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Highlights
Amultitude of clinical, biological, environ-
mental, and demographic factors influ-
ence the trajectory of a pregnancy.
Maternal genetics, environment, stress,
nutrition, medical history, socioeconomic
status, and racial and ethnic background
all play a role in determining the success
of a pregnancy.

Diverse data sources are available for the
study of pregnancy and prediction of ad-
verse outcomes, including electronic
health records (EHRs) and administrative
claims data, high-throughput multiomics
data for characterizingbiological systems,
A healthy pregnancy depends on complex interrelated biological adaptations
involving placentation, maternal immune responses, and hormonal homeostasis.
Recent advances in high-throughput technologies have provided access to
multiomics biological data that, combined with clinical and social data, can
provide a deeper understanding of normal and abnormal pregnancies. Integration
of these heterogeneous datasets using state-of-the-art machine-learning
methods can enable the prediction of short- and long-term health trajectories
for a mother and offspring and the development of treatments to prevent or
minimize complications. We review advanced machine-learning methods that
could: provide deeper biological insights into a pregnancy not yet unveiled by
current methodologies; clarify the etiologies and heterogeneity of pathologies
that affect a pregnancy; and suggest the best approaches to address disparities
in outcomes affecting vulnerable populations.
and more complex sources like time se-
ries, imaging and video data, and text.

Recent advances in multiview, multitask,
and deep learning allow joint modeling
across data sources as well as across
outcomes and demonstrate the vast po-
tential of such integrated approaches.
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Complexities of Pregnancy
Pregnancy is a complex process in which each stage – implantation, decidualization, placentation, or-
ganogenesis, the establishment of the maternal–fetal interface, fetal growth, and, finally, parturition –

depends on the successful completion of the previous stage [1]. The exact etiologies of most adverse
pregnancy outcomes remain unknown, challenging the development of therapeutic interventions.
Preterm birth (PTB), defined as a birth before 37 weeks of gestation, is the leading cause of global
infant morbidity and mortality. Spontaneous PTB (sPTB) has many antecedents and has been
attributed to various pathological mechanisms including intra-amniotic infection, disruption of
maternal–fetal tolerance, vascular disorders, myometrial stretching, and cervical incompetence,
thus appearing to be a syndrome with many causes [2]. Moreover, the current definition of sPTB,
based solely on a gestational age (GA) of less than 37 weeks, is insufficient to precisely identify
neonates who will develop adverse outcomes. Further challenging this definition is the inability to ac-
curately estimate GA in low- and middle-income countries (LMICs) [3]. Similarly, there is growing
evidence that the two main types of preeclampsia – early versus late onset – in addition to having dif-
ferent risk factors have different pathophysiologies [4]. Various adverse pregnancy outcomes – fetal
growth restriction (FGR), PTB, pretermpremature rupture ofmembranes (PPROM), late spontaneous
abortion, and placental abruption – have been associated with a common culprit: an abnormal pla-
centa [5,6]. These findings point to the complexity of these outcomes and of pregnancy itself.

In addition to – and perhaps as a consequence of – this inherent complexity of pregnancy, the corre-
sponding adverse outcomes are influenced by various interrelated factors, including genetic and im-
munological predisposition as well as medical history and social determinants (e.g., race/ethnicity,
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Glossary
Cardiotocography (CTG): recording
of the fetal heartbeat and uterine
contractions during pregnancy.
Complex data: data that cannot be
directly represented in tabular form,
such as text, images, videos, time series,
or networks.
Deep learning: family of machine-
learning algorithms based on neural
networks.
Dimensionality reduction:
transformation of data with a large
number of observations and/or features
to a meaningful representation with a
smaller number of representative
variables.
High-dimensional data: data with a
large number of features (e.g.,
thousands or tens of thousands) that
typically exceed the number of
observations.
Machine learning: a wide range of
statistical methods for making
inferences about data given by a set of
features (e.g., clinical measurements of
patients).
Neural networks: collections of
interconnected nodes organized in
multiple layers, such that nodes in one
layer are connected to nodes in its
neighboring layers via weighted links.
The learning in a neural network is
performed by adjusting the weights to
perform a task at hand with minimum
observed error (i.e., with maximum
accuracy).
Semi-supervised learning: a hybrid of
supervised and unsupervised learning in
which the outcome is known for only a
limited number of samples.
Supervised learning: algorithms that
learn to predict a certain property or an
outcome (e.g., PTB) (also called a label,
a target, a response variable, or an
output) associated with a given set of
features (also called input features,
explanatory variables, or input).
Tabular data: data with a tabular
structure where each row represents a
sample and the columns correspond to
categorical or numerical features.
Tocolytics: medications used to
suppress premature labor.
Unsupervised learning: attempts to
derive hidden structure from the data
with no knowledge of an outcome.
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socioeconomic status, education) [7]. Newdiseases and environmental factors – such as coronavirus
disease 2019 (COVID-19) and climate change – can affect pregnancy in many complex ways [6,8,9].
Disparities in outcomes often seem to be related to racial, socioeconomic, and geographic factors
[10]. However, the assessment of a woman’s predisposition to a specific complication based on
clinical, demographic, and social data – a key step – is limited in its predictive accuracy [11].

