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Abstract

Neural networks for Image Aesthetic Assessment are

usually initialized with weights of pretrained ImageNet

models and then trained using a labeled image aesthetics

dataset. We argue that the ImageNet classification task is

not well-suited for pretraining, since content based classi-

fication is designed to make the model invariant to features

that strongly influence the image’s aesthetics, e.g. style-

based features such as brightness or contrast.

We propose to use self-supervised aesthetic-aware pre-

text tasks that let the network learn aesthetically relevant

features, based on the observation that distorting aesthetic

images with image filters usually reduces their appeal. To

ensure that images are not accidentally improved when fil-

ters are applied, we introduce a large dataset comprised

of highly aesthetic images as the starting point for the dis-

tortions. The network is then trained to rank less distorted

images higher than their more distorted counterparts. To

exploit effects of multiple different objectives, we also em-

bed this task into a multi-task setting by adding either a self-

supervised classification or regression task. In our experi-

ments, we show that our pretraining improves performance

over the ImageNet initialization and reduces the number

of epochs until convergence by up to 47%. Additionally,

we can match the performance of an ImageNet-initialized

model while reducing the labeled training data by 20%. We

make our code, data, and pretrained models available.

1. Introduction

Assessing the aesthetics of an image automatically can

be used to choose the most aesthetic images [23], sort im-

age collections [9], or optimize image editing filter parame-

ters [5]. Modern Image Aesthetic Assessment (IAA) meth-

ods are based on Convolutional Neural Networks (CNNs)

that receive an image as input and output a score that is

higher for more aesthetic images. Such models are usually

initialized with weights trained on the ImageNet classifica-

tion task [4] to build on the already learned features by fine-
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Figure 1. A schematic overview of our novel pretext tasks. Images

are singly distorted using image filters in different intensities. The

neural network then learns to output higher scores for less distorted

images. In a multi-task setting, the network additionally classifies

the distortion or estimates the distortion’s intensity.

tuning the network on a labeled dataset such as AVA [29].

We argue that the ImageNet classification task is not well-

suited for IAA models, since it is not designed to teach the

network aesthetically relevant features. Due to the classifi-

cation objective, it even discourages features important for

aesthetic assessment. For example, a classification network

should be invariant to the image’s lighting conditions and

thus discourages features taking the image’s brightness into

account. We therefore propose to pretrain the model on pre-

text tasks that are specifically designed to let the network

learn relevant features to assess the aesthetics of an image.

In the related task of technical Image Quality Assess-

ment (IQA), the method RankIQA [26] pretrains a CNN to

rank images based on the intensity of an applied technical

distortion. Images of high technical quality are distorted by

applying artificial technical distortions such as noise addi-



tion, blurring, or JPEG compression. Since technical distor-

tions clearly degrade an image, the network can be trained

to assess images with higher distortion intensity to be of

lower quality in a self-supervised fashion. We propose to

adapt and extend this self-supervised pretraining for the

task of Image Aesthetic Assessment. Instead of just tech-

nical distortions, we apply image filters that usually change

an image’s technical quality (e.g. noise), style (e.g. con-

trast), or composition (e.g. cropping). However, applying

style or composition filters to ordinary images can lead to

undesired improvements in the image aesthetics, violating

the assumption of the self-supervised task. Thus, we intro-

duce a large dataset of highly aesthetic images, consisting

of the most popular images from the stock photo website

pexels.com. Showing that applying filters to those im-

ages results in less appealing images, we can adopt the same

ranking task for IAA.

According to related IQA literature [19, 27, 39, 8, 40],

embedding similar approaches into a multi-task training set-

ting can improve the prediction performance of the result-

ing image assessor by making use of additionally available

information. Therefore we propose to combine this ranking

task with a classification or regression task adapted for IAA:

While the ranking task itself focuses on predicting relative

changes in image aesthetics, the classification learns to pre-

dict the applied distortion and the regression task estimates

the intensity of the currently applied distortion. Figure 1

shows a high-level overview of our proposed pretext tasks.

In our experiments, we use the IAA method NIMA [36]

as a reference and replace its pretrained weights with the

weights from our other common self-supervised pretext

tasks before fine-tuning on the labeled AVA dataset [29].

We find that we can improve the performance over the base-

line methods while reducing the number of epochs until

convergence by up to 47% over the ImageNet-initialized

NIMA. In an analysis, we find that we match the fully su-

pervised model’s correlation and Mean Absolute Error met-

rics while requiring approximately 20% less training data.

