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ABSTRACT
This paper introduces Redescription Model Mining, a novel ap-
proach to identify interpretable patterns across two datasets that
share only a subset of attributes and have no common instances.
In particular, Redescription Model Mining aims to find pairs of
describable data subsets – one for each dataset – that induce similar
exceptional models with respect to a prespecified model class. To
achieve this, we combine two previously separate research areas:
Exceptional Model Mining and Redescription Mining. For this new
problem setting, we develop interestingness measures to select
promising patterns, propose efficient algorithms, and demonstrate
their potential on synthetic and real-world data. Uncovered pat-
terns can hint at common underlying phenomena that manifest
themselves across datasets, enabling the discovery of possible asso-
ciations between (combinations of) attributes that do not appear in
the same dataset.
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1 INTRODUCTION
In many domains, extensive related datasets exist that are not
directly compatible with each other, either because they were
collected independently of each other or because data collection
evolved over time. Thus, while they share some common key prop-
erties of the domain, they differ with respect to other attributes.
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Figure 1: Redescription Model Mining illustration. We show
two toy datasets with different attributes and instances, but
shared model attributes, i.e., age and blood pressure (bp). In
the entire datasets as well as inmany subgroups, the correla-
tion between these twomodel attributes is low (indicated by
respective linear regression lines in grey). However, we can
find subgroups with different descriptions in each dataset
that exhibit an exceptionally strong correlation between age
and blood pressure (shown in blue/red) hinting at a common
underlying process. RedescriptionModelMining aims to au-
tomatically find such complementary pairs of descriptions
in large sets of candidates that uncover hidden phenomena
captured across distinct datasets.

With current state-of-the-art techniques, it is difficult to associate
attributes across datasets if they do not share instances. Yet, unveil-
ing associations across datasets carries the potential to combine
information from larger amounts of data as well as complementary
data sources.
Objectives. To address this issue, the goal of this work is to enable
the automatic discovery of pairs of describable subsets across dif-
ferent datasets with similar but exceptional model characteristics.
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Approach. To this end, we present a novel approach we call Re-
description Model Mining (RDMM) that combines two previously
distinct pattern mining areas: Exceptional Model Mining [9, 16]
and Redescription Mining [12]. Exceptional Model Mining aims
to find interpretable descriptions of subsets that induce extraor-
dinary parameters for a given class of models, e.g., a particularly
extreme slope in a regression model. On the other hand, Redescrip-
tion Mining identifies pairs of distinct interpretable descriptions
that describe very similar subsets of instances in a dataset, but relies
on the existence of a common set of data instances. To find poten-
tial associations across datasets, we join these two approaches: In
Redescription Model Mining we aim to find pairs of distinct descrip-
tions across a pair of datasets that induce similar exceptional models
with regard to model attributes shared by both datasets. Finding
those patterns, i.e., pairs of descriptions, can reveal an underly-
ing phenomenon that manifests itself differently in different data
sources.
Illustration.As an example, we may find in one dataset that people
who work more than 50 hours per week and have no spouse have
significantly higher blood pressure as they get older. That is, for
this subgroup of people the regression line fitted to the patients
blood pressure vs. age has an unusually steep slope. In another
dataset, we may find that people who received financial aid for
more than 15 years show similarly abnormal slope. This may point
towards a common, previously hidden, underlying phenomenon,
e.g., that both groups have a high percentage of smokers, which
in turn leads to the observed increase of blood pressure over time.
This hypothesis could then be validated in a subsequent study.

We visualize the concept of identifying corresponding excep-
tional models in different datasets in Figure 1, which shows two
datasets that share the two model attributes ‘age’ and ‘bp’ (blood
pressure) but do not contain the same instances and other attributes.
In this dataset, we can fit regression models for many different sub-
groups (i.e., describable subsets such as𝑚𝑎𝑙𝑒 ∧ 𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠), indicated
by grey regression lines. While most of these models do not have
any notable counterparts in the respectively other dataset, we ob-
serve two matching significant outliers, marked in blue/red color.
With Redescription Model Mining, we aim to uncover such excep-
tional correspondences of subgroups on a model level. By doing so,
we can redescribe a phenomenon (model) discovered in one dataset
with another description using attributes from the other dataset.
We argue that such hypotheses are often promising candidates
for subsequent analysis as they can point to associations between
attributes that cannot be found in either dataset alone.
Contributions. In this paper, we propose a novel problem setting
that we call Redescription Model Mining. We provide a formal prob-
lem definition, propose selection criteria that capture interesting
patterns, discuss algorithmic solutions for mining such patterns,
and demonstrate its applicability on synthetic as well as real-world
data. To the authors’ knowledge this constitutes the first pattern
mining approach that is able to unveil potential associations be-
tween features that are contained in different datasets that do not
share any instances. Thus, Redescription Model Mining paves a way
to unveil previously undetectable phenomena and their potential
causes by leveraging previously incompatible, complementary data
sources.

2 BACKGROUND
Our approach builds upon two established pattern mining tech-
niques: Exceptional Model Mining and Redescription Mining. This
section summarizes both methods, introduces formal notations, and
recapitulates further related work.

