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Abstract
The term Behavioral Networks describes networks that contain relational infor-
mation on human behavior. This ranges from social networks that contain friend-
ships or cooperations between individuals, to navigational networks that contain 
geographical or web navigation, and many more. Understanding the forces driving 
behavior within these networks can be beneficial to improving the underlying net-
work, for example, by generating new hyperlinks on websites, or by proposing new 
connections and friends on social networks. Previous approaches considered differ-
ent hypotheses on a single network and evaluated which hypothesis fits best. These 
hypotheses can represent human intuition and expert opinions or be based on previ-
ous insights. In this work, we extend these approaches to enable the comparison of 
a single hypothesis between multiple networks. We unveil several issues of naive 
approaches that potentially impact comparisons and lead to undesired results. Based 
on these findings, we propose a framework with five flexible components that allow 
addressing specific analysis goals tailored to the application scenario. We show the 
benefits and limits of our approach by applying it to synthetic data and several real-
world datasets, including web navigation, bibliometric navigation, and geographic 
navigation. Our work supports practitioners and researchers with the aim of under-
standing similarities and differences in human behavior between environments.

Keywords Behavioral networks · Network analysis · Cross-domain · Hypothesis 
comparison

1 Introduction

Social data is often available in the form of attributed behavioral networks repre-
senting, for example, friendships in social networks, physical contacts, or collabo-
rations between authors. Additionally, sequential behavioral data, e.g., on human 
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navigation, is often modeled as networks by focusing on direct transitions between 
individual states in the spirit of a first-order Markov-Chain model. Analyzing and 
understanding the processes underlying such datasets can provide crucial insights 
for scientific, economic, and societal questions and issues. To couple the analysis 
of complex processes with existing theories and knowledge in the context of human 
behavior it has been proposed to investigate and compare hypotheses (Singer et al. 
2015; Noboa et al. 2017).

Hypotheses represent formalized beliefs in aggregated human behavior that can 
arise from previous studies, (social) theory, or intuition; for example, in web naviga-
tion, a hypothesis can capture the general assumption that users navigate to themati-
cally more focused pages in the network periphery rather than pages in the network 
center (Dimitrov et al. 2017). Existing work allows to rank several such hypotheses 
on the same underlying network using the Bayesian approach HypTrails (Singer 
et al. 2015). However, with existing methods, it is not directly possible to compare 
the same hypothesis across different networks.

The general goal of this work is to narrow this gap by proposing a novel 
framework called CompTrails that takes several steps towards formally compar-
ing hypotheses across several behavioral networks. The idea is to score and rank 
networks according to how well the respective hypothesis is in line with (and can 
explain) the behavior captured in the network. We illustrate our approach in Fig. 1. 
Figure  1a consists of two behavioral networks that represent co-authorship. Both 
networks go (representing Europe) and gp (representing USA) have two types of 
actors, biologists (B) or computer scientists (CS), but they represent data from 

Fig. 1  Hypothesis comparison across behavioral networks. A first approach towards comparing an 
abstract hypothesis H on different behavioral networks go and gp given as multigraphs (e.g., each edge 
represents a single co-authored work of two researchers). Metadata is given in the form of node attrib-
utes (see tables on the left), e.g., the type of scientist [computer scientists (CS) and biologists (B)] or 
geographic location (Geo) of their workplace (e.g., Germany, California, etc.). Hypotheses represent an 
explanation of behavior, i.e., they attempt to explain the edge distribution. For example, hypothesis H 
assumes that only researchers in the same field collaborate. An instantiation for each network can be 
derived ( ho and hp ), mathematically represented as edge-occurrence probability matrices. CompTrails 
compares the adjacency matrices of each network with its respective hypothesis instance to produce a 
comparable score indicating how well the hypothesis matches the actual data in each network
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different origins, for example, researchers from different continents such as Europe 
and USA. Nodes on the graph represent researchers, and the number of edges 
between researchers represents the frequency with which these researchers cooper-
ated in this network. A potential hypothesis H for these behavioral networks could 
be that collaboration exists only between researchers in the same topical domain. 
This idea represents an abstract hypothesis that will be instantiated for each network, 
resulting in hypothesis instances hp and ho in Fig. 1a. Using the CompTrails frame-
work, we can then compute a score for a given network and its respective hypothesis 
instance. The main goal is to achieve scores that are comparable across networks.

In this paper, we discuss the following factors that can lead to incomparable 
scores and make the comparison of cross-network hypotheses challenging: (1) Dif-
ferent amount of nodes in each (graph) data, (2) different amount of (multi-)edges, 
(3) different distributions of edges per node, i.e., normally distributed and skewed 
distribution. We propose a framework with five steps (see Fig.  1b) that aims to 
mitigate these factors. Each component addresses one or more of the above fac-
tors and helps to approach comparability of hypotheses across differently structured 
networks. We illustrate and discuss the capabilities and limitations of CompTrails 
based on several synthetic and different real-world datasets. The code is available 
under https:// github. com/ LSX- UniWue/ CompT rails.

2  Background and related work

Next, we provide the necessary background information on behavioral networks and 
hypotheses in behavioral networks. We then formally define metrics that can be used 
to evaluate the performance of a given hypothesis in explaining the underlying data. 
Finally, we review previous work on data-driven navigational analysis and hypoth-
esis comparison in behavioral networks.

2.1  Behavioral networks

A behavioral network is a graph-based model that captures human behavior as rela-
tions or transitions between entities/nodes that can provide insight into the decision-
making processes of individuals. Behavioral networks can be represented as directed 
or undirected multigraphs, that is, networks that allow multiple edges between 
nodes. These could also be represented as integer weights at the edges. In the fol-
lowing, we focus on directed multigraphs. However, the concept is easily transferred 
to the undirected case by replacing each undirected edge with two directed edges in 
opposite directions. For example, a network that captures web navigation is repre-
sented as a directed multigraph, while a coauthorship network is represented as an 
undirected multigraph.

Furthermore, sequential behavioral data (e.g., Wikipedia (Dimitrov et  al. 2019; 
Scaria et al. 2014) or geospatial traces (Becker et al. 2015)) can be transformed into 
a multigraph representation by defining a set of nodes (e.g., Wikipedia pages or 
geographic locations) and representing direct transitions between nodes as edges. 

https://github.com/LSX-UniWue/CompTrails
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Similarly, bibliometric networks (Noboa et  al. 2017) can be represented as multi-
graphs, where nodes represent authors, and an edge between nodes represents coau-
thorship in a peer-reviewed publication. By representing behavioral networks as 
multigraphs, we can apply the methods discussed in this paper to analyze and com-
pare multiple datasets.

Formally, a multigraph g consists of a set of nodes S and edges E, where multiple 
edges are allowed between two given nodes. This graph can be represented by an 
adjacency matrix t ∈ ℤ

‖S‖×‖S‖ with ‖S‖ denoting the number of nodes. This matrix 
represents the edge counts between all nodes. Furthermore, metadata for nodes is 
often available in these networks. For example, given a bibliometric network, this 
may include research orientation or affiliation of authors (network nodes). We will 
use such metadata to formalize abstract hypotheses representing explanations for 
behavior. In the context of scientific collaboration, an abstract hypothesis could be: 
“Collaboration within the same affiliation is more likely than between affiliations”. 
We will refer to such abstract hypotheses as H.