The recent availability of high-throughput, molecular-level data from genomic, transcriptomic,
proteomic, metabolomic, and single-cell immunological measurements, together with advanced
computational and statistical tools, has provided an opportunity for analyses of these compre-
hensive and detailed datasets and for the integration of biological and nonbiological biomarkers.
Such integrated approaches can lead to more accurate inferences about the diversity and multi-
plicity of causes of pathologies related to pregnancy, providing more specific and generalizable
signatures of pregnancy-related pathologies.

In this review, we provide an overview of major clinical challenges in pregnancy and the available
data sources to study pregnancy, as well as state-of-the-art machine-learning (see Glossary)
methodology to analyze these data. We close with an outlook on how a combination of diverse
data sources and advanced machine learning can yield a holistic view of pregnancy.

Major Clinical Challenges in Pregnancy
The Healthy Progression of Pregnancy Depends on Complex Biological Adaptations
The establishment, maintenance, and completion of a healthy pregnancy depends on a series of
interrelated biological adaptations. Derangements in the processes of placentation, maternal immune
adaptation, and hormonal homeostasis, among others, contribute to the pathogenesis of adverse
outcomes [12]. For example, during pregnancy thematernal immune systemmustmaintain tolerance
to the fetoplacental unit while still protecting the mother and fetus against invading pathogens. Failure
to do so is strongly implicated in almost all adverse outcomes of pregnancy [12,13]. Similarly,
pregnancy stages are orchestrated in part by specific chronological changes in the maternal endo-
crine system, and any dysregulation of hormonal homeostasis can lead to pathogenesis [14,15].

Pathogenic Processes in Pregnancy Lead to Complications
Pathogenic processes can interfere with the critical biological adaptations during pregnancy and
lead to pregnancy-related complications. PTB, preeclampsia, and FGR arise from such pro-
cesses and complicate 15–20% of pregnancies. While most of these disorders present clinically
in the third trimester, treatment after the onset of clinical symptoms results in only mild to moder-
ate improvements. Because implantation, uterine remodeling, and placental development occur
early in pregnancy, identifying molecular changes weeks before the clinical onset of disease has
the potential to dramatically improve our diagnostic and therapeutic capacities and decrease the
associated maternal and neonatal morbidity and mortality.

Prematurity
Prematurity remains a leading cause of neonatal morbidity and mortality, and children born
preterm often face lifelong challenges including permanent physical and neurodevelopmental
disabilities [16]. PTB etiologies are often categorized into different subgroups [17,18]. Iatrogenic
PTB is defined as a PTB in which physicians either induce labor or proceed with Cesarean
delivery at early GAs in response to a severe underlying maternal and/or fetal complication.
sPTB results from either PPROM or spontaneous preterm contractions/preterm labor (PTL).
Although infection and inflammation have traditionally been thought to mediate a significant
proportion of sPTBs, recent advances have also highlighted the role of pathological immune
responses, maternal sociodemographic stressors (including bias and racism) [19,20], cervical
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disorders (e.g., cervical incompetence), and uterine overdistension [as is the case in multiple
gestations or in polyhydramnios (excess amniotic fluid volume)]. Unfortunately, irrespective of
the etiology, PTB remains extremely difficult to predict, partly because of heterogeneous and
multifactorial underlying mechanisms and partly because clinicians lack the necessary tools to
identify these mechanisms prior to the onset of clinical symptoms. Moreover, treatment of PTL
and/or PPROM using tocolytics, antibiotics, or other measures has only limited benefit in
delaying delivery once clinical symptoms have begun [21].

Preeclampsia
Preeclampsia is a multiorgan disorder complicating 2–8% of pregnancies [22]. Although the
hallmarks of preeclampsia are new-onset maternal hypertension and proteinuria, preeclampsia
can have significant adverse effects on a variety of organs including the central nervous system,
lungs, liver, kidneys, and heart, all mediated via generalized vasoconstriction [22]. Preeclamp-
sia may present as early- or late-onset preeclampsia, with the early-onset form indicative of
more severe disease and with increased rates of complications [23]. While the clinical manifes-
tations of preeclampsia occur most often in the third trimester, it is hypothesized that the path-
ophysiology of preeclampsia begins in the first trimester. Specifically, abnormal invasion of the
placental trophoblasts into the uteroplacental interface is believed to result in maldevelopment
of the spiral arteries and hence lead to inadequate perfusion of the placenta [24]. This early-
onset abnormal placentation cascade can also have direct third trimester ramifications as
preeclampsia can result in placental abruption, PTB, and/or FGR. The adverse effects of
preeclampsia are likely to extend beyond maternal and neonatal morbidity. Recent studies
have begun to elucidate a link between preeclampsia and long-term maternal and offspring
cardiovascular disease, likely to occur via direct and permanent cardiac remodeling [25,26].
Therefore, the identification of novel predictive tools, which allow timely interventions, may
ultimately lead not only to a reduction in maternal and neonatal morbidity but also to
improvements in the long-term health of women.