2.1 Exceptional Model Mining
Exceptional Model Mining (EMM) [9, 16] represents a generaliza-
tion of Subgroup Discovery [15]. Overall, the goal of Exceptional
Model Mining is to find descriptions that identify subsets of the
data exhibiting an interesting parameter distribution with respect
to a predefined target model class. For formal notation, we define a
dataset Ω as a set of tuples (instances) 𝑥 which in turn represent val-
ues for a set of attributes A. EMM distinguishes between two types
of attributes: describing attributes A𝐷 ⊂ A and model attributes
A𝑀 ⊂ A. Descriptive attributes are used to form descriptions
of data subsets, model attributes are used in models of a specific
class to fit model parameters. A feature (selector) 𝑓𝐴 of an attribute
𝐴 ∈ A is a binary function 𝑓𝐴 : values(𝐴) → {0, 1}. Each feature
has an associated set of instances for a dataset Ω called the support
set (also cover) suppΩ (𝑓 ) := {𝑥 ∈ Ω |𝑓 (𝑥) = 1}. In pattern mining,
it is common to combine features with logical expressions like ‘and’
or ‘or’ to form a pattern or subgroup description 𝐷 . While our ap-
proach works in principle with any pattern description language,
we focus in our experiments on a commonly applied one: We build
features as attribute/value pairs for nominal attributes and intervals
for numeric attributes, and form descriptions as conjunctions of
features. Hence, an example description of a subgroup could be:
Age > 50 ∧ country = ’US’. Due to the combinatorial explosion
for conjunctions, an exponentially large number of subgroups can
be formed even from comparatively few features.

From this large set of candidates, Exceptional Model Mining aims
to identify “interesting” subgroups. Traditionally, interestingness
implies that the model parameters induced by the model fitted to
the subgroup are significantly different from the model parameters
derived from all dataset instances. See [8] for a discussion on the
advantages and disadvantages of comparing subgroups against the
entire data vs the complement. Formally, such interesting parameter
contrasts are captured by an exceptionality measure ex (sometimes
called quality function or interestingness measure).

For example, consider a study on a student dataset that investi-
gates the correlation (model class) of the two model attributes ‘exam
preparation time’ and ‘final score’. Other attributes such as age and
gender constitute the descriptive attributes. Fitting the correlation
model to a subgroup 𝐷 gives a value for the correlation, which rep-
resents the model parameter 𝜌𝐷 of that subgroup. We then design
our exceptionality measure to designate subgroups as “interesting”
if the difference of the subgroup’s parameter (𝜌𝐷 ) and the dataset’s
parameter (𝜌Ω) is large. A finding of Exceptional Model Mining
for this setup can be: “While overall there is a positive correlation
between the training time and the performance score (𝜌Ω = 0.35),
the subgroup of males that are older than 50 years exhibits a negative
correlation (𝜌𝐷 = −0.1)”.

For Exceptional Model Mining, a wide range of different model
classes have been studied in literature including correlation mod-
els [5], Bayesian Networks [9], Markov Chain models [19], agree-
ment models [3] and regression models [6].



2.2 Redescription Mining
Redescription Mining is another pattern mining technique that aims
to uncover pairs of descriptions, which are interesting in the sense
that they cover almost the same instance sets. The attributes that are
used in each of the descriptions are selected such that they originate
from different views, i.e., different subsets of attributes. Formally,
we assume one dataset Ω and divide the attributes A into two sets of
describing attributes A𝐷,𝐿/𝑅 with A𝐷,𝐿 ∪ A𝐷,𝑅 = A and usually
also A𝐷,𝐿 ∩ A𝐷,𝑅 = ∅. Thus, for Redescription Mining, these
views give information on different aspects of the same instances.
By contrast, for Redescription Model Mining we will use the same
subscripts 𝐿, 𝑅 to refer to distinct datasets.

As an example, consider a dataset where the instances are regions
on earth, while one view contains climate related attributes and the
other view contains attributes indicating the presence/absence of
animals [11]. The goal is to find regional links between climate and
animal populations, represented by corresponding pairs of descrip-
tions (𝐷𝐿, 𝐷𝑅) such that the Jaccard index |supp(𝐷𝐿)∩supp(𝐷𝑅 ) |

|supp(𝐷𝐿)∪supp(𝐷𝑅 ) | is
high. For a high Jaccard coefficient, discovered correspondences
can be seen as approximate equivalence relationships[20] in this
dataset. While Redescription Mining is a powerful approach to find
such patterns and relationships, the underlying requirements for
the dataset(s) are strong and can be hard to achieve in practice.

2.3 Further Related Work
Connecting multiple data tables with each other has been proposed
in the context of pattern mining as multi-relational data mining [10].
However, such approaches join those data tables on instance iden-
tities, while we do not assume common instances in our approach.

Other approaches that combine multiple datasets can be found in
the field of transfer learning [24]. Transfer learning aims at exploit-
ing the knowledge that learners have accumulated in one dataset
for a specific, often predictive task to apply in another dataset.
In contrast to our work, they do not aim at extracting explicit,
interpretable knowledge across datasets. In a similar direction, pre-
training of embeddings has gained high popularity for text [4] and
image data[23]. These methods do establish patterns from a large
corpus to apply to another dataset, but do not focus on obtaining
interpretable relationships between these datasets.

3 REDESCRIPTION MODEL MINING
This section presents Redescription Model Mining, a novel approach
for mining patterns across two datasets. We outline the main idea,
introduce a formal problem definition, discuss a framework for
suitable interestingness measures and present mining algorithms.