For the intuition captured in H, we can create a specific hypothesis instances for 
each network g. Such hypothesis instances are represented as an edge-occurrence 
probability matrix h. An entry hi,j in h defines the probability that an edge of node i 
ends at a specific node j in the network. Thus, the dimensionality of any hypothesis 
instantiation for a network is identical to the network adjacency matrix, and each 
row of the hypothesis instance h sums up to 1. To construct hypothesis instances h, 
we use metadata analogously for all networks to be compared.

2.2  Hypothesis comparison

Given an observed network as a multigraph g and a hypothesis instantiation h for 
this multigraph, we can use different metrics to score how well they align. A well-
known potential approach is entropy-based, namely the Jensen-Shannon (JS) diver-
gence. It is an information-theoretic measure that quantifies the difference between 
the probability distributions defined by the data and the hypothesis. It uses the Kull-
back-Leibler divergence: DKL(t̂ ∣ h) =

1

∣S∣

∑
s∈S t̂slog

�
t̂s

hs

�
 with t̂ being the row-wise 

normalized adjacency matrix of one network, and h representing the respective 
hypothesis instance matrix. JS divergence is the symmetric counterpart of Kullback-
Leibler divergence and calculates DKL from a mean matrix m =

1

2
(t̂ + h) to both 

original matrices. DJS(t̂ ∣ h) =
1

2
DKL(t̂ ∣ m) +

1

2
DKL(h ∣ m) . As an overall score for 

the network, we calculate the mean row-wise JS divergence. The downside of 
entropy-based approaches is the loss of information about the actual edge counts, 
since it reduces each row of the adjacency matrix to probabilities.

An alternative approach, HypTrails (Singer et al. 2015), uses Bayesian inference 
and the sensitivity of the likelihood with respect to the data given different priors 
defined by hypothesis instances. The approach then uses the resulting marginal like-
lihood for each prior and creates a ranking of hypotheses. Furthermore, the degree 
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of belief in a hypothesis can be taken into account by varying a so-called concentra-
tion factor k. Intuitively, this factor represents the belief in the hypothesis, that is, 
as k increases, the hypothesis must be very accurate to result in high scores. Math-
ematically, the evidence is calculated as follows:

where t represent the actual transitions in our network and � are Dirichlet param-
eters that incorporate the prior h. The concentration factor k directly influences the 
� counts (Dirichlet parameters), where an increased concentration factor leads to a 
stronger belief in the hypothesis. For further details on this approach, we refer the 
reader to Singer et al. (2015).

These evidence and divergence scores can be used to compare different hypoth-
eses for a dataset. As we will show in Sect. 4, by default, it is not possible to use any 
of these metrics to compare one hypothesis with multiple heterogeneous datasets 
with different amounts and distributions of edges and nodes.

2.3  Related work

This section will first describe existing techniques for data-driven behavioral analy-
sis and its different settings. Then, we will cover related work with respect to hypoth-
esis testing on networks and explain the differences with respect to our framework.

Hypotheses-driven behavioral analysis: A fundamental work to analyze human 
behavior, more specifically navigation behavior, and explain their driving forces, is 
HypTrails (Singer et al. 2015). It introduces a Bayesian inference approach to com-
pare different hypotheses about human navigation on sequence-structured data. 
Based on this method, different settings have already been evaluated, for example, 
geographic navigation (Becker et  al. 2015), tag navigation (Dimitrov et  al. 2018; 
Niebler et al. 2016), web navigation (Dimitrov et al. 2019) and many more (Becker 
et al. 2015). Further related work has extended the method, for example, by allow-
ing it to scale to large data (Becker et al. 2016), to allow the analysis of any kind of 
graph-structured data instead of sequential data (Noboa et al. 2017) or by allowing 
the analysis of different groups of users within a single dataset (Becker et al. 2017). 
None of these methods is suitable for comparing a hypothesis between networks.

Network similarity testing: This research domain is not restricted to the han-
dling of navigational data, but provides methods for testing any kind of hypothesis 
on network structures. Moreno and Neville (2013) propose an algorithm using mixed 
Kronecker product graph models to determine whether two observed networks are 
significantly different. Other previous work uses different regression methods, such 
as QAP (Hubert and Schultz 1976) or the quadratic regression assignment procedure 
(Krackhardt 1988). They permute nodes while keeping the network intact to test 
when the networks are significantly different. An alternative approach to hypothesis 
comparison in networks based on a generalization of classic configuration models 

P(t ∣ �) =
�

i

Γ(
∑

j �i,j)∏
j Γ(�i,j)

∏
j Γ(�i,j + ti,j)

Γ(
∑

j(�i,j + ti,j))
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has been presented (Casiraghi et al. 2016). Furthermore, general network measures 
such as centrality, graph distance, and number of triangles could be used to charac-
terize and compare graph topologies (Wills and Meyer 2020). However, all of these 
approaches are used to compare two network instances and do not allow us to com-
pare the same abstract hypothesis H between different networks, especially with dif-
ferent sizes and distributions. Again, none of these methods allows for comparing a 
hypothesis across networks.

3  Comparing hypotheses across behavioral networks

Given a set of behavioral networks G = {g1,… , g∣G∣} , an abstract hypothesis H, and 
the respective instances of the hypothesis H = {h1,… , h∣H∣} for each network, the 
question is, which behavioral network g ∈ G is best explained by the hypothesis H. 
In the introductory example in Fig. 1a, G = {go, gp} represented co-authorship net-
works with researchers from Europe and the United States, respectively. Hypothesis 
H represents the notion that cooperation occurs exclusively between researchers in 
the same domain (CS/CS or B/B). The question is whether this exclusive collabora-
tion will be more applicable to Europe or the US. To answer this question, for both 
networks go and gp , the respective hypothesis instances ( ho , hp ) are derived. Then 
a comparison score needs to be calculated for each network gi that quantifies its fit 
with the corresponding hypothesis instance hi . These scores can then be compared 
across different networks. As we will show, applying commonly known metrics will 
not lead to comparable scores across networks (cf. Fig. 2). Therefore, we provide a 
novel computational framework.

General setting and abstract hypothesis. As introduced in Sect. 2.2, we con-
sider two measures to quantify the fit between a network and a hypothesis instance: 
JS and the HypTrails metric. However, naively applying these metrics as a 

Fig. 2  Naive metrics versus CompTrails. Each panel compares the same abstract hypothesis H across 
three differently sized datasets with 10, 100 and 1000 nodes, respectively, based on a different compari-
son method. g

100
 was created to be best explained by the hypotheses. Furthermore, Network g

10
 and g

1000
 

are generated by the same process and should fit the hypothesis equally poorly. HypTrails fails to rank 
g
100

 first (see Fig. 2a). At the same time, JS ranks the smaller network to have a better fit to the hypoth-
esis (see Fig. 2b). CompTrails ranks the network g

100
 correctly and illustrates that network g

10
 and g

1000
 

perform similarly as illustrated by the overlapping standard error intervals (see Fig. 2c). We applied the 
components of GSF, NS with Snowball Sampling on the transitions, and ES
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comparison score does not work: we demonstrate this with an example of three syn-
thetic networks of different sizes with 10, 100, or 1000 nodes that could, e.g., rep-
resent three differently sized websites of two types of pages, where we investigate 
an abstract hypothesis H that represents the intuition that transitions occur mainly 
between pages of the same type.