FGR
Although FGR is often defined as an estimated fetal weight less than the tenth percentile [27],
most cases are not pathological but rather ‘constitutional’, based on maternal or paternal size.
Pathological FGR complicates 3–5% of pregnancies and results from abnormal genetics, in-
fections [e.g., cytomegalovirus (CMV)], anatomical malformations, placental pathologies,
and/or underlying maternal disorders leading to decreased placental perfusion [28]. The
long-term neonatal and pediatric effects of FGR have been well characterized and include
physical, metabolic, and neurodevelopmental challenges [27]. While most FGR is diagnosed
in the third trimester, predicting FGR in the first or second trimester is difficult, and there are
no proven therapies to alter fetal growth in utero. Interestingly, there is a link between FGR
and metabolic syndrome in the offspring, highlighting a vicious cycle in which a pathological
pregnancy adversely affects the long-term health and possible eventual pregnancy of the off-
spring [29].

Stillbirth
Stillbirth – fetal death after 20 weeks of gestation – remains a significant global health burden in
both LMICs and high-income countries (HICs) [30,31]. While the cause of intrauterine fetal
death is multifactorial, common complications that can lead to stillbirth include fetal congenital
anomalies, placental pathologies, maternal health disorders, and obstetric syndromes [32].
Furthermore, a pregnancy that endswith a stillbirth will have long-term physical and psychological
consequences on the mother’s health and may endanger the success of future pregnancies
[33,34].
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Clinical and Social Determinants of Maternal and Neonatal Health
Clinical and Administrative Data Are Good Starting Points
Various population-level data sources have been used to identify factors that impact maternal and
offspring health. One of the main such sources – electronic health records (EHRs) – includes de-
mographics, anthropometrics, diagnoses, vital signs, medications, and various clinical measure-
ments, offering a detailed look into a patient’s medical history. Administrative insurance claims
data, containing large sample sizes over large geographic areas but with less granularity, have
been successfully mined to create and analyze pregnancy cohorts [35–37]. Studies involving
EHR-based models for the prediction of gestational diabetes mellitus (GDM), preeclampsia,
and PTB illustrate how such data sources are relevant in the context of reproductive health
[38–40]. EHRs can also be used to characterize the currently unknown pharmacological effects
that a broad range of drugs might have on the physiology of pregnancy [41,42]. Well-established
measures of health such as hematology panels and urinalyses continue to provide useful informa-
tion when assessing maternal and fetal health. For instance, higher neutrophil counts and neutro-
phil-to-lymphocyte ratios – both inflammatory markers – have been associated with the
development of GDM and decreased fetal growth [43]. Additionally, proteinuria and bacteriuria,
determined through urinalysis and urine culture, respectively, are important predictors of life-
threatening complications like preeclampsia [44,45]. Advances in artificial intelligence (AI) have re-
cently enabled clinicians to use some of these traditional, low-cost tests in more sophisticated
predictive and diagnostic models than previously possible [46].

Lifestyle Choices and Social Determinants Impact Maternal and Fetal Health
Recent results have revealed that psychological, nutritional, and other lifestyle-related factors can
affect the course of a pregnancy. Stress – broadly defined using clinical diagnoses of depression
and anxiety and physiological measurements such as elevated blood pressure – can affect fetal
development with consequences that extend into adulthood [47,48]. Increased levels of stress
have been associated with preeclampsia and PTB through poorly understood biological mecha-
nisms [49–51]. The influence of maternal nutrition on fetal development is better characterized
[52]. Bothmalnutrition and obesity affect the adaptedmaternal metabolism in pregnancy and cor-
relate with infertility, PTB, and FGR [53,54]. Similarly, micronutrient deficiencies, particularly vita-
min D, are epidemiologically linked to preeclampsia, GDM, and developmental fetal defects,
demonstrating the importance of maternal nutrition during gestation [55–58].

Racial and ethnic background, socioeconomic status, and living environment act via complex
mechanisms that make measurements of their direct effects on maternal and fetal health difficult
[59]. For example, a recent study found two distinct pathways by which stress can lead to com-
plications during pregnancy demarcated by racial and ethnic lines, such that Hispanic and Afri-
can-American women progress towards the same adverse outcomes fueled by similar
stressors, but in biologically different ways [60]. Lower socioeconomic status and levels of edu-
cation decrease access to prenatal care (even when costs are not prohibitive) to the detriment
of the mother and her offspring [61,62]. Exposures to air pollution, heavy metals, and toxic com-
pounds also often distribute across socioeconomic and geographic lines and have been associ-
ated with increased risks of developmental defects and other adverse outcomes [63–67].