Our main contributions are: 1. We propose and evalu-

ate self-supervised aesthetic-aware pretext tasks for Image

Aesthetics Assessment. 2. We introduce a new dataset con-

taining aesthetically pleasing images from a popular stock

photo website. 3. We make code, data, and models avail-

able to encourage the trend of aesthetic-aware pretraining

methods1.

The paper is structured as follows: Section 2 gives an

overview on related work. Section 3 explains the method we

propose to learn aesthetic-aware features. In Section 4, we

introduce our dataset and explain the experimental setup.

Results are given in Section 5. Section 6 and Section 7 dis-

cuss the results and conclude the work, respectively.

1https : / / github . com / janpf / self - supervised -

multi-task-aesthetic-pretraining

2. Related Work

General Image Aesthetic Assessment (IAA) aims to au-

tomatically assess the aesthetics of images. Most recent

top-performing approaches [35, 36, 28, 14] predicting im-

age aesthetics on the AVA dataset [29] train exclusively

on human-sourced aesthetic scores like the Mean Opinion

Score (MOS). Notably Talebi et al. [36] introduce NIMA, a

CNN that is trained to minimize the Earth Mover’s Distance

loss (EMD) [15] on the human-sourced voting distribution

from the AVA dataset [29]. Due to its solid performance

despite its comparably simple architecture we select NIMA

for our extensive studies of our different pretext tasks. We

use the lightweight and efficient MobileNet [33] architec-

ture as proposed in [36] to enable us to test several different

setups and configurations in this paper.

No-Reference Image Quality Assessment A task related

to IAA is No Reference Image Quality Assessment (NR-

IQA), which assesses the technical quality of images. As

for IAA, many existing NR-IQA approaches make heavy

use of human-sourced quality scores [1, 18, 36, 8]. Under

the assumption that distorting images degrades their tech-

nical quality, RankIQA [26] distorts technical aspects of

high-quality images and learns to rank the resulting images

against each other using an efficient ranking loss, which we

adopt in this work. In addition, we embed this task into a

multi-task setting.

While in the literature most multi-task NR-IQA ap-

proaches apply a classification task [19, 27, 39, 8] pre-

dicting the type of distortion, we also include a regression

task [40] estimating the distortion intensity.

Self-Supervised Feature Learning Our approach aims

to learn useful representations without manual annotations.

Many self-supervised pretext tasks for CNNs [17, 7, 10, 21]

teach universally applicable image features using tasks like:

rotation classification [22], image part shuffling, or super-

resolution [17]. Sheng et al. [34] transfer distortion-based

self-supervised NR-IQA pretext tasks to the IAA task. They

are able to improve the prediction performance for the

downstream IAA task on AVA over the de-facto default

ImageNet [4] pretext task [35, 36, 28, 20] by pretraining

on mainly technical quality focused distortions in a self-

supervised multi-task pretext setup. We expand on this

approach by explicitly introducing style and composition

aware distortions and evaluating different pretext task com-

binations against each other.

3. Methodology

Our method is based on the observation that singly dis-

torting a high-quality image results in a lower-quality im-

age, which is exploited in the technical Image Quality As-



sessment method RankIQA [26]. We transfer their approach

to the Image Aesthetic Assessment setting by using im-

age filters that degrade not only technical quality, but dif-

ferent aspects of image aesthetics. To overcome the chal-

lenge that applying image filters such as contrast adjust-

ments might enhance images, we define requirements for

the dataset used in the pretext tasks. By training a neural

network to output higher scores for less distorted versions

of an image, the network has to learn what filter intensity is

more appropriate between two images. We propose to also

optionally add one of two other pretext tasks in a multitask

setting, making use of other objectives besides the relative

ranking: 1. Distortion identification guides the network to

differentiate between distortions and 2. distortion intensity

estimation lets the model learn about the absolute intensity.

Our three proposed pretext tasks are depicted in Figure 1.

Following the common transfer learning setting, the re-

sulting model acts as initialization for fine-tuning on a la-

beled image aesthetic dataset in a supervised fashion. We

later show that our pretrained models learn more suitable

features for the IAA task than the common ImageNet [4]

initialization [35, 36, 28, 20].