Network generation. To create these networks, we start by generating an under-
lying link structure using the Barabasi–Albert model (Barabási and Albert 1999). 
Barabasi–Albert graphs are scale-free networks that are more connected in the 
center and less connected in the periphery. They grow incrementally by preferen-
tial attachment, where new nodes are more likely to connect to existing nodes with 
high degrees. This results in a power-law degree distribution, with a few highly con-
nected nodes (hubs) and many low-degree nodes. The parameter defining the num-
ber of edges added per new node will be called m. For this synthetic experiment, we 
set m10 = 5 , m100 = 25 , and m1000 = 125 , which leads to the same density across the 
networks. Scale-free networks represent a typical structure for many behavioral net-
works, e.g. social networks or websites.

Navigation behavior. On these link structures, we simulate navigation behav-
ior with a biased random walker with different factors driving navigation behavior 
depending on the size of the network. For networks g10 and g1000 the biased ran-
dom walker uses fully random transitions given the graph structure, regardless of 
the type of website. For g100 , the random walker only travels between the same type 
of websites. For both network and hypothesis instances, we disregard self-loops. 
By construction, the network g100 should best fit the hypothesis (transitions occur 
mainly between pages of the same type). In contrast, g10 and g1000 have a worse fit 
and should perform equally since they are generated by the same underlying pro-
cess. The random walker starts 5 times from each node and creates a biased random 
walk of length 5.

Results for HypTrails. Figure 2a shows the results when HypTrails is applied, 
and we can observe that the hypothesis of the network g10 (blue line) and g100 (red 
line) has the highest evidence for all concentration factors k. However, we aim to 
produce similar scores for networks g10 and g1000 , since they were created with 
the same generative process and only differ in size. Furthermore, the network g100 
should have the highest evidence, which is not the case. This is due to the node-wise 
product of probabilities to calculate the marginal likelihood. Therefore, larger net-
works lead to less evidence, even if the hypothesis by construction better explains 
the network. Additionally, a naive normalization of the evidence by node degree 
also does not lead to the desired results.

Results for JS divergence. When using the JS divergence as metric (see Fig. 2b), 
we can observe a similar behavior as for HypTrails. g10 and g100 have the lowest 
divergence and g1000 has a higher divergence. Again, based on the construction 
process, we expect g100 to have the lowest divergence. The JS divergence produces 
extreme values, if the incoming distribution is very skewed (that is, a value contain-
ing the majority of probability mass and all other values containing close to zero 
probability mass). Thus, for sparse networks such as g1000 , the divergence is higher 
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than for less sparse networks such as g10 . Analogous to the previous example, this 
shows the need for adjustments that we incorporate in our CompTrails framework.

Influence factors on naive hypothesis comparison metrics. In general, previ-
ous examples show that a naive comparison of hypotheses across networks can be 
biased even if the network generation process is strictly controlled. In particular, in 
this paper, we establish three influence factors that can influence the metrics used. 
(1) a different number of nodes across networks (e.g., HypTrails), (2) a different 
number of edges, and (3) a different distribution of edges. Figure 2 shows the impact 
of the first factor. We show the impact of the other two factors in the Appendix. 
While these aspects cover important aspects of network variability, other factors 
may still influence the hypothesis comparison process (see Sect. 7 for a discussion).

Summary. To approach these sources of bias, we propose CompTrails. Figure 2c 
shows the result of applying specific steps of CompTrails. By doing so, g100 has the 
lowest divergence and g10 and g1000 are very close to each other.

4  The CompTrails framework

The CompTrails framework (see Fig. 1b) facilitates the comparison of hypotheses 
across behavioral networks. It consists of five flexible components that we will 
introduce in this section: (1) Network abstraction (NA), (2) graph structure filtering 
(GSF), (3) node synchronization (NS), (4) edge synchronization (ES), and (5) eval-
uation metric flexibility. Each component is optional and allows different aspects 
of the analysis to be considered, each having specific effects on the analysis. The 
CompTrails procedure is summarized in Algorithm 1.

4.1  Network abstraction (NA)

Behavioral data is given on a fine-grained level represented by multi-edges between 
individual nodes in a network. However, behavioral hypotheses can be defined on 
different abstraction levels taking into account node categories rather than individ-
ual nodes. The idea of network abstraction (NA) is to take advantage of such abstrac-
tion levels and to collapse nodes of the same category into a single node. For exam-
ple, in Fig.  1a, the nodes represent authors that can be categorized as computer 
scientists (CS) and biologists (B). Thus, for the abstract hypothesis H that only 
researchers within the same research domain (CS or B) cooperate, the edge occur-
rence and hypothesis instance matrices reduce to dimensions of 2 × 2 . For example, 
the hypothesis instances reduce to ĥo = ĥp =

(1 0

0 1

)
.

NA is a powerful concept that can be applied to a wide range of hypotheses (cf. 
Sect.  6). Apart from the technical advantages outlined below, network abstraction 
influences hypothesis semantics. When instantiating the previously defined hypoth-
esis H using network abstraction, the hypothesis instances model the cooperation 
probabilities between the actual categories of researchers and not between the 
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individual researchers. However, when formulating H in a network of individual 
researchers, the hypothesis implicitly assumes that the probability of collabora-
tion between a single researcher and any researcher of the same category is equal. 
Depending on the use case, one approach may be more appropriate than the other.

A significant technical advantage of NA lies in reducing the sparsity of the net-
work by combining nodes and edges, resulting in more stable sampling procedures 
(cf. Sects.  4.3 and 4.4). Additionally, if the node categories in the compared net-
works are equivalent, network abstraction can render node sampling obsolete since 
nodes are already synchronized (cf. Sect. 4.3). In the previous example, this is the 
case ( ̂ho = ĥp ) since both networks exclusively contain the same two researcher cate-
gories (CS and B). A limitation of network abstraction is that it significantly reduces 
the level of detail for the defined hypotheses. In the previous example, nodes are col-
lapsed into research domains, thus losing the ability to express collaboration charac-
teristics between individual researchers. Consequently, combining hypotheses, e.g., 
using a domain-based and an individual component, becomes infeasible.

The choice to apply network abstraction can play an important role in the analysis 
process. In particular, it allows one to formulate hypotheses on different semantic 
levels. Overall, applying NA aims to achieve several objectives: (1) preserving the 
flexibility to express hypotheses effectively, (2) maximizing the accuracy of seman-
tics, and (3) minimizing the occurrence of sparse edges.

4.2  Graph structure filtering (GSF)

For many behavioral networks, the set of edges that plausibly occur regularly are 
restricted. For example, when observing navigation behavior between websites, 
edges typically occur between sites that link to each other. Without considering 
this underlying graph structure, hypothesis instances assign significant probabil-
ity masses to implausible edges. If the sparsity is too prominent, the results will 
be highly biased toward whether edges exist rather than their probability distribu-
tion. The idea of graph structure filtering (GSF) is to explicitly set the probabilities 
of non-plausible (or highly improbable) edges to zero in the hypothesis instances. 
Thus, under the assumption that plausible edges are similarly sparse across datasets, 
GSF can improve comparability.

In practice, there are two approaches to derive graph structures that can be used 
for GSF. The first is based on background information, such as the link struc-
ture between websites, cf. Dimitrov et  al. (2017). Alternatively, in a data-driven 
approach, edge probabilities in a hypothesis instance can be set to zero if they have 
never been observed in the data. We will refer to the latter as the inferred graph 
structure.

