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Abstract. Exceptional model mining has been proposed as a variant
of subgroup discovery especially focusing on complex target concepts.
Currently, efficient mining algorithms are limited to heuristic (non ex-
haustive) methods. In this paper, we propose a novel approach for fast
exhaustive exceptional model mining: We introduce the concept of valua-
tion bases as an intermediate condensed data representation, and present
the general GP-growth algorithm based on FP-growth. Furthermore, we
discuss the scope of the proposed approach by drawing an analogy to
data stream mining and provide examples for several different model
classes. Runtime experiments show improvements of more than an order
of magnitude in comparison to a naive exhaustive depth-first search.
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1 Introduction

Subgroup discovery [9,17] has been established as a general and broadly appli-
cable technique for descriptive data mining: It aims at identifying descriptions
of subsets of a dataset that show an interesting behavior with respect to a cer-
tain target property of interest. In this context, the concept of exceptional model
mining has been introduced [6,13], which especially focuses on complex target
properties: It tries to identify interesting patterns with respect to a local model
derived from a set of attributes. The interestingness can be defined, e.g., by a sig-
nificant deviation from a model that is derived from the total population or the
respective complement set of instances within the population. While there exist
heuristic algorithms [11] for exceptional model mining, the efficient exhaustive
computation of exceptional models is still an open issue.

In this paper, we present the novel GP-growth algorithm that can be used
for mining patterns with exceptional target models exhaustively. We extend the
well-known FP-tree [7] data structure by replacing the frequency information
stored in each node of the tree by the more general concept of valuation bases.
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Valuation bases are dependent on a specific model class and allow for an efficient
computation of the target model parameters.

The contribution of this paper is threefold: First, we present the concept of
valuation bases allowing us to derive a new algorithm capable of performing effi-
cient exhaustive search for many different classes of exceptional models. Second,
we characterize the scope of the presented approach and discuss its instantia-
tions for model classes presented in literature. Third, we perform an evaluation
of the presented approach using publicly available UCI data [14]. Furthermore,
we present a scalability study on a real world dataset.

The remainder of the paper is structured as follows: Section 2 discusses re-
lated work. Section 3 introduces the formal background of exceptional model
mining and briefly reviews the FP-growth algorithm. Next, Section 4 presents
the novel GP-growth algorithm. Instantiations for different model classes are
discussed in Section 5. After that, we demonstrate the effectiveness and validity
of our approach using publicly available data in Section 6. Finally, the paper
concludes with a summary and outlook on future work in Section 7.

2 Related Work

For a recent overview on algorithms for subgroup discovery [9,17], including
heuristic and exhaustive approaches, we refer to [8]. Kralj et al. also discuss sub-
group discovery in relation to other common approaches for supervised descrip-
tive rule discovery [15]. Exceptional model mining has been proposed in [6,13].
[11] presents an heuristic algorithm for identifying descriptions of exceptional
subgroups. Umek et al. describe subgroup discovery in a similar setting [16].
Again, their proposed algorithm does not perform an exhaustive search.

To the best of the authors’ knowledge, no non-trivial exhaustive algorithm
for the task of exceptional model mining has been published so far. To this
end, we propose the GP-growth algorithm based on FP-growth and FP-trees.
Originally developed for association rule mining [7], FP-trees are a widely-used
data representation. It has been adapted to subgroup discovery with nominal
[3] and numeric target concepts [1]. The transfer to exceptional model mining is
not trivial but – as shown in this paper – possible for many model classes.

3 Background

In the following, we first provide a brief summary of exceptional model min-
ing [6,13]. After that, we review the FP-growth algorithm.

3.1 Exceptional Model Mining

Exceptional model mining aims at identifying models (patterns) that are ex-
ceptional concerning a set of target attributes. For some basic definitions, a
database D = (I, A) is given by a set of data instances (cases) i ∈ I and a
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set of attributes A. The attributes consist of two (usually non-overlapping) sets
of describing attributes AD and model attributes AM . We denote the value of
attribute X in instance i as iX . Selectors or basic patterns are boolean func-
tions I → {false, true} defined by selection expressions on the set of describing
attributes AD. Typical selection expression are given by attribute-value pairs in
the case of nominal attributes, or by intervals in the case of numeric attributes.
The selector age = [12; 18] is true, for example, iff the attribute age has a value
between 12 and 18 for the respective instance. A subgroup description or (com-
plex) pattern combines selectors into a boolean formula. For a typical conjunctive
description language, a pattern p = {sel1, . . . ,selk} is defined by a set of selectors
selj , which are interpreted as a conjunction, i.e. p = sel1∧ . . .∧ selk. A subgroup
corresponding to a pattern p contains all instances for which p evaluates to true.