3.1 Approach
We aim to uncover patterns across two different datasets that do not
share any instances and only have the model attributes in common.
In particular, we unveil potential relationships between pairs of
descriptions 𝐷𝐿 and 𝐷𝑅 —one for each dataset— that induce similar
"characteristic” (exceptional) models with respect to the model
attributes and chosen model class. That is, if we fit a model (from
a prechosen model class) with the subgroup instances covered by

𝐷𝐿 in the left dataset, and fit a model (of the same class) with the
instances covered by 𝐷𝑅 in the right dataset, an interesting pair
of models should be unusually similar. Thus, as discussed in more
detail below, we assume potentially interesting pairs of patterns to
(i) cover a substantial number of instances, (ii) induce exceptional
models in the individual datasets, (iii) and induce similar models in
the two datasets. We will quantify those properties in an aggregated
way by an interestingness measure that assigns a score to each
candidate pair of descriptions. To identify the most interesting (i.e.,
highest scoring) patterns, we will search in the space of all pairs of
descriptions with one description referring to one dataset, and the
second description referring to the other dataset.

The patterns, i.e., pairs of descriptions, identified by Redescrip-
tion Model Mining establish a correspondence not on the instance
level but on the subgroup level. Thus, while such patterns cannot
guarantee a dependency between the found patterns, they can pro-
vide promising starting points for further investigations on the pat-
tern. From an Exceptional Model Mining perspective, we can view
Redescription Model Mining as a parallel search for exceptional
models in two datasets with an extended interesting measure that
additionally assesses the similarity between the models induced in
both datasets. From a Redescription Mining perspective, Redescrip-
tion Model Mining replaces the association criterion from “these
subgroups cover almost the same instances” with “these subgroups
show an almost identical unusual phenomenon in the model”.

3.2 Formal Problem Definition
We define the top-𝑘 Redescription Model Mining task as: Given two
datasets Ω𝐿,Ω𝑅 , corresponding description languages P𝐿,P𝑅 , an
interestingness measure 𝜙 : P𝐿 ×P𝑅 → R, and a positive integer 𝑘 ,
the goal of top-𝑘 Redescription Model Mining is to find the ordered
result list 𝑆 = ((𝐷𝐿

1 , 𝐷
𝑅
1 ), ..., (𝐷

𝐿
𝑘
, 𝐷𝑅

𝑘
)) (with |𝑆 | = 𝑘) of description

pairs in P𝐿 × P𝑅 such that
(i) ∀𝑖, 𝑗 with 𝑖 < 𝑗 ≤ 𝑘 : 𝜙 (𝐷𝐿

𝑖
, 𝐷𝑅

𝑖
) ≥ 𝜙 (𝐷𝐿

𝑗
, 𝐷𝑅

𝑗
) (i.e., the de-

scription pairs are ordered by interestingness scores) and
(ii) ∀𝑃 ∈ (P𝐿 × P𝑅) \ 𝑆 : 𝜙 (𝑃) ≤ 𝜙 (𝐷𝐿

𝑘
, 𝐷𝑅

𝑘
) (i.e., pairs in the list

have a higher score than any pair not part of the top-k).
For our approach, we assume that the datasets Ω𝐿 and Ω𝑅 have

a shared set of model attributes A𝑀 but different sets of describing
attributes A𝐷,𝐿 and A𝐷,𝑅 , which can, but do not have to, overlap.
Both datasets are additionally presumed to have no (or insignifi-
cantly few) instances in common, i.e. Ω𝐿∩Ω𝑅 = ∅. As in traditional
Exceptional Model Mining, we can in principle employ any pattern
description languages P𝐿/𝑅 but will focus on conjunctions of at-
tribute/value pairs and intervals for our experiments. The choice
of an interestingness measure involves choosing a specific model
class and is discussed in detail below.

Additionally, we can require all description pairs in the result
list to satisfy specific constraints. Typical constraints include that
the same attribute cannot be used in both descriptions of a pair, or
that the description complexity (number of conjunctive clauses in
a description) is limited.

3.3 Interestingness Measures
The interestingness measure for a Redescription Model Mining
task defines which patterns are reported to the data analyst. For



traditional pattern and rule mining tasks, a large variety of measures
have been proposed, see [14] for an overview.
Structure of interestingness measures. For Exceptional Model
Mining, interestingness measures often involve two main com-
ponents that are weighed against each other: The subgroup size
(number of instances covered by the subgroup) and a measure of
exceptionality that quantifies how unusual the target model param-
eters induced by the subgroup are compared to what is derived
from the general population (or, alternatively, the subgroup com-
plement). For Redescription Model Mining, we extend this notion
and distinguish between three components that should be involved
in the scoring of a candidate pattern: First, the associated models
derived from the instances covered by the two patterns in the two
datasets should be similar as the main intuition of Redescription
Model Mining is to find similar underlying phenomena. Second, the
induced models should be exceptional with respect to the general
population model in the respective dataset. This facilitates that cor-
respondences across datasets are less likely due to chance and thus
reduces the multiple comparison problem. Finally, the patterns for
both datasets should be large, that is, should cover many instances.
This makes the respective patterns more relevant and lowers the
chance of random similarities and exceptionalities in the model
parameters.