Semantically, GSF enables us to focus on the probability distributions of existing 
or plausible edges. However, using unfiltered hypotheses allows us to place empha-
sis on whether edges exist, in contrast to emphasizing the distribution of existing 
edges. Finally, by neglecting irrelevant node connections, GSF can be a helpful step 
in comparing sparse behavioral networks.
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4.3  Node synchronization (NS)

As illustrated in Fig. 1a, a hypothesis H can be applied to behavioral networks with 
different numbers of nodes. However, the example in Fig. 2 clearly shows that com-
paring networks with different numbers of nodes can heavily bias comparison met-
rics and produce potentially misleading results. To address this, CompTrails sug-
gests a sampling-based node synchronization (NS) procedure.
Algorithm  1  Pseudo-code of sampling approach. The input to this algorithm is a 
set of graphs and their respective hypothesis instances. The return value is a list of 
scores.

For a given pair of network and hypothesis instances (gi, hi) , NS samples a 
fixed number of nodes Nnodes (with replacement). Since the networks are very 
small, we set Nnodes to the smallest number of nodes in all the compared networks 
(e.g., 4 in Fig. 1). For large networks, we suggest sampling a smaller number of 
nodes for computational efficiency. This results in a sampled subnetwork. Sub-
sequently, edge counts from the data and edge probabilities from the hypothesis 
instance of the original network are projected onto this subnetwork. For exam-
ple, if the 4 nodes [1, 2, 4, 6] are sampled from network go , after projection, the 
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number of outgoing edges would be [5,  3,  6,  2] (counts derived from the fig-
ure). The hypothesis instance is adjusted analogously. The evaluation metric (cf. 
Sect. 4.5) is then applied to this sample. Repetition of Nruns times yields a distri-
bution with the mean and standard deviation of the metric for the given pair of 
network and hypothesis instance (gi, hi).

In general, NS ensures the comparison of networks based on an equal number 
of nodes. Additionally, since networks are typically very sparse, unguided ran-
dom sampling of nodes often results in disconnected subnets with many isolated 
nodes. Therefore, we suggest employing advanced node sample strategies such 
as snowball sampling (Goodman 1961) to preserve coherent behavioral substruc-
tures of the network. In our experiments, we use a variant of snowball sampling 
as a probabilistic sampling technique where initially, one seed node is chosen ran-
domly, then additional nodes are added in breadth-first search order. We do two 
iterations of the neighborhood collection and then use another random starting 
point until the required number of nodes is collected. If the current node has more 
neighbors than the nodes we want to sample, we randomly choose the number of 
nodes required from the current neighborhood. In our real-world experiments, we 
perform snowball sampling on adjacency matrices t if these matrices are sparse 
(see Wikispeedia Sect. 6.1), and we use random sampling for dense datasets such 
as Flickr (see Sect. 6.2). Overall, our node synchronization step adjusts for dif-
ferences in the metric that arise directly from different overall sizes of the net-
work. The sampling approach should be chosen with care, taking into account the 
respective network characteristics (see Appendix B.2).

4.4  Edge synchronization (ES)

Evaluation metrics can be sensitive to the number of observed edges, potentially 
biasing results. Especially for the JS metric, a lower number of edges may underes-
timate the match between a hypothesis and the network. Therefore, CompTrails pro-
vides an edge synchronization (ES) step that balances edge counts across networks 
using a sampling approach. This approach is designed to maximize the number of 
edges sampled. For each network gi , ES first orders the nodes by their number of 
outgoing edges. This allows ES to match nodes across all networks according to 
their corresponding rank. For each rank r, ES stores the minimum number of outgo-
ing edges nr of all nodes with rank r in all networks. For example, for Fig. 1, in the 
network go , node 1 has rank 1 with 8 outgoing edges. In gp , all nodes have 4 outgo-
ing edges and are ranked randomly. Let us assume that node 4 is ranked first. nr is 
set to 4. Subsequently, ES samples the minimum number of edges nr for each node 
in each network according to its rank r. The resulting matrices are then compared 
using the chosen evaluation metric (cf. Sect. 4.5).

An optional extension of this step could weight the rows in the comparison 
according to their number of sampled edges nr instead of treating every node as 
equally important. While initial experiments have shown limited effects, we see a 
full exploration of the consequences as a topic for future research. Overall, ES is 
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an essential component of CompTrails as it balances the distribution of transition 
counts between networks.

4.5  Evaluation metric

CompTrails can in principle, be used with a variety of evaluation metrics to score 
the match of a hypothesis H to networks G (potentially abstracted, filtered and/or 
synchonized). For a frequentist approach, the symmetric JS divergence calculates an 
entropy measure. This approach only makes use of the transition probabilities and 
loses information about the overall transition count. Alternatively, HypTrails repre-
sents a Bayesian approach, deriving a Bayes factor between the evidence scores of a 
hypothesis and a network.

Our explorative experiments (Sect. 2.2) did not indicate a qualitative difference 
between the different metrics. Since HypTrails relies on a hyperparameter (the con-
centration factor k) which in theory can change the interpretation of hypotheses 
drastically, we chose JS divergence for the remainder of the work for a more unam-
biguous interpretation of the results. Nevertheless, it is plausible to integrate other 
metrics into our framework as alternatives to JS scoring.

5  Synthetic experiments

In the following, we explore the effectiveness of the CompTrails components using 
synthetic networks with controlled behavioral properties.

5.1  Experimental setup

To create synthetic networks with controlled behavioral properties, we apply a set 
of biased random walkers to generated graph structures. The graph structures are 
generated on the basis of the Barabasi–Albert model (Barabási and Albert 1999). 
These are scale-free networks representing a typical structure for many behavioral 
networks. Since our framework explicitly aims to compare navigational behavior 
across networks of different sizes, we create two graphs with 200 and 1000 nodes, 
respectively, and set m200 = 5 and m1000 = 25 to create roughly equal dense underly-
ing graph structures.

Biased random walker. Based on these graphs, we generate synthetic behav-
ioral networks using biased random walkers. These walkers produce navigational 
sequences (lists of nodes being traversed) aggregated into multigraphs (Singer et al. 
2015; Noboa et al. 2017) by counting transitions between nodes. The biased random 
walker can be described with the following stochastic process: Our graphs have two 
types of nodes: "even" E and "odd" O. The following transition probabilities para-
metrize the biased random walk:



1 3

CompTrails: comparing hypotheses across...

where PE is the probability of transitioning to an even node, and Xt denotes the type 
of the visited node at time t. At each time step t, the walker chooses the type of 
the next node to visit. This selection is based solely on the transition probabilities 
P(Xt+1 ) and is independent of the current node type. After selecting the node type, 
the walker randomly selects a node of that type as the next node to visit. We set the 
biased random walker to start 5 and 25 times (for the two networks) at each node 
for the differently sized networks, respectively, and create walks of length 5 for both 
networks. If the neighborhood does not contain such a node, the next node will be 
randomly selected from the entire neighborhood.