A model consists of a specific model class, which is fixed for a specific mining
task, and model parameters which depend on the values of the model attributes
in the instances of the respective subgroup. The goal of exceptional model mining
is then to identify descriptions of subgroups, for which the model parameters dif-
fer significantly from the parameters of the model built from the entire dataset.
Formally this is accomplished by using an exceptionality measure q that maps
a subgroup (pattern) to a real number corresponding to its quality (interesting-
ness) based on its model parameters. As a simple example, consider the task of
identifying subgroups in which the correlation between two numeric attributes
is especially strong. This correlation model class has exactly one parameter, i.e.,
the correlation coefficient. A short overview on different model classes presented
in literature is included in Section 5.

To accomplish the exceptional model mining task for a set of l selectors
there are O(2l) subgroup descriptions, for which the model parameters need to
be determined. For practical purposes it is often possible to limit the search
space to patterns with a maximum number d of contained selectors (|p| ≤ d)
(since longer patterns are difficult to interpret by humans). However, identifying
the best pattern is still challenging since the size of the search space is still O(ld).
In this paper, we provide an efficient exhaustive algorithm for this task.

3.2 FP-growth

The FP-growth [7] algorithm has been introduced as an efficient approach for
frequent pattern mining. It avoids scanning the whole dataset in order to eval-
uate each pattern by recursively building a special data structure, the so-called
FP-tree. This extended prefix tree structure contains the relevant data in a com-
pressed way. Each tree node contains a reference to a selector and a frequency
count. Additionally, links between nodes referring to the same selector are main-
tained. The FP-tree is built by sorting the selectors of each data instance ac-
cording to their descending frequency in the dataset. Then, each data instance
is inserted into the FP-tree. The order of the selectors increases the chance of
shared prefixes between data instances decreasing the size of the FP-tree. Most
importantly, the resulting FP-tree contains the complete condensed frequency
information for each data instance.
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FP-growth starts with creating an FP-tree for the initial dataset. Patterns
containing exactly one selector are evaluated by the frequencies collected during
the first pass over the dataset. Then, the algorithm recursively extends those
patterns by adding further selectors in a depth-first manner, building conditional
trees conditioned on the current pattern prefix. Each node corresponds to a
conditional data instance built from the selectors referred to by its parent nodes.
In this way, FP-growth enables a compact and efficient mining of the condensed
tree structure. Due to the limited space, we refer to [7] for more details.

4 The GP-growth Algorithm

In this section, we present our novel approach called generic pattern growth
(GP-growth). GP-growth is based on the FP-growth algorithm substituting fre-
quencies by an intermediate, condensed data representation called a valuation
basis. We first introduce the concept of valuation bases and define properties
needed for their application to the GP-growth algorithm. After that, we provide
a theorem concerning the existence and construction of efficient valuation bases
for specific model classes.

4.1 The Concept of Valuation Bases

In the traditional FP-growth approach frequencies are stored in the nodes of
the tree. These nodes can then be aggregated to obtain frequencies for patterns
in the search space. The frequency is then used to rate the patterns (itemsets)
determining those with high instance counts. In the proposed approach, we re-
place the frequency count stored in each node of the tree structure with a more
generic concept that we call a valuation basis.

We define a valuation basis as a (condensed) representation of a set of data
instances that is sufficient to extract the model parameters for a given model
class. Consequently, the kind of information stored in a valuation basis is depen-
dent on the model class. Since the interestingness of a subgroup in our definition
is based on the model parameters, it can be derived from such a valuation basis.

A visualization of the overall approach is given in Figure 1: For each sub-
group (set of data instances) a valuation basis can be derived using a function
φ (valuation projector). The model parameters for the chosen model class can
be extracted from these valuation bases using another function χ (model extrac-
tor). Model parameters are then used to determine the interestingness of the
respective pattern using an exceptionality measure q.