Machine learning based on clinical and social determinants to model adverse pregnancy out-
comes yields promising results that – dependent on the data used – can enhance our ability to
predict adverse outcomes and enable deeper insights into the underlying processes of preg-
nancy. However, they have not yet been shown to yield predictive models of adverse pregnancy
outcomes such as PTB in a generalizable and robust manner, making biological profiling of preg-
nancy a major priority.
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Biological Profiling of Maternal and Neonatal Health
Recent advances in high-throughput technologies have provided access to multidomain or
multiomic biological data, enabling studies to understand pregnancy from the viewpoints of ge-
netics and epigenetics as well as a wide range of other omics. For such high-dimensional
data, characterized by a very large number (e.g., tens of thousands) of measurements obtained
for a small number of patients, machine-learning approaches are a necessary analytical tool.

Genetics and Epigenetics for Characterizing Pregnancy
Pregnancy occurs against the genetic background and epigenetic programming of both the
mother and the fetus. Maternal genetic variants affect the success of essential developmental
processes such as decidualization and placentation, whereas both maternal and fetal genetics
play a role in maintaining the delicate immune balance that characterizes embryonic and fetal de-
velopment [68–70]. While genetic contributions to different complications in pregnancy are prob-
ably polygenic, genome-wide association studies (GWASs) have found genetic variants
associated specifically with sPTB, illustrating how a mother’s genetic makeup can set the
stage for fetal development and pregnancy outcome even before conception [71–73]. By con-
trast, maternal epigenetic modifications reflect the state of different cell types across tissues as
they reprogram to prepare for fetal growth [74,75]. Quantification of these modifications – by
measuring DNA methylation, histone markers, and chromatin accessibility in the cell subsets of
interest – offers insights into whether different cell types in the maternal–fetal interface are
adapting properly for a successful pregnancy [76,77].

Omics Data Analyses Provide a Deep View of the Biological Pathways of Pregnancy
A more complete characterization of the mother’s biological state can be obtained by utilizing, in
addition to genetic and epigenetic data, high-throughput methods to assess the maternal tran-
scriptome, metabolome, proteome, and microbiome (Box 1). Given the massive pregnancy-in-
duced changes in maternal tissue-specific gene expression and the accompanying metabolic,
hormonal, and immune adaptations, these modalities can reveal different facets of maternal
and fetal health at specific points in time [78–82]. For example, cell-free RNA (cfRNA) from
blood or amniotic fluid can be used to monitor the dynamics of fetal development and placenta-
tion, with implications for the early diagnosis of preeclampsia by the detection of biomarkers of
dysfunctional placentation in maternal plasma [83,84]. Microbiomics can be used to survey the
vaginal, oral, and gut microbiomes, which play key roles in maintaining the maternal immune bal-
ance necessary to tolerate the fetus [85]. Dysbiosis of the vaginal microbiome, such as is seen in
bacterial vaginosis, can lead to PTB through inflammatory processes or intra-amniotic infections
originating from vaginal microbes [86]. Similarly, pathogenic oral microbes can lead to PTB via
systemic inflammation from oral disease or through hematogenous colonization of the amniotic
fluid [87]. Finally, the gut microbiome, with its role in the metabolism of small molecules and hor-
mones and in the regulation of metabolic and immune processes, has been linked to GDM and
PTB when unbalanced [88]. Overall, the various omics technologies hold great potential to help
elucidate the biological components of the pathologies of pregnancy.

Machine Learning for Modeling Adverse Pregnancy Outcomes
Machine Learning
Machine learning encompasses a wide range of statistical methods used to make inferences about
data given by a set of features (e.g., clinical measurements of patients) [89]. It includes supervised
learning – algorithms that learn to predict a certain property or an outcome (e.g., PTB) (also called
a label, a target, a response variable, or an output) associated with a given set of features (also
called input features, explanatory variables, or input). It is supervised because the outcome is
known for a large enough data sample (i.e., number of patients) allowing a relationship between
766 Trends in Molecular Medicine, August 2021, Vol. 27, No. 8



Box 1. Multiomics Phenotyping for Systems Biology

Systems biology approaches have revealed the complexity of the biological components whosemutual interactionsmaintain
homeostasis in a healthy individual. Cell expression profiles, metabolites, proteins, and the microbiota around the body all
play roles in homeostasis and the dysregulation of their interactions can give rise to disease. Recent high-throughput tech-
nologies have enabled the quantification of these biological components with increased resolution, giving rise to omics data.

Transcriptomics

Transcriptomic data faithfully track tissue-specific cellular programs through the sequencing of different types of RNAmol-
ecules. Sequencing technologies have enabled the quantification of both protein-coding mRNA and regulatory miRNAs,
circular (circ)RNAs, and long noncoding (lnc)RNAs [176]. cfRNA from blood samples has also emerged as a promising ap-
plication of transcriptomic profiling in the context of noninvasive biomarkers for use in clinical practice [177]. The limitations
in cell-free transcriptomic data lie in the constraints of sequencing technology and our inability to determine the exact tissue
of origin of the RNA sequenced.