Generating synthetic behavioral networks. To show the applicability of our 
approach, we generate a range of different behavioral networks with different mixtures 
of the navigational behavior mentioned above (adjusting PE ). For both Barabasi–Albert 
graphs, we create 11 networks with a biased random walker starting from 100% even 
biased navigation ( PE = 1 ), then mix the navigational bias in 10% steps. Table 1 shows 
statistics for the resulting behavioral networks (see row “Barabasi”).

Hypothesis definition. As hypotheses H, we use the same two navigational biases 
even and odd, and an additional hypothesis uniform stating that all transitions are 
equally likely. For each hypothesis, we create a hypothesis instance dependent on the 
respective underlying graph structure. We show in the appendix that not applying GSF 
can produce misleading results. Therefore, we recommend applying this component if 
possible and in line with the hypothesis analyzed. The hypothesis instances only allow 
transitions to adjacent nodes in the graph and no teleportation to any even/odd node in 

P(Xt+1 =E) = PE (probability of transitioning to even)

P(Xt+1 =O) = 1 − PE (probability of transitioning to odd)

Table 1  Overview of behavioral networks used in the experiments

Name Information #Nodes #Edges Density

Barabasi (synthetic) Small 200 3600 0.0169
Large 1000 18,000 0.0033

WikiSpeedia In 4604 26,842 0.0007
out 4604 103,161 0.0013

Flickr PhotoTrails Vancouver 11 297,690 0.9504
Washington 91 581,497 0.9104
Los Angeles 39 607,739 0.927
London 27 2,440,928 1.0
NYC 15 2,004,287 1.0

Bibliometric (DBLP) AI 96,031 835,024 6.636e–05
DM 34,974 329,118 1.968e–04
HCI 52,532 485,346 1.35e–04
R 53,520 650,282 1.469e–04
SP 106,581 1,138,772 6.346e–05
SS 25,864 224,620 2.497e–04
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the graph. On the basis of these matrices for transitions and hypotheses, we will show 
the effectiveness of our framework in this ongoing section.

5.2  Applying CompTrails

This section shows two exemplary ways to apply different components of our frame-
work to compare navigational behavior in the synthetic datasets explained above. 
The first approach applies components 2 (GSF), 3 (NS), and 4 (ES), which we sug-
gest as the default approach, and the second approach uses component 1 (NA), 
where we abstract the nodes to their respective type. Additional studies, e.g., using 
random node sampling in the NS step or not applying the GSF component, are pro-
vided in the Appendix. In a controlled setting, we use this section to show the appli-
cability and limits of CompTrails for comparing differently structured networks.

5.3  Comparison across differently sized networks

The goal of this experiment is to compare the navigation behavior between net-
works of different sizes. In the previously generated networks, the divergence 
should increase when adding more bias towards the other node type. We apply 
components 2 (GSF), 3 (NS) and 4 (ES) of our framework. We apply the sam-
pling steps Nruns = 100 times and sample 10% of the nodes of the smallest network 
( Nnodes = 20 ) in the NS component. These values have proven to be good default 
settings, while very small networks should use the size of the entire smallest net-
work for Nnodes . Furthermore, we apply NS using snowball sampling with a two-
hop proximity due to rather sparse edge matrices. The metric used is JS; therefore, 
a lower divergence represents better coverage of the hypothesis. The three graphs 
in Fig.  3 show the different hypotheses that represent behavior even, odd, and 

Fig. 3  Applying CompTrails on synthetic networks with shifting behavioral bias. Each panel shows the 
JS divergence (y-axis) of 11 behavioral networks with shifting behavioral biases (x-axis) for CompTrails 
with graph structure filtering (GSF), node synchronization(NS), and edge synchronization (ES). The JS 
divergence is shown as a line plot with standard deviation intervals. The shifting behavioral bias is based 
on biased random walkers
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uniform (from left to right). The results for the networks t200 are represented by 
the blue line, and those for the networks t1000 are represented by the red line. Within 
each graph, the network bias is printed on the x-axis, where the network with only 
even bias is shown farther left in the graph and the network with only odd bias in 
the right; those between are mixed behavior networks.

For hypothesis even (left part of Fig. 3), for both network sizes, the JS diver-
gence continuously increased from left to right (even bias to odd bias), which is 
perfectly in line with our expectations mentioned above. The standard deviations 
intervals (shaded area in the plot) of the sampling procedure overlap, which indi-
cates that the framework is able to adjust for the varying network setups and can thus 
analyze the behavior of the random walker within the networks. Analogous results 
can be observed for the hypothesis odd, which is desired since the hypothesis states 
the opposing behavior. For hypothesis uniform, the divergence is very low for all 
our networks with completely even or completely odd transition behavior, which are 
the scores most right-hand and most left-hand. This seems unintuitive at first glance 
since the uniform hypothesis should not explain a biased random walker behavior 
with a strong bias towards either one of the node types. A possible explanation for 
this is: Given that our network contains bias 100% towards even nodes, the walker 
only transitions towards even nodes, and hence the edge-occurrence matrix con-
tains barely any edges with the odd node type. Therefore, snowball sampling mostly 
samples even states. Then, the transition behavior within these states is nearly uni-
form since mostly even states have been sampled. Similarly, we expected the diver-
gence to be lowest for the network with 50% even and 50% odd behavior, which is 
the center value of the graph. However, the divergence values across the networks 
stay consistently low across networks (except for the edges explained above). We 
found indicators that this phenomenon also occurs due to the snowball sampling 
step (cf. Fig. 10 in the Appendix). However, analyzing the exact underlying process 
will require more in-depth experiments in future work. Furthermore, we found our 
method to be sensitive with respect to discrepancies in the entropy of transition and 
hypothesis instance distributions (see Appendix, Fig.  9 for details) that can origi-
nate, e.g., from differently dense underlying graph structures. Thus, we show that 
CompTrails overall mitigates many of the biases introduced by network character-
istics, but we also point out that the current sampling approach can, in some cases, 
produce undesired artifacts that have to be taken into account in practical applica-
tions and future work (also see Sect. 7). Network abstraction (see Sects. 4.1 and 5.2) 
is a viable alternative to sampling and can reduce the previously mentioned sam-
pling artifacts depending on the network and hypothesis structure.

5.4  Comparison on different abstraction levels

As a second way to compare networks of different sizes, we show the effect of net-
work abstraction (Sect. 4.1). In contrast to the previous section, where the hypoth-
esis stated that a transition between all nodes of the same type is equally likely, 
here we analyze that transitions between any nodes of the same type are likely. We 
expect our experiments to produce the same results as before; networks with the 
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same creation process should have the lowest divergence for the respective hypoth-
esis. We abstract the networks into only two states, which means that each node is 
classified as even or odd. Since both abstracted networks have a size of 2, we can 
refrain from applying the NS and ES components.

Figure 4 contains the same three hypotheses and structure as before; each graph 
has two overlapping lines for all networks. The divergence increases across all 
eleven networks (see the plot on the left), which is expected. The uniform hypothesis 
has a “V” shape, which has the lowest divergence at 0.5. In contrast to the previous 
approach, we do not have the issue of sampling only nodes from one type. There-
fore, we do not observe the same phenomenon.

This example reduces the state space to two states which is an extreme case. We 
show different reductions in our real-world experiments using bibliometric networks 
(see Sect. 6.3). In general, network abstraction can be a viable alternative to sampling 
steps (see Sects. 4.3 and 4.4) depending on the structure of the network and hypothesis.