As an example, consider a very basic model for a single model attribute X,
for which the only model parameter is the mean value of all instances covered by
the subgroup. Then, an appropriate valuation base can consist of the instance
count and the sum of all values of X of all instances of the subgroup. The
instance count and the sum of values can be accumulated in an FP-tree like
structure. Given the accumulated valuation basis for each pattern, the stored
instance count and the value sum are used to compute the mean. The actual
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Subgroup Valuation Basis Model Parameters Interestingness
φ χ q

Fig. 1. The pipeline visualizing our approach: For each subgroup (set of data instances)
s a valuation basis can be derived using a function φ (valuation projector). The model
parameters for the chosen model class can be extracted from these valuation bases using
another function χ (model extractor). Model parameters are then used to determine
the interestingness of the respective pattern using an exceptionality measure q.

interestingness of the pattern can then be determined using this mean value, e.g.
as the deviation from the mean value in the total population.

Please note, that we can construct a trivial type of valuation bases that
defines a valuation basis as the exact same set of data instances it represents
(restricted to the model attribute values). Obviously, this most general type
of valuation bases trivially contains all relevant information associated with the
original set of data instances. Therefore, model parameters for any model class on
the original set of data instances can be derived from this type of valuation bases.
However, while this trivial kind of valuation basis allows for a general applicable
approach, the main advantages in terms of memory and runtime performance
are usually lost. Therefore, we aim to construct valuation bases for a given
model class which are as small as possible. We call a valuation basis a condensed
valuation basis, if its memory requirement is sublinear with respect to the number
of instances it represents. The examples of valuation bases that we present in
this paper will all use constant memory with respect to the instance count.

We model the possibility of aggregating valuation bases corresponding to sets
of data instances by introducing the notion of valuation domains:

Definition 1 (Valuation Domain, Valuation Basis). A valuation domain
is an abelian semi-group V = (V,⊕), where V is an arbitrary set and ⊕ is a
binary operator on V , i.e. ⊕ : V × V → V and

– V is closed under ⊕, i.e. a, b ∈ V ⇒ a⊕ b ∈ V
– ⊕ is associative, i.e. a, b, c ∈ V ⇒ a⊕ (b⊕ c) = (a⊕ b)⊕ c
– ⊕ is commutative, i.e. a, b ∈ V ⇒ a⊕ b = b⊕ a

An element v ∈ V is called a valuation basis.

In order to derive valuation bases from data instances we define the notion
of a valuation projector φ as in Definition 2.

Definition 2 (Valuation Projector). Let I be a set of all data instances and
let V = (V,⊕) be a valuation domain. Then a valuation projector is defined as

φ : I → V
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Given the definition of valuation domains above, the valuation projector φ
can be naturally extended onto sets of data instances S ∈ 2I :

φ̄ : 2I → V

S 7→
⊕
s∈S

φ(s)

As a result, for any disjunct pair of sets of data instances S′ ∩ S′′ = ∅ it
holds:

φ̄(S′ ∪ S′′) = φ̄(S′)⊕ φ̄(S′′)

Sometimes patterns are evaluated by comparing their corresponding model
attributes derived from the set of data instances they cover with the model
attributes of their complementary set of data instances. In order to handle this
case efficiently we need to assume a valuation domain with a subtraction operator
	: Let I be the set of all instances and let I ′ ∪ I ′′ be an arbitrary partition of
I. If the valuation basis of I ′ is subtracted from the valuation basis of I, then
the result must be the valuation basis of I ′′: φ̄(I)	 φ̄(I ′) = φ̄(I ′′). This can be
utilized by computing the valuation basis corresponding to all instances in the
dataset I in an initial pass over the dataset.

4.2 Algorithmic Adaptations

Essentially, the FP-growth algorithm (cf. Section 3.2 for a brief description) is
generalized by substituting frequencies with the more general concept of val-
uation bases. We call the resulting algorithm GP-growth. The generalized tree
structure storing valuation bases instead of frequencies is called a GP-tree.

Whereas the FP-growth algorithm adds up frequencies in its FP-trees, the
GP-growth algorithm aggregates valuation bases in its GP-trees. Hence, GP-
growth produces aggregated valuation bases instead of frequencies for each pat-
tern. Note that a valuation basis can also contain a frequency as described in
the mean value example in Section 4.1.