To facilitate the use of these components, we propose the follow-
ing general structure of interestingness measures for Redescription
Model Mining:

𝜙 (𝐷𝐿, 𝐷𝑅) = 𝜙𝛼𝑠size (𝐷𝐿, 𝐷𝑅) · 𝜙𝛼𝑒ex (𝐷𝐿, 𝐷𝑅) · 𝜙sim (𝐷𝐿, 𝐷𝑅),

where 𝜙size is a measure of the subgroups’ sizes, 𝜙ex is a measure
that quantifies the exceptionality of the two models derived from
the subgroups compared to the models derived from respective
overall datasets, and 𝜙sim is a measure of similarity between these
two models. The exponents 𝛼𝑠 and 𝛼𝑒 are parameters chosen by
the analyst that allow for emphasizing or de-emphasizing the size
or the exceptionality term. While alternative interestingness mea-
sure definitions are also viable, this structure provides a flexible
framework that decomposes the overall challenge of finding suit-
able interestingness measures into more tractable subproblems
while also enabling interactive and iterative exploration of different
interestingness measures via the choice of different 𝛼 values.
Size functions. The size function 𝜙size can be implemented in
various straightforward ways: First, for each of the descriptions
in the pattern, we can, for example, calculate an individual size
function based on the (absolute or relative) number of instances
covered by a subgroup, or the entropy of the split into subgroup
and complement in the respective dataset. Then, to obtain a size
function for the full pattern (including both descriptions), we apply
an aggregation function 𝑎𝑔𝑔 on the two individual sizes for the
left and right dataset. To ensure reasonable subgroup sizes in both
datasets, we propose to use the minimum of the individual size
functions instead of a mean-based aggregation.
Model exceptionality. For constructing measures of model ex-
ceptionality, different options have been discussed and applied in
Exceptional Model Mining literature. It has been proposed to use
direct difference measures for the model parameters or structure [8],
to apply bootstrap sampling over those differences [8, 19], to use
information theoretic measures [8], or to utilize likelihood-based

approaches [21]. However, the respective functions are designed
to quantify the exceptionality of a subgroup’s induced model in
a single dataset. Thus, as for the size component, we obtain an
overall score for the exceptionality of the model in both datasets
by aggregating the two scores for each dataset. Again, we suggest
using the minimum of the two exceptionality scores to require both
models to be unusual. However, alternatives such as the mean value
or the geometric mean are viable alternatives.
Similarity measures. Similarity measures 𝜙sim between two mod-
els that are derived by fitting the subgroup models in two different
datasets have to our knowledge not yet been discussed in literature.
In principle, similarity measures can be constructed based on any
measure of exceptionality ex(𝐷,Ω) that quantifies how exceptional
a model fitted to subgroup 𝐷 is with respect to a model fitted to the
entire dataset Ω. Such exceptionality measures are readily available
for many exceptional model classes from literature. Given such
a measure, two models can be considered as similar if one is not
exceptional with respect to the other. However, such measures are
often not symmetric in their arguments. Since the position of the
two models derived from the two subgroups should be considered
as exchangeable in our setting, we have to adapt non-symmetric
measures to use them as a similarity function 𝜙sim. In general, we
distinguish between direct comparison approaches, i.e., measures
that compare the models obtained for subgroups from either side
directly and common model approaches, in which we compute a
joint model on the union of both subgroups to compare against.

For direct comparison approaches, given a symmetric measure
of exceptionality that directly compares two models we suggest to
construct a similarity measure simd by computing

simd (𝐿, 𝑅) = (𝑒𝑥 (𝐿, 𝑅) + 𝜖)−1

We hereby used 𝐿/𝑅 to indicate subgroups coming from differ-
ent datasets. The addition of 𝜖 avoids a division by zero. When
using an asymmetric measure of exceptionality for direct compari-
son approaches, we propose to aggregate the exceptionality with
interchanged arguments prior to inverting:

𝑠𝑖𝑚ex (𝐿, 𝑅) = (agg (ex(𝐿, 𝑅), ex(𝑅, 𝐿)) + 𝜖)−1 ,
where 𝑎𝑔𝑔 is an aggregation function such as the minimum or
(geometric) mean. Often, exceptionality measures 𝑒𝑥 are parameter-
based, i.e., they compute a distance function such as Manhattan-
distance or Euclidean-distance on the parameter values of the two
models. As another direct comparison measure, we propose the
Crossed Likelihood similarity, which we designed based on model-
based Subgroup Discovery [21]. It aggregates the average likelihood
of points from either side being generated by the model from the
other side:

𝑠𝑖𝑚𝑙𝑖𝑘𝑒𝑙𝑦 (𝐿, 𝑅) = agg
(
1

|𝐿 |
∑︁
𝑙 ∈𝐿

𝑝 (𝑙 |Θ𝑅),
1

|𝑅 |
∑︁
𝑟 ∈𝑅

𝑝 (𝑟 |Θ𝐿)
)

where 𝑝 (𝑥 |Θ𝑌 ) is the likelihood of instance 𝑥 given model parame-
ters Θ𝑌 .

In contrast to direct comparison approaches, common model ap-
proaches measure the distance from a model which is fitted to the
union of both subgroups. We thereby enable the use of exceptional-
ity measures which assume subset relationships in their arguments,
i.e., they compare a subset of the data with the entire data. To adapt



such functions to similarity measures, we first compute the model
parameters that are induced by the joint set of instances contained
in the subgroups for the left and right datasets respectively, and then
compute the corresponding exceptionality score before inversion.