Metabolomics

Metabolomics provides a comprehensive view of the metabolites – specifically, small water-soluble bioactive molecules –
that are present in a biological system. Metabolites in a sample are quantified using NMR and mass spectrometry (MS),
which allows measurements of high precision and sensitivity. However, the large number of unannotated metabolites
and the difficulty of establishing their biological function are challenges that prevent the full exploitation of this omic [178].

Proteomics

Measuring the proteome provides insight into the biological functions occurring in an individual at a given point in time by
quantifying the abundance of proteins of interest. Methods used for proteomics include MS and antibody- or aptamer-
based profiling, with the latter two necessitating previous knowledge of the proteins to be quantified. Nonetheless, the
large variations in the relative abundances of proteins in a sample pose a challenge to proteomics analysis, and the cost
of this omic can be prohibitive [179].

Microbiomics

The microbiome encompasses tissue-resident commensal organisms and is known to critically contribute to the modula-
tion of human physiology. Next-generation sequencing (NGS) is used to profile 16S ribosomal RNA or, together with shot-
gun metagenomics, to unravel the microbial landscape in a tissue of interest. As with transcriptomics, the constraints of
sequencing technologies can limit the detection of rare variants that may be significant when studying the relation of the
microbiome and a relevant phenotype [180].

Trends in Molecular Medicine
OPEN ACCESS
the features and the outcome to be learned and a prediction model to be developed. By contrast,
unsupervised learning has no knowledge of the outcome and attempts to derive hidden
structure from the data [90]. Semi-supervised learning is a hybrid of supervised and unsuper-
vised learning in which the outcome is known for only a limited number of samples. In the context
of pregnancy, we mainly focus only on supervised learning in which features such as medical his-
tory or measurements from an omics assay (input) are used to predict outcomes such GA or PTB
(output). Most commonly, the input is represented in a structured, tabular form where each row
represents a sample and the columns correspond to categorical or numerical features, and the
output is a single outcome. For more information about supervised machine learning as well as
general evaluation techniques, please refer to Box 2. For a discussion of different data types and
their properties and challenges see Box 3.

Machine-Learning Models for Adverse Pregnancy Outcomes
Machine learning is well suited for predictive modeling of pregnancy outcomes [91,92] and is be-
coming more prevalent [93–105] due to its ability to model highly complex relationships between
measured features and outcomes. The majority of previous work focused on modeling tech-
niques that incorporate one or two data sources, including clinical [95] as well as derived numer-
ical data from another source such as blood samples [39], Doppler ultrasound, echosonography,
or magnetic resonance imaging (MRI) readings [101], or mental health assessments [106]. To-
gether, these datasets are combined into a single, structured table of samples and features.
See Box 3 for more information on different data types and properties.
Trends in Molecular Medicine, August 2021, Vol. 27, No. 8 767



Box 2. Machine Learning: Supervised Learning

In supervised learning, machine-learning models learn to predict certain properties or an outcome (also called labels, tar-
gets, response variables, or output) associated with a sample represented by a set of features (also called input features,
explanatory variables, or input) [89]. To achieve this, a machine-learning model assumes a certain input/output relationship
(e.g., linear) and is then trained based on a set of samples (i.e., training data) for which both input and output are known.
This training procedure typically comprises iterative adjustment of the parameters of the chosen input/output relationship.
After training, the model can then be applied to previously unseen samples and can make predictions about the desired
output. Different machine-learning models differ in which types of input and output they can process as well as how well
they can cope with the different complexities of the relationship between the given input and output. Most commonly, the
input is represented in tabular form where rows represent samples and columns correspond to categorical or numerical
features. Depending on the class of functions used tomodel the input/output relationship, variousmachine-learningmodel
classes exist, including linear regression variants [181], rule- and decision-tree-based systems [182], ensemble methods
like random forests [183] or gradient-boosted trees [184], support vector machines [185], nearest-neighbors approaches
[186], and Bayesian techniques [187]. Artificial neural networks and deep learning [188] can also be applied to tabular data,
although in this task other methods often outperform fully connected neural networks [189]. For further discussion on dif-
ferent input types and their properties, see Box 3. The evaluation of supervised machine-learning models is based on
datasets where the input and output are known. Based on this, the most common approach is cross-validation, where
this dataset is split into pairs of a training and a test set where the test sets do not overlap. For each split, the model is
trained and optimized on the training set while the predictive power of the trained model is assessed on the test set.
The final score is an average score over all splits.
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Computational Modeling of Pregnancy Outcomes Using High-Throughput Biological Data
High-throughputmultiomics data poses two unique challenges for state-of-the-art machine-learning
models and advanced statistical tools: (i) typically, the large number of features (high dimensionality)
and small number of samples (e.g., patients) of omics data; and (ii) the heterogeneity of the different
omics to be integrated – a challenging task even without considering high dimensionality.