In order to aggregate valuation bases for each pattern, the algorithm requires

– a valuation domain V = (V,⊕) to draw valuation bases from,
– a valuation projector φ to project single data instances onto valuation bases,

and
– a subtraction operator 	 to support complement comparisons as mentioned

in Section 4.1, if required by the utilized exceptionality measure.

Patterns are then evaluated based on their valuation bases by applying

– a model extractor χ to map valuation bases v ∈ V onto model parameters,
and

– an exceptionality measure q based on these model parameters.
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These adaptations of FP-growth allow for a generic implementation. That
is, the code for the main algorithm is identical for all model classes. To apply it
to a new model class, only the valuation domain with its aggregation operator
⊕, the corresponding valuation projector φ, and the model extractor χ must be
implemented. We call the tuple (V,⊕, φ, χ) a model configuration.

Please note, that for the very simple valuation basis, that only counts the
instances, the resulting algorithm is identical to FP-growth. Furthermore, tra-
ditional subgroup discovery can be implemented in this generic algorithm by
using valuation bases that count instances with a positive and a negative target
concept separately, as done in the SD-Map algorithm [3]. Thus, the approach
presented in this paper can be regarded as a true generalization of both, FP-
growth [7] and SD-Map.

Like subgroup discovery, exceptional model mining is often applied in a top-
k approach. That is, the goal is to find the best k patterns with respect to an
interestingness measure. This can be accomplished by storing the current top
k patterns in a separate result set and replacing its entries with higher quality
patterns as required.

When using a top-k approach, substantial speed-ups can be achieved by
using optimistic estimate pruning, see for example [17]. As an example, a quality
function using a correlation coefficient model could exploit the fact, that the
correlation coefficient never exceeds a value of 1. However, efficient boundaries
need to be determined for each quality function, which may even vary for a single
model class. In this paper, we focus on a generic data structure that allows for
the efficient computation of model parameters. Therefore, we will not discuss
possible optimistic estimate boundaries for model exceptionality measures in
the context of this work.

4.3 Theorem on Condensed Valuation Bases

The approach of generalized FP-trees is especially efficient, if it is possible to
derive a small condensed valuation basis for a model class. If the constructed
model itself is very complex, then it seems difficult to derive suitable condensed
valuation bases that are sufficient to extract the model parameters. This includes,
for example, computationally expensive models that involve the learning of a
bayesian network as done in [6].

Therefore, in the following we provide a characterization of model classes,
for which GP-trees can be applied with strongly reduced memory requirements.
We do this by drawing a parallel to data stream mining:

Theorem 1. There is a condensed valuation domain for a given model class
if and only if the following conditions are met: (1) There is a parallel single-
pass algorithm with sublinear memory requirements to compute the model from
a given set of instances which are distributed randomly on one of the (parallel)
computation nodes; (2) the only communication between the computation nodes
in this algorithm takes place when combining results.
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Proof. ⇒: First, assume there is a model configuration (V,⊕, φ, χ) that can be
used to determine the model parameters of a subgroup. We can then construct
a parallel single-pass algorithm as follows: In each computation node N we loop
through all assigned instances IN , updating the respective valuation basis vN .
For each instance i ∈ IN we extract the valuation basis φ(i) and use it to update
the current accumulated valuation basis: vnewN = voldN ⊕φ(i). Thus, after each step
the valuation basis vN corresponds to all instance handled so far. After the loop
through all instances of this computation node, the valuation basis vN can be
used to extract the model parameters for the set of instances IN . Furthermore,
the resulting valuation bases from different computation nodes can be combined
by using the aggregation operator ⊕ again. This leads to a valuation basis that
corresponds to all instances of the dataset. The model parameters can then be
extracted using the model extractor χ; this completes the parallel single-pass
algorithm for computing these parameters.

⇐: Assume there is a parallel single-pass algorithm with the properties pre-
sented above. Then, there is a set of variables VC that are used in the computa-
tion within each of the nodes, which is sublinear with respect to the number of
contained instances. We show, that this set of variables defines a model configu-
ration (V,⊕, φ, χ). Since the algorithm is single-pass, the assignments for these
variables are updated only once for each instance using the values of the model
attributes for this instance. Now let vi be the vector of values (variable assign-
ments) of the variables VC after the instance i is processed as the first instance
in this computation node. Then, we can use this vector as our valuation basis
projector function φ(i) = vi. This is sufficient for a valuation basis; if there was
only one instance in the dataset, then a correct algorithm would be able to ex-
tract the model parameters for the model built from the single instance using
only the data vi.