𝑠𝑖𝑚ex = (agg (𝑒𝑥 (𝐿, 𝐿 ∪ 𝑅), 𝑒𝑥 (𝑅, 𝐿 ∪ 𝑅)) + 𝜖)−1

Note that even though data instances from the left and the right
datasets do not share all attributes, they do share the model at-
tributes, allowing to compute the respective model for the union.
We suggest a common model similarity measure specifically for
regression-like model classes, which is based on the popular Cooks
distance, cf. [6]. Cook’s distance (roughly speaking) measures the
influence of a set of points in linear regression. Our similarity mea-
sure compares the models from either side against a model fitted to
the union of points from both sides.

𝑠𝑖𝑚Cooks (𝐿, 𝑅) =
(
agg

(
𝑒𝑥𝐶Ω𝐿

(𝐿, 𝐿 ∪ 𝑅), 𝑒𝑥𝐶Ω𝑅
(𝑅, 𝐿 ∪ 𝑅)

)
+ 𝜖

)−1
To measure all deviations with the same constant scale, we use in
our experiments a fixed covariance matrix obtained from the entire
data-set (indicated through the Ω𝑋 subscript).

3.4 Algorithms
For detecting interesting patterns with Redescription Model Min-
ing, we need to search in the product space of two description
languages rather than in a single description language. For each
pair of descriptions, we would then need to fit the respective two
models, and compute the subgroups sizes, model exceptionalities,
and model similarity to calculate the interestingness score.

The naive exhaustive way of approaching such a scenario is
to enumerate all candidate patterns (pairs of descriptions) from
both dataset. As the pairs of candidates come from the product of
two potentially large description languages, this approach quickly
becomes infeasible.

To address this, we present a mine-and-pair mining approach
inspired by a corresponding algorithm from Redescription Min-
ing [13]. The key idea of the mine-and-pair approach is that we first
identify promising candidate subgroups for each dataset separately
by using a heuristic to reduce the number of potential candidates
prior to matching candidates from both sides. Thus, for Redescrip-
tion Model Mining, we first perform traditional top-𝑘 Exceptional
Model Mining on both datasets (“mine-step”). For each result de-
scription, we cache relevant properties such as induced model pa-
rameters and subgroup representations to accelerate the subsequent
pair-step. In the pair-step, we then calculate the interestingness
scores for all combinations of all subgroup candidates (i.e., the full
cross product) in both datasets. Note that the exhaustive approach
can be considered as a special case of the mine-and-pair approach
that is obtained by setting top-𝑘 in the mine-step to a maximum
value. By choosing lower values for the initial mine-step, the overall
runtime can be reduced at the cost of potentially missing result
patterns with high quality. For common model approaches, we can
achieve additional substantial speed-ups for many model classes
by precomputing valuation bases, cf. [17]. These store sufficient
statistics of the two disjoint sets and allow to compute the model
parameters of the joint set in constant time.

As in other pattern mining tasks, a challenge that we encounter
in Redescription Model Mining is redundancy in the result, i.e., sev-
eral top subgroups are similar to each other in their descriptions or
models. To approach this issue, we can transfer different techniques
for avoiding redundancy from the Exceptional Model Mining lit-
erature. For example, we could employ a specialized beam-search
strategy in the mine-step to obtain a diverse set of patterns [22]
or adapt generalization-aware interestingness measures [18] for
quantifying exceptionalities. For our experiments with real-world
data, we relied on a basic technique that reduces redundancy, i.e.,
we employed a simple filter that keeps only the highest quality
occurrence of the same subgroup description per dataset.

4 EVALUATION
We evaluate1 our approach on artificial as well as real-world data.
While our approach can easily be applied to other model classes
from the EMM literature, here, we focus on the correlation and
regression model classes. Experiments on artificially generated
datasets allow for a quantitative evaluation because we have knowl-
edge on the implanted patterns. Thereafter, we demonstrate our
method on two real-world datasets to illustrate the applicability of
Redescription Model Mining for two specific cases: First, we inves-
tigate house pricing patterns to illustrate a case where datasets on
the same topic are collected independently of each other. Second,
we use two iterations of the European social survey to illustrate
a case where data collection evolved over time and where we are
able to associate questions that never appeared in the same survey.

4.1 Experiments with Synthetic Data
Experiments with synthetic data allow us to evaluate quantitatively
to which degree Redescription Model Mining is able to recover
inserted patterns in the presence of noise. This is particularly im-
portant as there are no datasets with ground truth correspondences
available. We outline the generation of synthetic datasets before
we describe the results of the conducted experiments.

4.1.1 Generating artificial datasets. For conciseness, we only give
a simplified outline of the data generation here and refer to the
commented generating code in the codebase for details. Overall,
we generate two datasets with eleven sets of instances each. These
sets are associated with individual model parameters for the re-
spective model class (e.g., correlation or regression). The eleven
sets of parameters are the same for both datasets and correspond
to one background model Θregular as well as ten sets of parameters
Θ𝑖

exceptional of exceptional models. For generating data for these
models, additional "realization parameters" may be required, e.g.,
scale and variance, which are chosen appropriately. Based on this,
data is independently generated for each set of instances and each
dataset. For the background model, ten times more instances are
generated than for the exceptional ones. Then, we generate 20
binary describing attributes for each dataset such that each excep-
tional set of instances can be identified by exactly one conjunction
of these attributes. We further add ten more binary describing at-
tributes corresponding to random noise with different probabilities.
By employing Redescription Model Mining, we aim to recover the

1Code is available at https://github.com/Feelx234/pyRDMM

https://github.com/Feelx234/pyRDMM


description pairs that correspond to the same exceptional model
parameters.