The analysis of high-dimensional data with small numbers of samples is commonly enabled by two
approaches: (i) reduction of the number of features; and (ii) sparse modeling. Reduction of the
number of features is usually applied as a preprocessing step. It reduces the number of features
either by feature selection [107], which filters out redundant features, or bydimensionality reduc-
tion, which compresses the information into a representation containing a smaller number of
representative features [108] and is done in an unsupervised manner. A common example of
dimensionality reduction is principal component analysis (PCA). It reduces noise and simplifies
the data and thus is often applied for visualization. The second approach, sparse modeling
[109], directly models an outcome in a supervisedmanner. It extracts the most informative features
Box 3. Data and Its Properties

This review distinguishes between tabular and more complex data. Here, tabular data is referred to as data with a tabular
structure where each row represents a sample and the columns correspond to categorical or numerical features. How-
ever, such data can have very different properties. For example, small numbers of clinical variables may be available for
large cohorts, while readings from transcriptomics assays provide many features that are available only for small cohorts
(see tables in Figure 1 in the main text). Furthermore, the data themselves may differ: clinical data might contain a mix of
categorical and numerical values; omics assays contain only numerical values; and the transcriptome is inherently sparse
due to the fact that many genes are generally not active. Thus, while their structures are similar, the individual character-
istics of different data sources pose unique challenges to machine-learning models analyzing this data and may require
different algorithms (Box 2). This heterogeneity in data complicates their integration in multiomics settings, as discussed
in the subsection ‘Computational Modeling of Pregnancy Outcomes Using High-Throughput Biological Data’.

The tabular form forces the input to be limited to a fixed set of categorical or numerical features. However, machine-learn-
ing research has made tremendous progress on more complex data types such as text, images, videos, time series, and
even complex networks, which this review refers to as complex data. In medical settings, such modalities (e.g., ultrasound
images [146,151,152]) are often converted into handcrafted features to fit the paradigm of tabular data. Due to this inher-
ent handcrafting process, these features are susceptible to human bias and information loss. In other domains, however,
deep-learning methods have been shown to be highly versatile in directly processing complex data modalities without la-
borious and handcrafted preprocessing procedures. This enables novel avenues to take advantage of routinely collected
but hardly analyzed modalities, as further discussed in the section ‘Challenges and Potential of Complex Data’.
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for that outcome and includes them in a prediction model that is often easy to interpret and efficient
to compute. Sparse modeling also enables the integration of any additional a priori knowledge to
guide and further sparsify the models [110]. Examples of the application of these techniques in
the context of pregnancy include predicting GA by modeling the temporal dynamics of the prote-
ome and immunome over the course of pregnancy [81,82]. Similarly, prediction models for
preeclampsia risk have been developed from transcriptomic, proteomic, or metabolomic datasets
[4,111], for PTB from immune, transcriptomic, and growth-related molecular factors [112], and for
models of complications like macrosomia, FGR, GDM, or preeclampsia from cfRNA [113].

While coping with the heterogeneity of different omics is challenging, their integration has been
demonstrated to improve predictive power. This is illustrated by a study on modeling GA [114]
using stacked generalization [115] to integrate biological signals across seven different omics.
In another study, the incorporation of transcriptomic and epigenetic data was shown to increase
performance in the identification of GDM in addition to helping in the elucidation of its biological
basis [116]. However, the individual characteristics of different omics as well as their inherent dif-
ferences in numbers of features (e.g., sparse microbiome data versus targeted proteomics as-
says) pose unique challenges for their integration into statistical models. In particular, sparse
data with many undefined values require different models than data with dense input. Another
problem is that omics of high dimensionality but with low information content may preclude inclu-
sion in the model of information from smaller, more dense omics. To address these issues, a wide
variety of methods for multiomics integration is currently being developed in the field of bioinfor-
matics [117–120], and there are community-driven efforts to maintain an overview of relevant
work and software packagesi. This work incorporates approaches from diverse fields of machine
learning including Bayesian concepts [121,122], network analysis [117,118], and deep-learning
techniques [123–125]. Similar to the single-omics case, methods for predictive studies often in-
corporate dimensionality reduction and data integration using a mixture of variable selection
(e.g., [120]) and representation learning (e.g., [126]) to reduce the number of features and to cal-
ibrate their influence on the model between omics.

Finally, the use of single-cell immune profiling technologies for pregnancy research is still develop-
ing. There, one general limitation is the manual process of identifying homogeneous cell popula-
tions (‘gating’) for feature extraction from single-cell data, which disregards the detailed picture
that single-cell technologies can provide. However, methods have recently emerged that inte-
grate single-cell processing directly into the modeling pipeline [127,128].

In summary, pregnancy involves a number of intricate biological processes that can be better
characterized by using a coordinated set of omics assays, typically available for a small set of pa-
tients. Although a variety of methods exist, the integration of such multiomics datasets is not yet
broadly developed in the context of pregnancy research and requires the adaptation of existing
and development of new machine-learning pipelines. This will allow the full exploitation of these
novel data sources and may unveil new biological insights into pregnancy, the identification of
risk factors, and the development of diagnostic predictive tests.