Next, assume that each computational node Nj has finished the computation
of its partition of the data Dj , each resulting in variable assignments vj , which
corresponds to a valuation basis. vj must be sufficient to extract the model pa-
rameters for the data Dj , since it could be that Nj is the only computational
node. The method used for this subtask can be regarded as a model extrac-
tor function χ. Now consider two valuation bases v1 and v2 that result from
two computation nodes and are corresponding to data partitions D1 and D2. A
correct parallel algorithm must come with an appropriate method to combine
the results v1 and v2 into new variable assignments that is suited to extract
model parameters for the data D1 ∪D2. This method can be used as a general
aggregation function ⊕ for valuation bases. Thus, given a parallel single-pass
algorithm with the properties presented above we can derive a model configura-
tion (V,⊕, φ, χ). ut

The proof is constructive. It describes a method to transfer parallel single-pass
algorithms for specific model classes to valuation domains that can be used for
efficient exceptional model mining. Some important examples of this approach
are shown in the next section.
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5 Valuation Bases for Important Model Classes

In this section, we discuss the application of GP-trees to different model classes.
Most of the presented model classes have been proposed in [13], to which we
refer for a more detailed description of the models and exceptionality measures.

Variance Model The variance model identifies patterns, in which the variance
of a single target variable X is especially high/low. Although this model features
only a single model attribute, this task can not be accomplished by traditional
subgroup discovery algorithms utilizing FP-trees, such as SD-Map.

For an efficient computation of the variance, we utilize the following well
known formula:

V ar(X) = E[X2]− E[X]2 =

∑
x2

n
− (

∑
x

n
)2,

where E[X] is the expected value for the variable X. For computing the vari-
ance of an attribute, only the total count, the sum of all values and the sum of
all squared values are required. Formally, a model configuration (Vσ,⊕σ, φσ, χσ)
that is sufficient to compute the variance (or equivalently, the standard devia-
tion) of a variable X can be defined as:

Vσ = R3

v ⊕σ u = v + u

φσ(i) = (1, iX , iX
2)T

χσ(v) =
v3

v1
− (

v2

v1
)2

Each valuation basis stores a vector of three real numbers. Aggregating val-
uation bases using the operator ⊕ is equivalent to adding vectors in euclidean
space. The valuation basis extracted from a single data instance i contains the
constant 1 as the instance count, the value of X in i and the squared value of X
in i. To extract the model parameter V ar(X) from a valuation basis v ∈ Vσ the
computation χσ has to be performed using the three components of the vector
stored in the valuation basis v.

Correlation Model The (Pearson product-moment) correlation coefficient
ρ(X,Y ) measure is a very well known statistical measure that reflects the linear
dependency between two numerical attributes X and Y . The correlation coeffi-
cient is defined as the fraction of the covariance and the product of the standard

deviations of these two attributes: ρ(X,Y ) = Cov(X,Y )
σXσY

.

The covariance is defined as Cov(X,Y ) =
∑

(x,y)(x−µX)(y−µY )

N , where µ de-
scribes the mean value of the attribute and N the number of instances. We
determine the measures Cov(X,Y ), σX and σY independently from each other.
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To efficiently compute the covariance of two variables X,Y we utilize the
following pairwise update formula that was introduced in [4] for an parallel
single-pass algorithm. It allows us to compute CS(X,Y ) = Cov(X,Y ) · |S| =∑

(x,y)∈S(x − µX)(y − µY ) for a set of data instances S = S1 ∪ S2, S1 ∩ S2 = ∅
given statistical information of the partitioning sets S1 and S2:

CS(X,Y ) = CS1(X,Y ) + CS2(X,Y ) +
n1n2

n1 + n2
(µX,2 − µX,1)(µY,2 − µY,1),

where, n1 = |S1| and n2 = |S2| denote the instance count in S1 and S2, and
µX,2, µX,1, µY,2, µY,1 are the mean values of X and Y in the sets S2 and S1.