6  Real‑world data

Next, we show the application of our framework to several real-world datasets. 
These applications are illustrative applications and do not aim to gather new sci-
entific insights in the corresponding research domains. When interpreting the 

Fig. 4  CompTrails results when abstracting states to state types odd/even on synthetic data. The lines 
for both network configurations are effectively identical over all samples

Table 2  Overview of datasets with applied components from CompTrails. We leave out component 5, 
the metric, which is always JS divergence

Dataset 1: NA 2: GSF 3: NS 4: ES

WikiSpeedia Existing Snowball (transition) 10%
Flickr Random Smallest network
Bibliometric Yes/no Inferred Snowball hypothesis 10%
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results, it is important to consider the aspects discussed in Sect. 7, e.g., potential 
biases due to different densities. Table 1 gives an overview of the networks we 
analyze and their dimensionalities. The following sections introduce the respec-
tive dataset, the investigated hypothesis, the chosen components of CompTrails, 
and discuss the corresponding results.

6.1  WikiSpeedia

WikiSpeedia1 is a dataset based on the equally named game (West and Leskovec 2012; 
West et al. 2009). It uses a subset of Wikipedia that contains 4604 pages. Starting from 
a randomly selected page, the goal of the game is to find the shortest path to another 
randomly selected page. For our approach, we apply the same filtering and pre-pro-
cessing steps as in Becker et  al. (2017): 1. We only consider games that have been 
successfully completed (51 318). 2. Games are filtered by an optimal click sequence 
length of 3 between the start and target pages, which filters games equally difficult to 
solve. 3. Sequences shorter than 3 and longer than 8 clicks are filtered because these 
are considered as not seriously played games. This leads to 26 842 sequences.

Networks: A typical game has two phases. The randomly selected start page is 
most likely a node on the periphery of the network. Previous work (Koopmann et al. 
2019; Scaria et  al. 2014) has shown that players tend to click on the links to the 
nodes to a greater degree at the beginning to locate their current position, which is 
referred to as the zoom-out phase. In the second phase, transitions to nodes semanti-
cally more similar to the target node are used. This is called a zoom-in phase (Koo-
pmann et  al. 2019). The networks contain the transitions of each phase in all the 
games. Each sequence is individually split at the middle node (we add the middle 
node to the first phase for sequences of odd length). This results in two networks out 
and in with 4604 nodes each.

Hypothesis: The hypothesis used is the Degree hypothesis, representing the 
intuition that players transition to neighbors with high degrees more likely. This 
represents the out phase of a WikiSpeedia game. Edge probabilities are calculated 
proportionally to the degree of neighboring nodes. Nodes not in the neighborhood 
do not have any transition probability. Since this hypothesis should explain the first 
phase (out) of a typical game, we expect to see a higher divergence for the in-phase.

Framework:  For this dataset, we use the graph structure filtering (GSF) of our 
framework and apply the graph structure given from Wikipedia. We apply NS and 
ES and set Nruns = 1000 and NNodes = 460 which is 10%. Additionally, we use snow-
ball sampling on the edge network.

Results: As expected, the out network is better explained by the hypothesis 
(mean divergence of 0.49), since it prefers transitions to high-degree nodes (see 
Fig. 5a).

1 https:// snap. stanf ord. edu/ data/ wikis peedia. html.

https://snap.stanford.edu/data/wikispeedia.html
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6.2  Flickr PhotoTrails

Flickr PhotoTrails is a dataset that contains sequences of photos taken in different 
cities posted on Flickr (Becker et al. 2015). Since these photos contain geospatial 
locations and time stamps, it is possible to construct navigational sequences of users 
(Becker et al. 2015).

Networks:  We analyze five cities, namely Vancouver, Washington, Los Ange-
los, London, and New York City. According to previous work (Becker et al. 2015), 
we assume that the pictures are taken of attractions (network nodes) within each 
city. Therefore, we compute the shortest distance from any attraction for each photo 
and assign it accordingly. We extracted all attractions from DBPedia for the respec-
tive cities with their GPS coordinates for this. This allows us to derive sequences of 
attractions from photo sequences, which we accumulate into a behavioral network. 
Edges represent the next photographed attractions.

Hypothesis:  The analyzed center hypothesis represents the intuition that people 
are moving more often towards the city center. The center is computed using the 
center of all attractions on the network.

Framework:  To account for different node and edge counts across networks, we 
apply NS & ES with Nruns = 1000 and Nnodes = 11 , which is the number of states 
of the smallest network due to the small size of the network. Since the networks are 
very dense, we can apply random sampling.

Results:  The results show that tourists in Vancouver with a mean divergence of 0.48 
and New York with 0.54 fit the hypothesis best. This can be explained by the assump-
tion that attractions within these cities are closer to the city center. In contrast, cities 
such as LA are rather widespread and therefore do not fit the centrality hypothesis well.

Fig. 5  Application of our framework CompTrails on different real-world data sets. See Table 2 for the 
utilized components
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6.3  Bibliometric dataset

This dataset uses bibliometric social graphs, also known as co-author graphs. Here, 
nodes represent authors, and edges describe cooperations between these authors, 
specifically co-published peer-reviewed publications.

Networks:  For our experiments, we use networks that represent different sub-
domains to compare different hypotheses between them. We use Google’s ranking 
system2 for scientific conferences in the domain of engineering and computer sci-
ence and choose different subdomains with their respective top 20 conferences. We 
extracted all publications from these conferences using the pipeline from Stubbe-
mann and Koopmann (2020). Subdomains are created for the domains of artificial 
intelligence (AI), Software Systems (SS), Signal Processing (SP), Data Mining 
(DM), Robotics (R) and human-computer interactions (HCI). We analyze whether 
and why researchers cooperate differently in research domains.

Hypothesis: Geographical proximity is one of the major driving factors for sci-
entific cooperation (Koopmann et  al. 2021). Therefore, our hypothesis represents 
the intuition that cooperation within the same country is more likely. An author has 
a country assigned if he was affiliated with this country for any publication. This 
allows authors to be associated to multiple countries if the authors switched affili-
ations. The similarity of the two authors is calculated using the number of overlap-
ping countries reported.

Framework: Due to sparsity, we apply the inferred graph structure to all hypoth-
eses (using the GSF component of CompTrails). Furthermore, we use NS and 
ES and set Nruns = 1000 and Nnodes = 10% . Here, we employ snowball sampling 
because metadata, i.e., the assignments of authors to countries, is sparse and leads to 
sparse networks.

Results: Our results (see Fig. 6a) show that the domains of Artificial Intelligence 
AI and Signal Processing SP particularly fit the hypothesis of cooperating with 
authors from the same country. On the contrary, Software Systems SS has the high-
est divergence. The differences between the different domains are substantial.

6.4  Bibliometric dataset with network abstraction

We further extend the experimental setting in Sect. 6.3, by applying network abstrac-
tion (Sect. 4.1), in two different ways.

Abstraction by country: First, to define nodes, we categorize all authors accord-
ing to their respective country (see Fig. 6b). Authors with multiple country associ-
ated are categorized to all the countries. As a hypothesis, we used the geographical 
distance between countries. Based on this, authors are more likely to cooperate with 
authors from other countries geographically close to each other. This hypothesis rep-
resents a more abstract scenario compared to Sect. 6.3 as it does not consider indi-
vidual authors. Furthermore, while the initial hypothesis solely considers country 

2 https:// schol ar. google. de/ citat ions? view_ op= top_ venue s & hl= en & vq= eng.

https://scholar.google.de/citations?view_op=top_venues%20&hl=en%20&vq=eng
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overlaps, the current hypothesis uses more complex edge probabilities by incorpo-
rating the geographic distance between different countries. We calculate the geo-
graphic distance of countries as the distance of their central locations derived from 
DBPedia. Since each network contains authors from a different number of countries, 
we still apply the NS and ES steps.