4.1.2 Regression model. This section describes the experiments
that were conducted on synthetic data using regression models.
Setup. For regression models, we use slope and intercept as model
parameter sets Θ and generate data as described above. We tested
three different exceptionality measures and corresponding similar-
ity measures: Crossed likelihood distance, common model Cook’s
distance, and direct parameter difference, i.e., the sum of absolute
differences in the fitted model parameters. To achieve robust results,
we repeated the data generation and mining process ten times.
Results. Regarding the runtimes of the exhaustive and mine-and-
pair mining algorithms, we observe that mine-and-pair is by mul-
tiple orders of magnitude faster with a total runtime of less than
15 minutes on a standard desktop machine compared to about 20
hours for the exhaustive approach. To evaluate the performance
of our approach, we measure the recall@10 of the returned pat-
terns, i.e., how many of the implanted patterns are returned in the
top 10 results. In Fig. 2, we compare combinations of algorithms,
interestingness measures, and scaling parameters 𝛼𝑠 (size) and 𝛼𝑒
(exceptionality). The left column shows results for the exhaustive
approach while the right column for the mine-and-pair approach.
Per row, we display the results for one exceptionality measure.
Within each plot, there are three sections corresponding to increas-
ing values of the exceptionality scaling 𝛼𝑒 . Within each section, we
show results for different values of the size scaling exponent 𝛼𝑠 .
For better readability, we have slightly offset observations made
for the same 𝛼𝑠 value.

When comparing similarity measures for the same algorithm
and exceptionality, the similarity measure based on likelihood
(sim=Like) in almost all cases outperforms the alternatives. This
may be explained by the fact that the likelihood-based similarity
takes into account the models’ goodness of fit. Using the exhaustive
approach, we can see that results for 𝛼𝑒 = 0 (i.e., disabling the
exceptionality measure completely as shown in the left section of
each plot) yields generally bad results for the other two similarity
measures. When increasing 𝛼𝑒 (with other parameters constant),
we can observe that the recall increases on average. As argued in
Section 3.3, this observation is expected as the exceptionality is
needed to avoid random findings. This effect is less pronounced for
the mine-and-pair approach even though still present. This is due
mine-and-pair’s restriction to subgroups with high exceptionality
in the mine-step thus ruling out model pairs that are extremely
similar but not exceptional in the pair-step. In contrast, such model
pairs are considered in the exhaustive approach.

The effect that an increase in 𝛼𝑠 with otherwise fixed parameters
leads to a decrease in recall for the exhaustive approach but not for
mine-and-pair is less well understood. This may be explained by
the effect that patterns that are extremely similar across datasets
but not exceptional also tend to be large. Such patterns are already
ruled out in the mine-and-pair approach thus mitigating this effect.

4.1.3 Correlation. This section outlines the experiments conducted
for the correlation model class.
Setup. For our synthetic experiments with the correlation model
class, we generate 5 by 5 covariance matrices as model parametersΘ.
We further sample model attribute values from a multidimensional

sim=Like sim=Cooks sim=par
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Figure 2: Synthetic experiments for the linear regression
model class. The y-axis denotes recall@10, i.e., how many
of the implanted patterns are recovered. The left column
shows results using the exhaustive search algorithm while
the right column shows results for the mine-and-pair ap-
proach. In different rows we varied the exceptionality mea-
sure. Each plot is separated into three horizontal sections
which correspond to different values of the exceptionality
scaling parameter 𝛼𝑒 . Within those sections, we vary the
size scaling 𝛼𝑠 . Displayed are mean and standard deviation
obtained from runs on ten synthetic dataset pairs. Overall,
themine-and-pair approach outperforms the exhaustive ap-
proach for similar parameter settings. Also increasing the
exceptionality scaling increases recall.

Gaussian distribution with that covariance matrix. Otherwise, we
use the procedure outlined in Section 4.1.1. For further details, we
refer to the supplementary material. As for regression, we repeated
the data generation and mining process ten times.
Results. For the correlation model class, we limited the exper-
iments to a single combination of exceptionality and similarity
measure. For similarity and exceptionality, we choose a direct com-
parison 1-norm, i.e., we take the 1-norm of the difference in cor-
relation matrices. Similar to the linear regression experiments, in-
creased values of 𝛼𝑒 lead to better results for both the exhaustive
and mine-and-pair approach with the exhaustive approach having
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Figure 3: Synthetic experiments for the correlation model
class. The y-axis denotes recall@10, i.e., howmany of the im-
planted patterns are revered. We use the 1-norm of the ma-
trix difference for both similarity and exceptionality. The
results are averaged over ten dataset pairs. Visualized are
themean and standard deviation. Increasing focus on excep-
tionality (𝛼𝑒 ) improves the recall for both the exhaustive and
mine-and-pair approach. Also the mine-and-pair approach
outperforms the exhaustive approach for the same parame-
ters. This shows that correlation patterns can be successfully
extracted from pairs of datasets when choosing the right pa-
rameters, thus, illustrating the flexibility of our approach
across model classes.

worse results overall. Analogously, a decrease in 𝛼𝑠 leads to better
performance for the exhaustive approach, while this is not true for
mine-and-pair. Similar explanations as in the exhaustive case hold.