3.1. Aesthetic­Aware Image Distortions

From related works [36, 34] we identify five essential

aspects of general image aesthetics: technical quality, style,

composition, content, and semantics. For our pretext tasks

we aim to select image filters that distort aesthetic base im-

ages regarding these aspects. Since it is non-trivial to find

image filters that distort image content and semantics in a

self-supervised way [34], we focus on the remaining aspects

technical quality, style, and composition, even though it is

possible to include content or semantic based distortions if

such image filters are found. In the following, we discuss

these aspects in general, while in Section 4.1, we select spe-

cific image distortions.

Technical Quality Technical distortions can appear on an

image under real world use cases, when taking, saving or

transmitting an image, e.g. compression, blurring or the ad-

dition of noise. It is well documented that applying such

technical distortions to an image lowers its perceived qual-

ity [19, 27, 39, 40, 8, 31]. For our method, a set of distor-

tions Dtech influencing this aspect has to be chosen.

Image Style Image style is mostly described through im-

age properties such as contrast, brightness, or saturation.

Thus, style based distortions consist of image filters that are

often used for color correction and color grading. Apply-

ing a filter from the chosen filter set Dstyle to an aesthetic

image results in a degradation in quality, especially when

using high filter intensities.

Image Composition Image composition concerns the lo-

cation of subjects and objects in the image, thus it is highly

correlated with the chosen image crop. We assume that for

highly aesthetic images, the original framing is selected in

an aesthetically pleasing way, e.g. by following common

guides such as the rule of thirds. Operations like crops or

rotations then destroy such alignments. Applying these dis-

tortions Dcomp in pretraining has the additional benefit of

making the network learn to recognize structures in images

in general, which has been shown to be useful in similar

image pretext tasks [17, 7, 10, 21].

3.2. Highly Aesthetic Dataset

The dataset chosen for pretraining is important for our

proposed method, as the purpose of applying any distortion

described in Section 3.1 to an image from the dataset is to

degrade its aesthetics regarding the corresponding aspect.

In RankIQA, high-quality images with regard to the techni-

cal aspect are required to make sure that applying a techni-

cal distortion does in fact degrade an image’s quality [26].

The application of style and composition filters thus has to

consistently degrade the associated aspect of aesthetic qual-

ity of an image from the dataset. We therefore derive two

requirements for the pretraining dataset used in our method:

Highly Aesthetic The dataset needs to contain only

highly aesthetic images with regard to their technical qual-

ity, style, and composition. This minimizes the risk that ap-

plying a filter accidentally improves the image’s aesthetics,

since the undistorted image presumably already has optimal

filter parameters.

Diverse in Style and Content To prevent the network

from overfitting on a specific editing style or image content,

the dataset needs to contain a wide variety of different im-

ages. High content diversity ensures that the model learns to

generally correlate content with style features, e.g. sunsets

with orange tints or portraits with natural skin tones. Con-

sequently the dataset needs to be of sufficient size to meet

the requirement regarding its diversity.

3.3. Self­Supervised Aesthetic­Aware Pretext Tasks

Applying the selected aesthetic-aware image distortions

(Section 3.1) to the high-quality images (Section 3.2) results

in a dataset containing the original, unedited images and

some automatically generated lower quality image variants

(regarding technical quality, style, and composition). While

there is no absolute aesthetic score for neither the original

image nor any of the generated images, we can access the

intensity of the applied distortion and the fact that a higher

intensity of an applied distortion makes the image look less

aesthetically pleasing. In the following we introduce our

main ranking-based self-supervised pretext task as well as



two additional tasks based on classification and regression.

We combine the ranking task with each of the other tasks

in a multi-task setting to guide the network to learn features

related to image aesthetics. In our experiments, we then

assess the effects of the pretext tasks on the downstream

IAA performance.

Given an image I and a set of distortions that unites all

image filters defined for technical quality, style, and com-

position Dall = Dtech ∪ Dstyle ∪ Dcomp. Each distor-

tion d ∈ Dall has a set of possible intensity values V (d) =
{v|v ∈ R} that can be positive or negative. Applying the

filter with these distortion intensities to the image I , we ob-

tain a set of distorted images I(d) = {I
(d)
v |v ∈ V (d)}. An

intensity value of zero equals the original image I
(d)
0 = I .

In general, a neural network pretrained on ImageNet is

used as the base model. For each task, the last layer is re-

placed in order to conform to the desired output.

