the analyses were performed using R v3.6.3 and themulti-task deepNNs were implemented using Keras

through the R package ‘keras’.
Feature importance experiment

To evaluate the importance of clinical variables (features) towards the prediction of morbidities, a feature

removal experiment was conducted. For each of the 26 clinical variables used as input in the training of

NNs, a univariable logistic regression model was trained, using the training dataset, to predict each of

the twelve neonatal morbidities. Test AUPRCs and AUCs to predict each morbidity were calculated along

with an overall AUPRC and AUC obtained by stacking risk predictions andmorbidity variables for the twelve

morbidities into two unique vectors of risk prediction and neonatal morbidities, respectively. The clinical

variables were then ranked on the basis of their overall test AUPRC. Subsequently, a series of multi-task

deep NNs was trained, as previously described, progressively removing all the features, one at the time.

Features were removed, one at the time, starting from the one with the lowest overall test AUPRC until

only the feature with the highest overall test AUPRC remained. At each step, the overall test AUPRC and

AUC were calculated as described above.

Similarly, we conducted a feature permutation experiment (Molnar, 2020). For each of the 26 clinical vari-

ables used as input, one at the time, the original variable in the training, validation and test datasets was

replaced by randomly permuted values of that variable across all observations. The model was then re-

trained using these modified versions of the training and validation datasets and the overall AUPRC and

AUC were calculated on the modified test dataset. The permutation feature importance was then calcu-

lated as the percentage reduction in the overall test AUPRC (or AUC) compared to that of the original

model. The higher the decrease in the model performance due to the permutation of a variable, the

more important is that variable in obtaining predictions of the morbidities. Bootstrapping was used to

calculate 95% confidence intervals; 1,000 independent samples, each of 1,000,000 livebirths, were drawn

from the test data and AUPRCs and AUCs were calculated to estimate their distribution. 2.5% and 97.5%

quantiles of the obtained distributions were used as limits of the 95% confidence intervals.
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Correlation networks

Correlations between clinical variables and morbidities were calculated using Pearson’s, polychoric, or tet-

rachoric correlation coefficients, as appropriate, to define correlation networks. In these graphs, each

clinical variable or output was represented by a node and all nodes were arranged into a two-dimensional

space using the Fruchterman-Reingold force-directed graph drawing algorithm (Fruchterman and

Reingold, 1991). Nodes correlated with a correlation coefficient exceeding 0.1 in absolute value were con-

nected by edges whose width is directly proportional to the strength of the correlation between the nodes.
QUANTIFICATION AND STATISTICAL ANALYSIS

Model performances were evaluated on the test dataset using the area under the precision-recall curve

(AUPRC), which focuses on the presence of the outcome and is more appropriate in imbalanced prediction

tasks involving rare outcomes; and the area under the receiver operating characteristics curve (AUC). Stan-

dard errors for AUPRCs and AUCs were obtained using the first order delta method with logistic transfor-

mation and the deLong method, respectively. In addition, risk predictions and observed values across the

12 morbidities were each stacked into a unique vector of predictions and observed outcomes, respectively,

in order to calculate the overall AUPRC and AUC across all the 12 morbidities.
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