Challenges and Potential of Complex Data
Some of the valuable data sources for the modeling of pregnancy are available only in complex
data formats such as time-series measurements (e.g., fetal heart rate or actigraphy), imaging
data (e.g., ultrasound), and free text (e.g., diagnosis records, patient narratives). While these com-
plex datasets make machine-learning modeling more challenging and have been less analyzed,
they provide information critical for a more complete understanding of maternal and neonatal
health (see Box 3 for a comparison of tabular data and complex data).
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Clinician’s Corner
Major complications that may arise in
pregnancy share overlapping etiologies
and presentations and can lead
to increased complexity in diagnosis
and effective therapeutic intervention.
Moreover, these diseases have both
short- and long-term repercussions on
the health of the mother and her
offspring.

Integrating novel high-throughput
biological profiling technologies with
clinical and social determinants of
maternal and fetal health will enable
clinicians to describe the current state
and possible risks of a pregnancy
with greater accuracy.

Advanced machine-learning methods
applied to the multitude of data sources
now available to study pregnancy
will reveal more robust biomarkers
and specific disease signatures with
applications to clinical practice.

Better biomarkers will permit earlier
diagnosis of possible complications and
may act as markers of therapeutic
efficacy for clinicians to modulate
treatment.

Specific and generalizable disease
signatures will reveal how clinical,
biological, environmental, and
demographic factors contribute to
the different pathologies of
pregnancy, allowing better risk
stratification of patients and an
improved understanding of the
pathogenesis of these diseases.
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Time-Series Data Are a Promising Complex Modality
Clinical time-series data are essential for monitoring patients and health assessments in real time
[e.g., in the intensive care unit (ICU)] as well as in retrospective settings (e.g., for long-term
monitoring and diagnoses). One example in the context of pregnancy is fetal heart rate analysis
to identify pathological fetal conditions like perinatal hypoxia, FGR, or fetal arrhythmias and heart
anomalies [129]. Here, a common practice is to extract various quantitative parameters associated
with fetal conditions such as short-term variability (STV) and long-term irregularity (LTI) of fetal heart
rate measurements, which are then directly interpreted or converted into a tabular format that can
be used for machine learning [129,130]. However, there is a wide variety of advanced machine-
learning methods for time-series analyses and classifications, specifically deep learning and recur-
rent neural networks, that have the potential to directly model and predict pathological fetal
conditions [131–133]. For example, deep learning can be directly applied to cardiotocography
(CTG) recordings to predict fetal acidemia without handcrafted feature extraction akin to STV
and LTI markers [134]. Instead, deep-learning architectures are built to process the given data
directly, possibly identifying markers that may not have been known to practitioners.

The use of sensors and actigraphy to monitor sleep quality, activity patterns, and movement in
patients is a novel approach to the quantification of lifestyle-related behaviors that might affect
health [135,136]. Although this strategy has been underexplored, altered sleep patterns during
pregnancy have been shown to lead to differential gene expression in mothers [137]. For this,
machine-learning approaches for time-series data can be used to analyze smart-watch and
actigraphy data [138], which can reveal insights into various pregnancy-related parameters
[139]. Furthermore, in combination with the ubiquity of smartphones and wearable devices, a
wide variety of activity recognition and semantic behavior analysis methods [140–143] can now
be captured to obtain an even more detailed picture of potential behavioral risk factors.

Imaging Technologies for Biological Analyses
Another area where machine and specifically deep learning have shown great potential is image
and video analyses [144–146]. However, in pregnancy-related research the corresponding meth-
odology is still underrepresented although imaging technologies are routinely used to assess fetal
health [146], and basic science as well as clinical research is increasingly adoptingmultiplexed im-
aging methods [147]. A prominent example is ultrasound-related modalities, considered a cor-
nerstone of the clinical assessment of fetal health [148]. In particular, Doppler ultrasound –

which can quantify fetal and umbilical blood flow – has been studied in the context of predicting
adverse pregnancy outcomes in the first and second trimesters [149,150]. However, images and
videos are often converted into (handcrafted) features for manual inspection or for input into ma-
chine-learning models using various feature-extraction methods [146,151,152]. While there are
approaches to aid in the interpretation of pregnancy-related imaging data [146], only limited
work has tried to tap into the full potential of image and video material to model and predict preg-
nancy-related outcomes [153].

Text-Based Information to Leverage Large-Scale Information Sources
Due to the rapid development of natural language processing tools, unstructured text is becom-
ing a valuable information source. Application scenarios range from processing the text-based
components of EHRs and patient narratives [154–156] to extracting (biological) knowledge
[157] from previous research articles [158–161]. For example, EHRs can be used to automatically
extract features based on computational word representations (word embeddings) for better pre-
diction of adverse outcomes [38]. Similarly, machine learning can be used to extract and process
subjective information using sentiment analysis [162,163] (e.g., to analyze discharge notes where
sentiments have been shown to be associated with readmission andmortality rates [164]). Similar
770 Trends in Molecular Medicine, August 2021, Vol. 27, No. 8



Outstanding Questions
How can state-of-the-art machine-
learning methods be used to integrate
available biological, clinical, and social
data in the best way that can
characterize pregnancy and predict
pregnancy adverse outcomes?