Ranking Aesthetic Value Our main pretext task is a rank-

ing task based on the RankIQA method for technical image

assessment [26]. Given all distorted versions of an image,

the original image I
(d)
0 is assumed to be the most aestheti-

cally pleasing and should therefore be rated with the highest

score. Images I
(d)
i with a higher absolute distortion inten-

sity value |i| > 0 should decrease the image aesthetics, e.g.

increasing the brightness results in a less appealing image

and a lower score compared to an image with a weaker in-

crease in brightness. Given these assumptions, we utilize

the ranking-based pretext task from [26] that ranks all im-

ages with respect to their intensity value. With our dataset

and aesthetic-aware image distortions, we are able to ap-

ply this method to Image Aesthetic Assessment. The neu-

ral network is supposed to output scalars that are larger for

higher-quality images and predict smaller values for images

with larger distortion intensities. We let the last layer of the

base neural network output one scalar and apply a sigmoid

activation function.

For one image, the ranking loss is defined as

Lrank =
∑

I
(d)
i

,I
(d)
j

∈I(d),

d∈Dall,
|i|<|j|,

sign(i)=sign(j)

max
(

0, (frank(I
(d)
i )− frank(I

(d)
j ))−m

)

,

(1)

where m is the margin denoting the desired minimal output

difference between two differently distorted images when

fed through the ranking network frank which returns a

score between 0 and 1.

Classifying Applied Distortions In addition to the rank-

ing task, we optionally train a distortion identification task

in a self-supervised manner as done in some NR-IQA meth-

ods [19, 27, 39, 8]. We replace the network’s last layer

with three separate layers, one for each quality aspect

a ∈ {tech, style, comp}. Each layer has |Da| outputs fol-

lowed by a softmax activation function to output probabili-

ties fa
class(I) for a given input image I .

We consider each quality aspect separately to allow cross

synergies, e.g. adding noise to an image often results in

lower saturation. A single probability distribution across

all distortions could not consider such synergies and would

increase the loss since multiple changes were correct.

The loss for this pretext task is thus defined as

Lclass =
∑

I
(d)
i

∈I(d),

d∈Da,
a∈{tech,style,comp}

LCE

(

fa
class

(

I
(d)
i

)

, d
)

, (2)

where LCE is the Categorical Cross-Entropy loss function

taking the output probability distribution and the index of

the applied distortion.

Estimating Intensity of Applied Distortions While the

distortion identification task only classifies the distortion,

another task we can add to our multi-task setting is to ex-

plicitly predict the distortion intensity. The last network

layer is replaced to output |Dall| values, one for each dis-

tortion. We calculate the loss by applying the squared error

to the output for the applied distortion. Only calculating the

error at the output index of the applied distortion makes it

possible to model cross relations between distortions.

The loss function for the regression task is

Lregr =
∑

I
(d)
i

∈I(d),

d∈Dall

(

fregr

(

I
(d)
i

)

d
− norm(i)

)2

, (3)

where norm(i) is the normalized intensity value to be pre-

dicted by the regression network fregr such that all non-

negative intensities are normalized to the range [0, 1] and

all non-positive intensity values are normalized to the range

[−1, 0]. This scales all intensity values to similar ranges,

lowering the influence of single distortions on the loss.

3.4. Multi­Task Pretraining and Fine­Tuning

Related IQA approaches [19, 27, 39, 8, 40] have shown

that a multi-task training setup improves the resulting im-

age assessor due to the additional information being avail-

able during training. For our proposed multi-task setting,

we combine the ranking task with either the classification

or regression task by adding the losses for the given pre-

text tasks using a loss balancing scheme [24]. The resulting

overall loss is

L = h (Lrank) + h (Lclass) (4)



Aspect Distortion

Technical JPEG compressiona, Defocus blura, Motion blura,

Pixelatea, Gaussian noisea, Impulse noisea

Style Brightnessb, Contrastb, Saturationb, Exposureb,

Shadowsc, Highlightsd, Temperaturee, Tintb,

Vibrancef

Composition Rotationb, Horizontal cropb, Vertical cropb, Left

Diagonal cropb, Right Diagonal cropb, Image

Ratiob

a[0,. . . ,5] b[-5,. . . ,5] c[-5,. . . ,3] d[-3,. . . ,5] e[-4,. . . ,5] f[-2,. . . ,4]

Table 1. The distortions applied in our pretext tasks and their in-

tensity value ranges, grouped by their corresponding aesthetics as-

pect. Each distortion also contains the original image (intensity 0).

Parameters passed to the libraries can be found in Appendix A.

when adding classification to the ranking task and

L = h (Lrank) + h (Lregr) (5)

when adding the regression task. Here, h(Ltask) =
exp(Ltask

T
) evens the individual loss values. We set T = 50

according to the author’s recommendation [24].