4.1.4 Summary. The evaluation on synthetic datasets shows that,
given the right parameters, both algorithmic approaches can reli-
ably recover the implanted patterns. The experiments also reveal
that using the exceptionality term is essential to achieve good per-
formance for both approaches. Overall, the mine-and-pair approach
mostly outperforms the exhaustive approach due to its implicit
minimal exceptionality threshold, i.e., we consider only the top 𝑘
most exceptional subgroups during the mine step. At first glance,
it is counterintuitive that the heuristic mine-and-pair outperforms
the exhaustive approach. However, the exhaustive approach only
returns improved results with respect to scores of the employed
interestingness measures, not the recall of actual non-random pat-
terns. If the measures themselves are misconfigured, higher scoring
patterns in the results do not lead to higher recalls with respect to
the generated patterns. As highlighted by our experiments, finding
a “correct” configuration can be challenging in practice. We observe
that in many settings, the mine-and-pair approach will give bet-
ter results in terms of recall when the interestingness measure is
misaligned since the initial mine step serves as a filter.

4.2 Experiments with Real-world Data
In this section, we demonstrate Redescription Model Mining ap-
plied to two real-world datasets. The goal is to demonstrate that
the proposed techniques can be applied to real-world data rather
than to gain actionable insight into the respective domains. The
investigated dataset combinations are from different themes and
with different models. Firstly, we mine corresponding exceptional
regression models in datasets on house prices crawled from the web.
Thereafter, we find corresponding exceptional correlation models

in the European social survey. Parameters of the interestingness
measures have been determined through an interactive refinement
process.

4.2.1 Housing. Studying house prices is a common example appli-
cation in Exceptional Model Mining [7, 8]. We used two datasets
that have rich sets of descriptive attributes and a large number of
instances. One dataset is on houses in the city of Melbourne, Aus-
tralia, sold from Domain.com.au2. The second dataset is on housing
data for the city of Beijing, China, sold via bj.lianjia.com3. We apply
minimal preprocessing and removal of outliers. For more details,
please refer to the supplementary material.

The top 6 discovered patterns for common model cooks similarity
and likelihood gain as exceptionality measure are visualized in
Fig. 4. Information on the Beijing/Melbourne dataset is coloured
in blue/red respectively. Models fitted to the entire datasets/ to
subgroups are visualized through dashed/solid lines. For all patterns,
the solid lines overlay each other almost perfectly, thus they are not
easy to distinguish. The subsets that correspond to those models
are visualized as blue and red dots respectively.

The patterns exhibit a large variety in the found descriptions and
models. We identified some patterns with similar slope as the over-
all dataset but lower intercept (4a, 4d) as well as higher intercept
(4c). Comparing these two patterns, both descriptions based on data
from Melbourne contain the yearBuild attribute with the earliest
yearBuild interval corresponding to higher-price houses and the lat-
est yearBuild interval for the on-average lower-price houses. Both
Beijing-based descriptions contain the bedroom attribute with bed-
rooms=2 corresponding to on-average more expensive houses and
bedrooms=1 for lower priced houses. We also observe patterns with
significantly lower slopes, e.g., Fig. 4b. Looking at the descriptions,
we see that these houses are structure=2 (mixed) and renovation=1
(1 meaning ’other’, probably the worst) on the Beijing side and
Area=’Brimbank’ on the Melbourne side. It seems that Brimbank is
one of the less wealthy areas within the Melbourne Metropolitan
region. Thus, this correspondence also seems plausible.

4.2.2 European social survey. The European Social Survey (ESS) is
conducted across Europe every two years. The survey contains a
set of questions that are shared across rounds while other questions
change every round. Redescription Model Mining allows for finding
potential associations between responses to questions changing
across years via modelling shared questions. We demonstrate this
by relating questions from Round 8 [1] to Round 9 [2].

We use a correlation model on the attributes that assess partici-
pants’ trust in specific (political) organs. The describing attributes
for Round 8 include questions about energy usage, climate change,
and refugees. For Round 9, describing attributes are taken from
questions about justice and fairness. Similar to the synthetic exper-
iments, we use the 1-norm of covariance matrices for both excep-
tionality and similarity. Results for the size scaling 𝛼𝑠 = 0.1 and
the exceptionality scaling of 𝛼𝑒 = 0.5 are visualized in Fig. 5.

To give a better impression of what patterns are uncovered, we
describe the meaning of the correspondence from Fig. 5b as fol-
lows: People, who say that a small amount of electricity should

2https://www.kaggle.com/dansbecker/melbourne-housing-snapshot
3https://www.kaggle.com/ruiqurm/lianjia

https://www.kaggle.com/dansbecker/melbourne-housing-snapshot
https://www.kaggle.com/ruiqurm/lianjia


(a) bedroom=1 ∧ district=6↔
type=‘t’ ∧ yearBuilt≥2000.0

(b) structure=2 ∧ renovation=1
↔ area=‘Brimbank’

(c) DOM:[15.0, 48.0[ ∧ bed-
room=2 ↔ method=‘S’ ∧
yearBuilt < 1930

(d) district=11 ∧ elevator=False
↔ area=‘Mariby’ ∧ yearBuilt≥
2000

(e) structure=2 ∧ kitchen = 1↔
bathroom=2 ∧
distance ≥ 13.80

(f) district=6 ∧ livingroom=2:
[3, 9[ ↔ car≥4 ∧ yearBuilt:
[1970, 2000[

Figure 4: Results of Redescription Model Mining on the
housing datasets (linear regression model class). Visualized
are the top findings according to a subjectively refined in-
terestingness measure. The exceptionality measure is likeli-
hood gain, the similarity measure is common model Cooks
similarity. Blue/ red color indicates data from Beijing/ Mel-
bourne. The dashed lines are fitted to the entire dataset
while the solid lines are fitted to the respective subgroups.
Instances in the subgroups are visualized as transparent cir-
cles. Redescription Model Mining identifies corresponding
descriptions across Beijing and Melbourne with regard to
the relation between the price and size of sold houses.