For computing the covariance for each pattern using this formula, we need
to keep track of the value of C in the respective set of instances, the cardinality
of the subgroup, and the mean values of the variables X and Y . The latter can
be computed by the sum of the respective values and the cardinality. Therefore,
using the formula above we can define a model configuration for the covariance
as follows:

Vcov = R4

v ⊕cov u =


v1

v2

v3

v4

⊕

u1

u2

u3

u4

 =


v1 + u1

v2 + u2

v3 + u3

v4 + u4 + v1u1

v1+u1
( v2v1 −

u2

u1
)(v3v1 −

u3

u1
)


φcov(i) = (1, iX , iY , 0)T

χcov(v) =
v4

v1

In this formalization of a model configuration the first component of a valuation
basis reflects the size of the corresponding set, the second and third component
store the sum of the values of X and Y and the fourth component keeps track
of the measure C as defined above.

To compute the actual correlation coefficient we combine this valuation ba-
sis with the valuation basis used for the variance model in order to compute
Cov(X,Y ), σX and σY in a single model configuration:

Vcor = R6

v ⊕cor u =


v1

v2

v3

v4

v5

v6

⊕

u1

u2

u3

u4

u5

u6

 =


v1 + u1

v2 + u2

v3 + u3

v4 + u4 + v1u1

v1+u1
( v2v1 −

u2

u1
)(v3v1 −

u3

u1
)

v5 + u5

v6 + u6


φcor(i) = (1, iX , iY , 0, iX

2, iY
2)T

χcor(v) =
Cov(X,Y )

σXσY
=

v4
v1√

v5
v1
− ( v2v1 )2

√
v6
v1
− ( v3v1 )2

=
v1v4√

v1v5 − v2
2

√
v1v6 − v2

3
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Simple Linear Regression Model The simple linear regression model is per-
haps the most intuitive statistical model to show the dependency between two
numeric variables X and Y . It is built by fitting a straight line in the two di-
mensional space by minimizing the squared residuals ej of the model:

yj = a+ bxj + ej

As proposed in [13], the difference of the slope b of this line in a subgroup and
the total population (or the complement of the subgroup within the population)
can be used to identify interesting patterns. As known from statistics, the slope
b can be computed by the covariance of both variables and the variance of X:

slope(X,Y ) =
Cov(X,Y )

V ar(X)

Thus, we define a model configuration by combining the valuation domains
for the variance and the covariance, similar to the correlation model:

Vslope = R5

v ⊕slope u =


v1

v2

v3

v4

v5

⊕

u1

u2

u3

u4

u5

 =


v1 + u1

v2 + u2

v3 + u3

v4 + u4 + v1u1

v1+u1
( v2v1 −

u2

u1
)(v3v1 −

u3

u1
)

v5 + u5


φslope(i) = (1, iX , iY , 0, iX

2)T

χslope(v) =
Cov(X,Y )

V ar(X)
=

v4
v1

v5
v1
− ( v2v1 )2

=
v1v4

v1v5 − v2
2

Here, again the first four components represent the cardinality of the corre-
sponding set of instances, the sum of values for X and Y and the measure C
as defined above. Additionally, the last component is additionally required to
compute the variance as described previously for the variance model.

Logistic Regression Model Next, we consider the logistic regression model.
This model is used for the classification of a binary target attribute Y ∈ AM
from a set of independent binary attributes Xj ∈ AM \ Y, j = 1, . . . , |AM | − 1.
The model is given by: y = 1

1+e−z , z = b0 +
∑
j bjxj . An exceptional model

mining goal could then be identify patterns in which the model parameters bj
differ significantly from the ones derived from the total population.

Unfortunately, to the best of the authors’ knowledge until now no exact
single-pass algorithm has been proposed for determining the parameters for lo-
gistic regression, due to the non-linear nature of parameter fitting. Since accord-
ing to Theorem 1 the existence of such an algorithm is necessary for the existence
of a sufficient condensed valuation basis, the exact computation of parameters
for the logistic regression model relies on the trivial valuation basis so far.
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DTM-classifier Next, we discuss two models based on the DTM-classifier [10]:
It predicts a target attribute Y ∈ AM from a set of independent attributes
Xj ∈ AM \ Y, j = 1, . . . , |AM | − 1, by determining the probability of each target
attribute value for each combination of values of the independent attributes.
For value combinations, which did not occur in the training set, the probability
distribution of the complete training set is used. Then, for a given new instance
i the target value is predicted, that has the highest probability conditioned on
the respective combination of values of the Xj in i. If the specific combination
of the values of Xj did not occur in the training data, then the instance is
classified as the most frequent target value in the complete training set. In the
context of exceptional model mining, amongst others, the Hellinger distance has
been proposed as an exceptionality measure for this model class. It measures the
difference between the distribution within a subgroup S and the distribution in
its complement S̄. It is computed as∑

y,x1,...xk

(
√
PS(y|x1, . . . , xk)−

√
PS̄(y|x1, . . . , xk))2.