After pretraining the model with the proposed self-

supervised tasks, the network should have learned impor-

tant visual features to identify and judge image aesthetics.

We can fine-tune the pretrained model on a labeled image

aesthetics dataset, which should achieve better performance

on the labeled dataset.

4. Experiments

4.1. Aesthetic­Aware Image Distortions

During our self-supervised pretraining we apply techni-

cal, style, and composition filters to the high-quality images.

Table 1 shows our selected distortions with corresponding

intensity values.

To change the technical quality of an image, we use the

library “imagenet-c” [12], introduced to benchmark the ro-

bustness of image classification models against distortions

on the ImageNet [4] dataset. For changes in style we use the

graphics suite darktable [37] that provides common color

correction and color grading filters. All compositional dis-

tortions such as cropping, rotation, or adjusting image ratios

are implemented in Python using Pillow [3]. We resize and

pad all images to 224×224 pixels. This ensures that we do

not accidentally destroy the image’s composition.

4.2. Highly Aesthetic Dataset

For our dataset, we download the 130 000 most popu-

lar images of all time2 from the free stock photo website

pexels.com. As detailed in Section 3.2, the dataset needs

2pexels.com/popular-photos/all-time/ now offline

Figure 2. Random examples from our unlabeled dataset from

pexels.com used for our self-supervised pretraining.

to contain highly aesthetic images of diverse style and con-

tent to be usable in our self-supervised pretext tasks.

Highly Aesthetic Stock photos are inherently made to be

aesthetically pleasing, which makes a stock photo website

an ideal source for our dataset. It can safely be assumed that

stock photos in general are quite well lit and color coordi-

nated. By taking only the most popular photos, we are cer-

tain that these images are liked by the general public. Fig-

ure 2 shows randomly selected images from the dataset. To

spot-check the aesthetics, we conduct a survey: A random

image from the dataset and the same image with an image

filter applied are shown. The subject clicks on the image

that they find to be more aesthetically pleasing. 73 annota-

tors have rated 6182 image pairs. For 74% of these pairs,

the unedited image is preferred, when compared to any style

filter in any intensity. Besides the survey, we apply a trained

version of NIMA3 [36] to the original images, which clas-

sifies approximately 88% of them as high-quality.

Diverse in Style and Content According to pexels.

com, the stock photos are from a wide variety of art styles

and topics. Available categories range from dominant col-

ors over common photo tags like food, fashion, or peo-

ple to emotional aspects like moody, wellbeing, or happy.

This induces a high diversity in image contents and styles.

Assuming that the most popular images are a somewhat

representative sample of all images, our dataset covers a

wide range of different styles while each individual im-

age remains well edited. Additionally, we apply a pre-

trained DenseNet121 [16] for image classification and Reti-

naNet [25] for object detection to our dataset to make sure

that the images are diverse in content. We find that the im-

ages of our dataset spread across many different classes and

contain a wide variety of objects and subjects. Detailed re-

sults can be found in Appendix B.

3https : / / github . com / kentsyx / Neural - IMage -

Assessment



4.3. Self­Supervised Aesthetic­Aware Pretraining

As the main pretext task, we train the network to rank an

image with differently intense filter settings for one filter.

In addition, we add one of two tasks, as described in Sec-

tion 3.4, resulting in three pretext task combinations: rank-

ing, ranking+classification, and ranking+regression. We

set the hyperparameter m, which describes the desired min-

imal margin between two images with different distortion

intensities, to 0.2 in our experiments.

Prior to training, we randomly split our dataset

into 100 000 training images, 15 000 validation, and

15 000 test images. Every image is then distorted us-

ing each of the filters described above with all re-

spective intensity values, resulting in 173 different vari-

ants per image, including the original image. Overall,

this makes 100 000×173=17 300 000 training images and

15 000×172=2 595 000 images for validation and testing.

As the neural network architecture, we use Mo-

bileNetV2 [33], since it speeds up training times due to

fewer parameters while still performing well [36]. This al-

lows us to train comparatively quickly even on the approxi-

mately 17 million training images.

For each pretext single-task or multi-task setting, we

train the model for 20 epochs and then select the epoch

with the lowest validation loss as the initialization for fine-

tuning. We select an initial learning rate of 10−4 for all

model configurations based on a hyperparameter search.

All other training settings are taken directly from the orig-

inal MobileNetV2 paper [33], i.e. optimizing using RM-

SProp [13] with decay and momentum set to 0.9, weight

decay regularization of 4× 10−5, and an exponential learn-

ing rate decay of 0.98 per epoch. As batch size, we take

eight images and all their distorted variants as a batch, thus

resulting in 1384 images in each batch.