Should definitions of PTB and
preeclampsia phenotypes (early
versus late onset) be made more
precise to include more than just GA?

Which data modalities will serve as the
most accurate source of information to
model pregnancy and how can easily
accessible data sources replace
possibly more accurate expensive
data sources?

How can a systems approach based
on machine learning improve our
understanding of pregnancy and
adverse outcomes?
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technology may be potentially used to monitor patient interactions for wellbeing during preg-
nancy. Overall, the processing of text-based information may open novel avenues to automati-
cally capture and analyze information that either is not accessible without laborious examination
of textual content or cannot be directly captured by biomarkers.

A Holistic View on Pregnancy
Recent advances in machine learning, including multimodal learning, multiview representation
learning [165–171], and multitask learning [172,173], provide a unique opportunity for in-depth
modeling of pregnancy and its pathologies (see Clinician’s Corner). These areas of research
aim to combine datasets from various modalities and across different tasks (e.g., prediction of
outcomes) to develop an integrated model (Boxes 3 and 4). Multimodal models have been previ-
ously applied in biological data integration [169] and are particularly relevant for multiomics anal-
ysis and integration [118,126]. They can also combine regular tabular data, time series, images,
and text into a joint holistic model for a multitude of predictive settings [166,167]. At the same
time, pregnancy outcomes are highly interrelated and may point towards different phenotypes
with similar pathologies. This interrelatedness can be exploited by the use of multitask learning,
which takes advantage of information contained in related outcomes to make models more ro-
bust by preferring solutions that share common (e.g., biological) structures across these out-
comes [173]. Deep learning has recently contributed significantly to advancing the field of
multitask learning [133,172]. The combination of multimodal learning with multitask approaches
[174] allows condensed representations of the inputs and modeled phenotypes (outcomes),
which may lead to a novel holistic understanding of the underlying processes of pregnancy.

Concluding Remarks
Studies discussed in this review involve the integration of multiple types of biological, social, and
clinical measurements. They are evidence of the importance of a holistic approach when
attempting to characterize the state of maternal and fetal health and to model adverse outcomes
(Figure 1). The discussed recent advances in machine learning are the foundation for such a ho-
listic approach. These novel techniques may enable the discovery of more robust biomarkers and
more specific disease signatures of pregnancy-related pathologies. Better biomarkers will allow
earlier diagnosis of complications and improved evaluation of treatment efficacy [175]. Addition-
ally, specific disease signatures will reveal actionable therapeutic targets to prevent complica-
tions. Ultimately, the synthesis of these diverse modalities of information about a mother and
her offspring using state-of-the-art machine-learning methods will enable us to accurately de-
scribe their short- and long-term health trajectories. Reimagining our perspective of pregnancy
Box 4. Machine Learning: Multimodal and Multitask Learning for Holistic Models

As illustrated in Figure 1 in the main text, pregnancy is influenced by many factors that can be measured and tracked using
various approaches. This yields highly multimodal data ranging from tabular data like clinical variables or biological assays
to more complex data like ultrasound imaging or patient narratives. Multimodal machine learning, mostly enabled by deep
learning, is a branch of machine learning that strives to integrate various data modalities into a single model. For this, it
combines models that excel at processing each of these modalities into a single model. For example, an integration of his-
tological images and gene expression data has been shown to improve pan-cancer prognosis [190]. At the same time,
pregnancy outcomes are highly interrelated and may point towards different phenotypes with similar pathologies. This in-
terrelatedness can be exploited by the use of multitask learning. Instead of predicting just one outcome like PTB or pre-
eclampsia, multitask models predict several outcomes simultaneously. Thus, if configured correctly, the model has to
learn the common underlying processes of these outcomes to achieve high predictive performance. This not only allows
us to take advantage of information contained in related outcomes and make models more robust by preferring solutions
that share common (e.g., biological) processes across these outcomes [173], but may also lead to novel insights into these
common processes by interpreting the learned relations. Finally, multimodal andmultitaskmodels combine these two con-
cepts and use several data modalities to simultaneously predict multiple tasks [174], and may open new avenues to build
holistic models and a better understanding of pregnancy (Figure 1).
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Figure 1. Incorporating Diverse Data Modalities to Build Holistic Models of Pregnancy Biology. The various factors that influence maternal and fetal health
during gestation are measured to generate diverse, intercorrelated types of data. Machine-learning methods can be used to develop holistic models of maternal and
fetal biology that capture the complex interactions between these modalities, reveal mechanistic insight into various adverse outcomes, and assist in diagnostics,
therapeutics, and the generation of predictive analytics.
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through this multimodal lens will provide relevant biological insight undetectable by current meth-
odologies, further clarify the etiologies and explain the heterogeneity of the presentations of the
pathologies that affect pregnant women, and shed light on the best approaches to address the
disparities in outcomes that affect vulnerable populations (see Outstanding Questions).
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