For an efficient computation in FP-trees, we store the probabilities for all value
combinations of Y,X1, . . . , X|AM−1|.

In the following, we assume that all attributes are binary for the sake of
simpler notation. The generalization for non-binary attributes is straightforward.
Furthermore, we assume that value combinations are arranged in a predefined
order, where the positive values of Y are on odd positions and the corresponding
negative value of Y for the same combination of independent attribute values is
immediately following. Then, a slightly simplified model configuration is given
by:

Vdtm = R2|AM |

v ⊕dtm u = v + u

φdtm(i) = (vj) =

{
1, if the j-th combination of values is true in i
0, else

χ
(k)
dtm(v) =

v2k−1

v2k−1 + v2k

In this model configuration each component of the valuation basis corresponds to
a combination of values. Please note, that in this case the valuation basis stored
in each node of the GP-tree needs to store 2k values, where k is the number of
(binary) model attributes. Therefore this model configuration is not tractable for
large numbers of model attributes. However, this should not be the case in most
practical applications, since larger models are typically difficult to comprehend
by human users.

Bayesian Networks Bayesian networks have been proposed as complex target
models for exceptional model mining [6]. Since to the best of the authors’ knowl-
edge there is currently no parallel single-pass algorithm for learning bayesian
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networks — which is a complex task on its own — we cannot provide an effi-
cient valuation basis for this model class here, but refer to the trivial valuation
basis. However, there is ongoing research in that area [5] which can possibly be
exploited in future work.

6 Evaluation

In this section, we present runtime evaluations of the proposed approach using
UCI-datasets [14] as well as a scalability study in a large real world dataset.

6.1 Runtime evaluations on UCI Data

We evaluated the presented approach by performing runtime experiments using
a set of well known UCI datasets. The algorithms were implemented in the
open source data mining environment VIKAMINE3[2]. The experiments were
performed on a standard office PC with a 2.2 GHz CPU and 2 GB RAM. As
search space we used all non-model attributes in the respective dataset. Numeric
attributes were discretized in five intervals using equal-frequency discretization.

In a first set of experiments we compared the runtime of the GP-tree ap-
proach for different model classes. Due to the limited space we just show the
results for the exemplary credit-g dataset, see Table 1. In this dataset, we used
the attributes duration and credit amount as model attributes, which were dis-
cretized if necessary. We excluded these attributes from the search space for
all model classes to increase the comparability of the results. Experiments on
other datasets showed similar characteristics. As can be seen in the table, the

Model Class Model Attr. 2 3 4 5

Frequent Pattern - 0.8 3.5 17.1 70.0
Subgroup Discovery duration 0.8 3.6 17.0 69.3
Variance duration 0.8 3.6 17.0 72.6
Linear Regression both 0.9 3.8 18.6 77.3
Correlation Coefficient both 0.9 3.8 18.7 77.8
DTM classifier both 1.8 7.4 32.0 118.2

Table 1. Runtime in seconds for the GP-growth algorithm using the credit-g dataset
for different model classes and various search depth (maximum number of selectors in
a single subgroup description).

runtimes differ only marginally. For the DTM-classifier, the results only differ
by a small constant factor, which can explained by the more complex model
configuration. The similarity of the runtimes is due to the fact that no pruning
scheme is utilized; therefore, the search space is the same for all model classes.