4.4. Baselines

We compare our method to three other models. On

the one hand, we train a model that is initialized with

weights trained on the ImageNet classification task [4],

a common initialization for IAA methods [35, 36, 28,

20]. On the other hand, we employ two common self-

supervised pretext tasks. RotNet [22] classifies the rotation

∈ {0◦, 90◦, 180◦, 270◦} applied to an input image. Sim-

CLR [2] aims to output similar representations for differ-

ent augmentations of the same image. For a fair compari-

son, both tasks are applied to the ImageNet-initialized Mo-

bileNet architecture [33] using our collected dataset. See

Appendix C for details.

4.5. Fine­tuning Pretrained Models

After pretraining, each model is then fine-tuned on the

AVA dataset [29]. For our experiments, we follow the train-

ing method from NIMA [36], since it is simple and elegant:

We replace the last layer of the network with a fully con-

nected layer with ten outputs, indicating the possible AVA

scores one to ten. Outputs are normalized to a distribution

using the softmax function. The training procedure then

uses the Earth Mover’s Distance Loss [15] on the rating dis-

tribution of the annotator’s votes for each image.

Training parameters are kept close to the original val-

ues proposed by Talebi et al. [36], only incorporating small

practical improvements by Lennan et al. [23] and changes

to adapt for the different pretext tasks: We train using the

Adam [30] optimizer with separate learning rates for the

pretrained layers (10−4) and for the new fully connected

layer (10−3) and a weight decay regularization of 4× 10−5.

Additionally, we use a learning rate schedule that monitors

the validation loss and halves the learning rate if the loss

does not significantly improve for five consecutive epochs.

This schedule is a compromise between the originally pro-

posed schedule in NIMA [36] and the more aggressive de-

cline in learning rate used by Lennan et al. [23]. As sug-

gested by Lennan et al. we keep the weights of all layers but

the very last frozen until the validation loss plateaus for the

first time. We train on the AVA dataset and employ an early

stopping strategy that stops training once the validation loss

does no longer improve for ten consecutive epochs.

4.6. Evaluation Setup

For evaluating the trained models, we mostly follow the

setup by Talebi et al. [36]. Given the ten-dimensional out-

put denoting a distribution across the possible rating scores,

a mean score can be computed by calculating the expected

score given the output distribution. We let all models predict

the mean aesthetic scores for the test split of the AVA dataset

and label images with scores above five as aesthetic and be-

low five as not aesthetic. We can then calculate the accu-

racy [32] based on this binarization and the ground truth

mean opinion scores by AVA.

In most applications for IAA, however, it is necessary to

rank different images based on their aesthetic score. Thus,

metrics measuring the performance of the predicted numer-

ical score are of higher interest. We calculate the Spear-

man (SRCC) [32] and Pearson (LCC) [6] correlation co-

efficients as well as the Mean Absolute Error (MAE) [32]

between the predicted and ground truth mean scores.

In addition to the image aesthetic assessment dataset

AVA, we — like Talebi et al. [36] — also test our mod-

els on the TID2013 [31] dataset that is designed to mea-

sure the performance of technical image quality assessment

models. Since our pretext tasks incorporate distortions lead-

ing to technically degraded images, we suspect that the per-

formance of pretrained models improves on this dataset as

well. We calculate the SRCC, LCC, and MAE between the

predicted and ground truth scores from the dataset.



AVA TID2013

Pretext Task Epochs LCC ↑ SRCC ↑ ACC ↑ MAE ↓ LCC ↑ SRCC ↑ MAE ↓

ImageNet [4] 147 0.5491 0.5372 0.7548 0.4716 0.4760 0.3897 0.9747

RotNet [22] 79 0.3272 0.3139 0.7112 0.5376 0.1282 0.1075 1.1334

SimCLR [2] 65 0.5483 0.5360 0.7540 0.4718 0.4824 0.3944 0.9688

ranking 96 0.5536 0.5414 0.7560 0.4698† 0.4842 0.3946 0.9679†

ranking + classification 89 0.5535 0.5409 0.7550 0.4702 0.5009 0.4111 0.9620†

ranking + regression 77 0.5541 0.5420 0.7582 0.4697† 0.4855 0.3971 0.9672†

Table 2. Performance results: Shown are the Accuracy (ACC) on the binary task, Pearson (LCC) and Spearman (SRCC) correlation, as

well as the Mean Absolute Error (MAE) between the ground truth and the scores returned by our model. The best value for each metric is

printed in bold. For our pretext tasks, † indicates significantly better results compared to the ImageNet pretext task.