Abstraction by affiliation: Furthermore, we use a second abstraction approach 
by categorizing the authors by their respective affiliations to derive nodes. Authors 
associated with multiple affiliations are categorized to all the affiliations. The 
hypothesis represents the same intuition as for countries where authors of affilia-
tions geographically closer are more likely to cooperate. If geographic information 
for an affiliation is unavailable, we use the respective information of the affiliation’s 
country. As before, since each network contains different affiliations, the resulting 
abstracted networks have different numbers of nodes. Hence, our method’s NS and 
ES components are applied to allow for fair comparison across these networks.

Results: The abstraction approach produces a very similar divergence for all 
datasets (see Fig. 6b), i.e., the difference between the best-explained datasets (SS, 
DM, and SP) and the worst (HCI) is only 0.04 for the country abstraction. However, 
the application of CompTrails allows us to detect these small effects. Abstracting to 
affiliations (see Fig. 6c leads to sparse matrices since not all authors provide affilia-
tions in the dataset. Therefore, the error bars have a wider margin. No significant dif-
ferences between networks can be observed regarding the abstraction of countries.

7  Discussion

CompTrails provides tools to facilitate the comparison of hypotheses across net-
works. Each component of CompTrails targets specific characteristics of hypoth-
esis semantics (Sect.  4.1), graph structure (Sect.  4.2), number of network nodes 
(Sect.  4.3), and number of network edges (Sect.  4.4). By providing these compo-
nents, CompTrails enables a more accurate formulation of hypotheses, as well as 
the comparison of metrics across networks, where the naive application of existing 

Fig. 6  Application of CompTrails on bibliometric networks. Figure 6a applies snowball sampling using 
the hypotheses network, due to sparse meta-data. Figure  6b applies the network abstraction step by 
abstracting authors into their respective countries. Hypotheses represent the intuition of authors cooper-
ating, if they are in the same country, or cooperation occurs more likely if the countries are geographi-
cally closer. Figure 6c is the counterpart using affiliations as abstract node types
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approaches, such as JS divergence, produces skewed comparisons. In addition, we 
demonstrate throughout our examples and applications how CompTrails can be flex-
ibly adjusted to specific graph and hypothesis characteristics. In the following, we 
summarize the underlying principles and effects as well as the scope of these adjust-
ments and highlight directions for future work.

One challenge of hypothesis comparison, in general, is that the “best” fit of 
a hypothesis is inherently underspecified. For example, the practitioner may be 
more interested in whether the overall edge distribution follows a given hypoth-
esis, whether the edge distribution in every node individually follows the given 
hypothesis, or whether the network provides overall higher evidence to reject a 
hypothesis. This may lead to different weighting, scaling, and metric choices. 
Consequently, the components of CompTrails inherently change the semantics 
of the comparison, and the corresponding results are non-exhaustive. Therefore, 
depending on the specific scenarios and the goal of the practitioner, the different 
steps must be chosen appropriately as illustrated throughout our experiments, 
and additional steps or adaptations may be adequate.

CompTrails specifically aims to address diversity in node and edge distributions 
between networks. In particular, we adjust metrics considering the number of nodes 
and the number of edges between networks. These factors can lead to a drastic bias in 
the comparison of hypotheses if not adjusted (see Fig. 12). However, other differences, 
such as the densities of underlying graph structures, still lead to challenges. An exam-
ple of this can be seen in the results in the additional study visualized in Appendix, 
cf. Fig.  9. Furthermore, users must consider the potential side effects or artifacts of 
sampling approaches, as demonstrated with the uniform hypothesis in Fig. 3. Currently, 
CompTrails does not always fully adjust for such effects. Therefore, detailed studies, 
e.g., on the mitigation of different sparsity characteristics, will be required in the future 
to account for such effects in a more principled manner.

In contrast to previous measures, CompTrails has the advantage that it provides a 
distribution of result scores instead of a single result, through sampling. This allows 
quantifying uncertainties, for example caused by different numbers of edges across 
nodes. Consequently, measures of effect size (such as Standardized Mean Difference or 
Cohens’d) can be computed to estimate the strength of the comparison. Note that tradi-
tional statistical hypothesis tests are not applicable since they can be arbitrarily adjusted 
by increasing the number of runs (through a hyperparameter).

8  Conclusions

Overall, CompTrails, provides a powerful set of tools for comparing hypotheses across 
behavioral networks by counteracting hypothesis and graph characteristics that would 
otherwise bias or invalidate existing approaches, such as naively applying JS diver-
gence. We show the positive impact of the different framework components using 
synthetic as well as real-world examples. However, we also identified specific settings 
in which our proposed adjustments currently may result in artifacts complicating an 
unbiased hypothesis comparison, and discussed them critically. An in-depth study of 
such effects, e.g., also based on graph-theoretic analysis, and controlling for additional 
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biasing factors will be a key topic in future work. In that sense, we consider CompTrails 
to open a broader, complex research topic that will enhance our understanding of the 
underlying processes of behavior across datasets.

Appendix

This appendix reports on additional experiments we conducted to understand the 
effects and challenges of this work. First, we will show the influence of the num-
ber of edges (see Fig.  7) and the density of the edge distribution (see Fig.  8). 
Afterward, we report several parameter and ablation studies conducted on the 
synthetic datasets. We conclude with an exemplary real-world example, in which 
we chose inaccurate settings, yielding misleading results.

A: Effects of influence factors

As discussed in Sect. 3, a naive comparison of networks of different sizes does 
not produce the expected results. In general, we identified three main influence 
factors. (1) The number of nodes in each network, (2) the number of (multi-)
edges, (3) and the distribution of edges per node, i.e., normally distributed versus 
skewed distributions. An example of the effect of the first factor, a different num-
ber of nodes, is shown in Fig. 2 in the main manuscript. Now, we add constructed 
examples to showcase the effect of the remaining two factors, which are different 
numbers of edges (see Fig. 7), and different distributions of edges per node (see 
Fig. 8). For Fig. 7, we construct three networks with 100 nodes using underlying 
Barabasi–Albert graphs created by the same process. To create different numbers 
of edges, we created random walks of lengths of 10 (sparse), 20 (middle), and 30 
(dense), respectively, which produces three behavioral networks of the same size 
but with different amount of edges. The hypothesis and network biases are identi-
cal to Fig. 2. For Fig. 8, the underlying Barabasi–Albert graphs were constructed 
with m10 = 5 , m100 = 25 and m1000 = 50 , respectively, which leads to fewer possi-
ble transitions for the respective random walker. As in Fig. 2, by construction, the 

Fig. 7  Evaluating the impact of different numbers of edges on the comparison. All three networks have 
100 nodes each and have the same connectivity ( m = 25 ). The biased random walker has a length of 10 
(sparse), 20 (middle), and 30 (dense) steps, which results in 4500, 9500, and 14,500 transitions
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middle (orange) network was fully generated according to the hypothesis, while 
the other two were generated as a mixture of the hypothesis and a uniform ran-
dom walker. Thus, the desired outcome would be to have a lower divergence for 
the middle network and the same, higher divergence for the two others. We can 
see for both experiments, that applying the plain metrics directly does not pro-
duce the expected results. When applying the appropriate steps of CompTrails, 
which are NS and ES, the divergence of the orange networks is the lowest, and 
for the blue and green networks, the divergences are approximately equal.