be generated from nuclear power and which never do things to
reduce energy usage, show a similar exceptional correlation in their
trust in political systems as people who think that it is extremely
unfair how much net [pay/pensions/social benefits] other people
of similar occupation receive in comparison and that they neither
agree or disagree with whether society should take care of the
poor regardless of what they give back. As our method merely un-
veils candidates for further inspection, we leave more fundamental
investigations and assessments of these patterns to field experts.

From a methodological perspective, the overall uncovered cor-
respondences yield patterns where the correlation matrices are
significantly different from the dataset correlation matrices. This

(a) Complete Dataset

(b) elgnuc=‘A small amount’ ∧ rd-
cenr = ‘Never’↔
occinfr =‘Low, extremely unfair’ ∧
sofrprv =‘Neit. agree nor disagree’

(c) rdcenr=’Hardly ever’∧ wrnt-
dis=‘Not at all worried’↔
evmar=‘Yes’ ∧ wltdffr=‘Small,
extremely unfair’

(d)mnrgtjb=‘Agree’ ∧wrdpfos=‘Not
at all worried’↔
gvintcz=‘Not at all’ ∧ ifredu=4

(e) ccgdbd=6 ∧ inctxff=‘Somewhat
in favour’ ↔ bthcld=‘Yes’ ∧
wltdffr=‘Small, extremely unfair’

(f) clmchng=‘Definitely not chang-
ing’ ∧ gvrfgap=‘Agree’↔
btminfr=‘Low, extremely unfair’ ∧
wltdffr=‘Small, extremely unfair’

(g) gvsrdcc=1 ∧ wrdpimp=‘Very
worried’↔
plnftr=3 ∧ wltdffr=‘Large, ex-
tremely unfair’

Figure 5: Results of Redescription Model Mining for the Eu-
ropean social survey (ESS) datasets (correlationmodel class).
We show heatmaps of correlation matrices for the entire
dataset and top 6 result patterns. We subtracted the aver-
age of dataset matrices from the pattern matrices. The left/
right matrices in each subplot show the subgroup correla-
tion from the 8th/ 9th iteration of the ESS. All matrices use
the same scale for colours. The descriptions are presented
in the figure captions. These uncovered patterns relate at-
tributes which never appeared in the same iteration of ESS
based onmodels fitted on attributes which do appear in both
iterations.
lends support to our choice of exceptionality and similarity mea-
sures, indicating the expressiveness and flexibility of our approach.



5 LIMITATIONS
Redescription Model Mining is a novel pattern mining task that
allows to identify correspondences across two disjoint datasets that
share no (or few) instances and only a part of their attributes. While
we think that this approach can help to generate knowledge by
connecting datasets within a domain in a completely novel way,
researchers and practitioners should be aware of its limitations.
First and foremost, we emphasize that the presented approach only
generates candidate correspondences which require further inspec-
tion whether they really unveil a common underlying phenomenon.
From the experiments on real-world datasets, it is evident that our
approach —as most pattern mining approaches— can substantially
benefit from domain experts to assess the quality of the findings
and select the most promising candidates for detailed investigation.

In that direction, we assume an interesting relationship with re-
spect to the complexity of the chosen model classes: if we find close
similarities for a very complex model class with many parameters,
a common underlying phenomenon seems intuitively to be more
likely compared to similarities in simple model classes.

From a practical perspective, Redescription Model Mining is
subject to well-known challenges from the pattern mining litera-
ture. This includes scalability of the mining approaches, reducing
redundancy in the result set, and facilitating interactive approaches
by providing a flexible and tunable framework. While this paper
presents initial approaches to tackle these problems, we see our
paper as a first step towards more in-depth studies in this novel
field of research.

6 CONCLUSIONS
This work introduced Redescription Model Mining, a novel pattern
mining approach to establish relationships across datasets, which
share a small set of key domain-relevant attributes but no instances.
By combining ideas and techniques from Exceptional Model Mining
and Redescription Mining, Redescription Model Mining finds corre-
sponding pairs of descriptions which induce similar and exceptional
models. We introduced a framework for interestingness measures,
which allows for weighting model similarity, exceptionality, and
size against each other to facilitate the discovery of interesting
correspondences across datasets and proposed different options for
adapting measures to capture those individual components. Fur-
thermore, we developed a mine-and-pair approach that allows for
efficiently mining such patterns. We demonstrated the potential of
our approach on several synthetic and real-world datasets. Overall,
redescription model mining unveils candidates for relationships
between attributes which are not observed together in the same
dataset or for the same instances. This allows for connecting infor-
mation from previously incompatible data sources. To the authors’
knowledge, this work presents the first pattern mining approach
able to utilize such weakly connected datasets.

Our work enables multiple directions for future research. The de-
velopment of efficient search algorithms, reducing redundancy and
providing further guidance for selecting the interestingness mea-
sures would facilitate practical applications. In that direction, full
case studies involving domain experts could further demonstrate
the usefulness of the presented approach, but could also reveal new
practical challenges.
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