5. Results

In Table 2, the fine-tuned models are identified on the

basis of their respective pretext task they were initialized

with. In addition to the evaluation metrics specified in Sec-

tion 4.6, we also provide the number of training epochs be-

fore halted by early stopping.

Aesthetic Pretraining Improves Performance Models

pretrained on any of our proposed pretext tasks show bet-

ter evaluation metrics than all baseline models. Compared

to the ImageNet baseline, any additional pretraining reduces

the number of epochs during fine-tuning by 29% to 55%,

while only our pretext tasks consistently improve the per-

formance of the resulting model at the same time.

Adding classification to the ranking task in a multitask

setting does not improve the performance of the ranking

task on AVA, however, results in the best model evaluated

on the TID2013 dataset. This supports the findings of pre-

vious work that used classification pretext tasks for techni-

cal image quality assessment [19, 27, 39, 8]. We suspect

that this is due to the difficulty of distinguishing some cat-

egories of distortions. In the classification task, we catego-

rize all image filters into the categories technical, style, and

composition and train the network to identify the distortion

in the corresponding category. We observe that the classi-

fication accuracy per category of the pretrained model on

the testset of our collected stock photo dataset is higher for

technical distortions than for style or composition changes

(c.f . Appendix D). The pretrained model has learned to ex-

tract features that are especially useful for technical image

distortions, making the model more suitable to be used as

an initialization for IQA.

In contrast to classification, adding the regression task

yields the best performance metrics on AVA in our exper-

iments. Our intuition is that this is due to two effects.

First, the loss only takes exactly one distortion into account,

thus making all distortions independent of each other. For

the classification task, we have to combine multiple dis-

tortions based on their type in order to be able to calcu-

late the Cross Entropy Loss, making their outputs depen-

dent on each other. Second, and more importantly, letting

the network predict an intensity per distortion encourages

the extraction of features that already have a notion of or-

der. These features are then effectively used during fine-

tuning and result in better performance. In fact, Bonferroni-

corrected [11] one-sided Wilcoxon signed rank tests [38]

on the Mean Absolute Errors (MAE) show that using our

pretext tasks over ImageNet produces significantly better

results at an α level of 1%. This means, on average, the

returned score is significantly closer to the mean human an-

notated score than when using the ImageNet initialization.

The self-supervised baselines RotNet [22] and Sim-

CLR [2] are explicitly designed to learn content based fea-

tures in order to improve image classification performance.

Thus, similar to the ImageNet pretraining, learned features

are mostly invariant to aesthetically relevant changes such

as lighting. Our method explicitly embraces these features,

leading to useful features for the downstream task.

Aesthetic Pretraining Learns Cross-Distortion Relations

In the following we analyze the outputs of the pretext re-

gression network fregr. Note that we study the pretrained

model that was not yet fine-tuned on the AVA dataset. Dur-

ing pretraining, the regression loss is only computed on

the corresponding output dimension denoting the currently

applied distortion, as described in Section 3.3. All other

outputs are not used for loss calculation, thus can inde-

pendently predict intensities for their respective distortions.

This allows the network to learn synergies between differ-

ent distortions, e.g. an increase in brightness usually reduces

the contrast (see Figure 1) and vice versa.

To check if the model has learned these relations, we

feed all test images of our collected dataset with all bright-

ness changes through the network. Then, we plot the

model’s predicted brightness and contrast changes as a vio-

lin plot in Figure 4. Given higher or lower brightness inten-

sities, the predicted outputs are also increasing or decreas-

ing, respectively. An increase in brightness also results in a

decrease in contrast, which shows the model learned cross-
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Figure 3. Accuracy, Pearson/Spearman correlation coefficient and Mean Absolute Error for different sizes of the labeled dataset.
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Figure 4. Outputs of the brightness (left) and contrast (right) neu-

ron for different intensities (x-axis) of the brightness distortion.
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Figure 5. Epoch in which early stopping occurred by dataset size.

distortion relations, which it was never explicitly trained on.