B: Parameter and ablation studies—analyzing different components 
of comptrails on synthetic networks

In Sect.  5.2, we apply CompTrails on our created synthetic datasets with specific 
component settings. Here, we report additional experiments with modified parame-
ters, either for the construction of the synthetic networks, or with respect to the choice 
of CompTrails components. The underlying data generation process and base con-
figuration are equivalent to Sect. 5.2. Modifications are elaborated in each section.

B.1: Understanding the impact of different densities

In the first experiment, we used the same approach as in Sect.  5 except for the 
process of generating the underlying Barabasi–Albert graphs. We use m = 5 for 
both graphs, which generates a relatively dense graph for the smaller network 
with 200 nodes and a sparser graph for the larger network with 1000 nodes. The 
biased random walker applies the same transition probabilities, leading to the 
results in Fig. 9.

While with CompTrails, we can still compare the even and odd hypothesis well 
across the different networks of one density, our method is unable to fully adjust 
w.r.t. different densities, which means that the divergence for the same bias of the 
random walker is not identical on networks of different densities. We relate this 

Fig. 8  Evaluating the impact of different edge distributions. All three networks have 100 nodes each and 
the same number of edges, hence the random walker has identical properties. We constructed the under-
lying Barabasi–Albert graph with m

10
= 5 , m

100
= 25 and m

1000
= 50 respectively, which leads to fewer 

possible transitions for the respective random walker. We used the same walker settings as in Fig.  2, 
which means that we start 5 times from each node with a walk length of 5
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to the different entropies in the transition and/or hypothesis instance distribution 
that originate from differently dense underlying graph structures. Here, we see the 
potential for extensions of our framework in future research that make hypotheses 
better comparable in such settings. However, these differences can also be inter-
preted as plausible: Specifically for nodes with few transition, on an instance-
level the hypothesis after graph structure filtering is potentially more "precise" 
in predicting where the transitions will take place in the sparser graph, and thus 
could also be considered as better. For the uniform hypothesis, we observe simi-
lar artifacts as in the main experiment, see Sect. 5.

A possible explanation of this phenomenon could be related to the Edge Sam-
pling step for networks with different density. When the ES step is applied in the 
smaller graph, there are more possible nodes to sample an edge, as it is more 
dense by construction. Even if the number of sampled transitions is adjusted in 
our method, the number of possible nodes after graph structure filtering is higher 
for the small graph. We assume that this will lead to differences in the entropy of 
hypothesis instantiations and/or observed edge distributions, even after we finish 
our sampling step, which we can see in Fig. 9.

B.2: Random node sampling versus snowball sampling

The CompTrails framework allows for different options to sample nodes. In our 
main experiments with synthetic data, see Sect. 5.2, we apply snowball sampling 
on the transition network in the node synchronization component. In the follow-
ing, we show results using random sampling instead. The results are shown in 
Fig. 10. We observe that random sampling leads to large standard deviations in 
the result scores. This can be explained by the sparser sampled transition matri-
ces, which are generated by random sampling.

Fig. 9  Applying CompTrails on synthetic networks. The underlying Barabasi–Albert graphs are con-
structed using m = 5 . This leads to underlying graphs with different densities. We observe small differ-
ences between networks of different densities also after adjustments
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B.3: Effects of graph structure filtering

Next, we demonstrate the effect of GSF in our framework, see the results in 
Fig.  11. Here, networks created using biased random walkers with the same or 
similar transition probabilities as the hypothesis produce very similar diver-
gences. This makes the approach unable to clearly differentiate between the dif-
ferent degrees of agreement with the hypothesis. This clearly shows the benefit of 
including GSF in the framework in this case. On the other hand, for very dense 
networks (results not shown here), GSF is not necessary to apply, since nearly all 
edges of the network occur in the underlying graph structure.

Fig. 10  Applying random node sampling instead of snowball sampling during the NS component. Sam-
pled matrices are sparse and produce greater standard deviations in the divergences

Fig. 11  Not using GSF with the underlying graph structure. Networks with an opposite behavior as the 
hypothesis have a high divergence, which is correct. All other networks arrange themselves on a similar 
divergence level as the uniform hypothesis
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B.4: Overall effects of node and edge synchronization

Next, we conducted a brief experiment, where we did not apply the core com-
ponents of our work, namely node sampling and edge sampling. The results can 
be seen in Fig.  12. As explained, directly applying JSD is not capable of pro-
ducing comparable divergence scores when comparing matrices of different sizes 
and densities. However, for the uniform hypothesis, the degree of agreement with 
respect to a single network is more evident compared to the CompTrails approach.

B.5: Number of nodes sampled

To analyze the impact of the percentage of nodes sampled in the node synchroniza-
tion step, we conducted a parameter study, in which we varied the percentage of 
nodes sampled from 10% (which is our default setting) up to 50% of the size of 
the smallest network (here from 200 nodes in the blue networks (see Fig. 13). For 
this, we created behavioral networks using underlying Barabasi–Albert using m = 2 , 
and biased random walker as in the settings before. Increasing the number of sam-
pled nodes led to smaller standard deviations between runs and improved similar-
ity between the corresponding networks, as we can see in Fig. 13c). However, it is 
important to acknowledge the trade-off involved, as sampling all nodes can poten-
tially result in memory and runtime constraints.

B.6: Number of runs

We conducted a small parameter study on the number of runs, i.e., how many times 
we run our proposed method. The results can be seen in Fig. 14. For a small num-
ber of runs, the mean of the divergence scores becomes very unstable, as shown in 
Fig. 14a. Sampling more often leads to smoother result. The shaded areas show the 
standard deviation, which is not influenced by the number of runs.

Fig. 12  Not applying the core components of our framework, namely the NS and ES steps. Since we do 
not sample, no standard deviation plots are shown. Divergence scores for different network sizes diverge, 
which shows the necessity of our approach
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Fig. 13  Parameter study on the percentage of nodes sampled in the NS step. As expected, fewer nodes 
sampled lead to larger standard deviations
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C: Example of misconfiguration of CompTrails in a real world setting

Finally, we demonstrate the results of not configuring CompTrails correctly: In the 
bibliometric dataset case study, the meta-data, and therefore the hypothesis are very 
sparse. In the main part of our study, we applied snowball sampling to the hypoth-
eses to handle this dataset limitation. The application of snowball sampling helps 
to sample a coherent structure. The outcome of applying snowball sampling to the 
transitions is depicted in Fig.  15. Since the transitions exhibit a high density, we 
selected states in which numerous zero values were present in the respective hypoth-
eses. Consequently, the analysis leads to a similar divergence for each network 
within the dataset. Although this behavior is in line with our chosen approach, it 
does not provide valuable insight to the researcher.

Fig. 14  Parameter study on the amount of runs conducted. The result for 100 runs can be seen in Fig. 10. 
Random fluctuations can occur if the number of runs is too small
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