3 www.vikamine.org

www.vikamine.org
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Next, we performed an extensive runtime analysis of our approach using 19
datasets from the UCI repository. For that purpose, we compared the proposed
GP-growth algorithm to a simple depth first search without any specialized data
structure. Due to the runtime similarity for different model classes and due to
the limited space, we only show the results for one model class, that is, the slope
of the linear regression. The results are shown in Table 2. It can be observed,
that even at a search depth of 2 (searching only for subgroup descriptions that
have a maximum of 2 selectors) the GP-growth algorithm outperforms the sim-
ple depth first search approach significantly. This difference increases for larger
search depth. At a search depth of 5 GP-growth completes the task two orders
of magnitude faster for all datasets. These results clearly demonstrate the power
of efficient data structures such as the GP-tree.

max depth 2 3 4 5

dataset DFS GPG DFS GPG DFS GPG DFS GPG

adults 230.9 6.2 8905.7 10.4 > 6h 25.1 > 6h 65.6
autos 1.6 0.5 72.4 3.8 2279.5 21.9 > 6h 104.0
breast-w 0.2 0.1 0.9 0.1 4.5 0.1 15.8 0.1
colic 1.3 0.7 32.9 2.6 639.8 12.9 9940.8 46.4
credit-a 1.2 0.2 24.1 0.9 339.6 3.2 3849.3 9.8
credit-g 2.9 0.9 68.7 3.8 1202.0 18.6 16593.8 77.3
diabetes 0.3 0.1 2.6 0.1 16.9 0.3 87.8 0.4
forestfires 0.8 0.2 16.1 0.6 235.8 2.0 2670.2 4.3
glass 0.1 0.0 1.3 0.1 10.6 0.2 66.2 0.3
heart-h 0.2 0.1 2.7 0.1 23.9 0.3 168.9 0.6
hepatitis 0.2 0.1 3.3 0.7 40.0 3.3 373.2 12.4
housing 0.2 0.0 1.4 0.1 7.7 0.2 32.8 0.4
hypothyroid 10.4 1.4 247.7 5.1 4405.4 24.3 > 6h 131.3
ionosphere 3.1 1.9 154.7 22.5 5581.3 184.3 > 6h 1136.7
labor 0.1 0.0 1.0 0.1 12.0 0.3 108.4 0.6
segment 6.5 1.0 175.3 3.9 3437.8 16.1 > 6h 59.1
spambase 18.7 6.0 558.6 28.4 12498.8 196.1 > 6h 1869.1
vehicle 2.5 0.6 66.0 3.2 1367.3 15.0 > 6h 53.1
vowel 2.1 0.3 45.3 1.3 754.4 4.3 10064.1 10.4

Table 2. Runtime in seconds for different UCI-Datasets for the Linear Regression
Model class for various search depth (maximum number of selectors in a single subgroup
description), comparing a simple Depth-First-Search with the GP-tree.

6.2 Scalability Study: Social Image Data

In the following, we present a short case study on real world data that shows the
advantages of the presented approach in large scale applications. As a dataset,
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we used publicly available metadata of pictures uploaded to the Flickr4-platform.
More specifically, we crawled the view counts as well as all tagging information
for all pictures geo-referenced to a location in Germany uploaded in 2010. We
limited the dataset to tags with more than 1000 occurrences leading to a dataset
of about 1.1 million instances and about 1200 tags that we used as describing
attributes. Since pictures viewed by more people are naturally also tagged by
more people, there is a correlation to the number of tags assigned to a picture.
To evaluate the scalability of the GP-growth approach we performed the task
of identifying combinations of tags (as subgroup descriptions), for which this
correlation is especially strong. As a result, even for a search depth of 2, the
simple DFS algorithm did not finish the task within two full days. In contrast,
the same task performed by GP-growth finished in about 8 minutes.

The massive difference for this dataset can be explained by the sparseness of
the tagging data, which especially favors the utilized tree structure. Furthermore,
even for an increased search depth of 3, the task could be completed within
10 minutes. This small difference is reasonable, as due to the sparseness of the
dataset less combinations of three tags might occur in dataset than combinations
of two tags. Overall, the runtime improvements for the Flickr dataset are even
larger than in the previous datasets, showing the scalability of our approach.

7 Conclusions

In this paper, we have proposed a novel approach for fast exhaustive exceptional
model mining: We have introduced the concept of valuation bases as an inter-
mediate condensed data representation and presented the general GP-growth
algorithm for efficient exhaustive exceptional model mining. We discussed the
applicability of the proposed approach by drawing an analogy to data stream
mining, and provided implementation examples for several model classes. Our
runtime experiments show improvements of more than an order of magnitude in
comparison to a naive exhaustive depth-first search.

For future work, we aim to analyze methods for considering the diversity of
pattern discovery results, e.g., [12] in order to improve the result sets. Another
interesting direction for future research is the adaptation of other more advanced
data structures, such as bit vectors, for exceptional model mining.
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