Aesthetic-Aware Pretrained Models Need Less Labeled

Data According to our results, models pretrained on our

proposed tasks were able to learn useful image features for

aesthetic image assessment, resulting in significantly im-

proved prediction performance and training time. We hy-

pothesize that this also reduces the need for labeled training

images in order to achieve comparable performance to the

ImageNet baseline. To verify this, we fine-tune the rank-

ing+regression pretrained model and the ImageNet base-

line on subsets of the AVA training data: 20%, 40%, 60%,

80%, 100%. Figure 3 shows the Accuracy, Pearson and

Spearman Correlation Coefficients, as well as the Mean Ab-

solute Error on the AVA testset for both models. While our

model seems to match the baseline’s accuracy on the bi-

nary task, it consistently outperforms the baseline on both

correlation coefficients and the Mean Absolute Error. Due

to the higher correlations, we can assume that our model

matches the relative aesthetic order of images better than

the baseline. Furthermore, we find that we match the Im-

ageNet model in terms of correlation and Mean Absolute

Error while needing approximately 20% less training data.

Our pretrained model also converges faster than the Ima-

geNet baseline across all training data sizes (see Figure 5).

Overall, pretraining the model on our proposed tasks thus

provides a better initialization for fine-tuning than the Ima-

geNet classification task.

6. Discussion

In our self-supervised pretraining, our models do not

learn to rank different images against each other but only to

differentiate between distortions and intensities applied to

one image. Our models are therefore not able to learn some

potentially relevant aesthetic features and relations between

different images during pretraining. To furthermore enable

our models to e.g. rank different base images during the pre-

text task, we suggest exploring additional losses: A loss

minimizing the distance between scores of two images of

the same distortion and same intensity could be introduced.

Additionally, we can extend the ranking loss and not only

rank distortions of the same image against each other, but

against other base images as well. Under the assumption

that all images in the dataset are roughly equally aesthetic,

this allows our network to learn relationships between aes-

thetic features of different base images.

7. Conclusion

In this paper, we have proposed self-supervised

aesthetic-aware pretext tasks optimized for fine-tuning Im-

age Aesthetic Assessment models. For this, we have intro-

duced a large dataset of highly aesthetic images that were

systematically degraded in quality using distortions in three

aspects of image aesthetics: technical quality, image style,

and composition. We have applied the pretext tasks in a

multi-task setting and have shown that ranking as well as

estimating distortion intensities improves performance over

the employed baselines and converges faster than starting

with ImageNet initialization. An analysis has shown that

our pretext tasks are able to teach the neural network mean-

ingful and relevant features about image aesthetics, without

access to an explicit human opinion as reference. We thus

encourage researchers to use our pretrained models as ini-

tialization for their CNN-based IAA methods.



References

[1] Sebastian Bosse, Dominique Maniry, Klaus-Robert Muller,

Thomas Wiegand, and Wojciech Samek. Deep neural

networks for no-reference and full-reference image qual-

ity assessment. IEEE Transactions on Image Processing,

27(1):206–219, jan 2018.

[2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning

of visual representations. In International conference on ma-

chine learning, pages 1597–1607. PMLR, 2020.

[3] Alex Clark. Pillow (pil fork) documentation.

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE Conference on Computer Vision and

Pattern Recognition, pages 248–255. Ieee, IEEE, jun 2009.

[5] Michael Fischer, Konstantin Kobs, and Andreas Hotho.

NICER: Aesthetic image enhancement with humans in the

loop. arXiv preprint arXiv:2012.01778, 2020.

[6] David Freedman, Robert Pisani, and Roger Purves. Statistics

(international student edition). Pisani, R. Purves, 4th edn.

WW Norton & Company, New York, 2007.

[7] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-

supervised representation learning by predicting image rota-

tions.

[8] S. Alireza Golestaneh and Kris Kitani. No-reference image

quality assessment via feature fusion and multi-task learning.

2020.

[9] Google. Google photos. photos.google.com.

[10] Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan

Misra. Scaling and benchmarking self-supervised visual rep-

resentation learning. In 2019 IEEE/CVF International Con-

ference on Computer Vision (ICCV). IEEE, oct 2019.

[11] Winston Haynes. Bonferroni Correction, pages 154–154.

Springer New York, New York, NY, 2013.

[12] Dan Hendrycks and Thomas Dietterich. Benchmarking neu-

ral network robustness to common corruptions and perturba-

tions. Proceedings of the International Conference on Learn-

ing Representations, 4, 2019.

[13] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky.

Overview of mini-batch gradient descent.

[14] Vlad Hosu, Bastian Goldlucke, and Dietmar Saupe. Effective

aesthetics prediction with multi-level spatially pooled fea-

tures. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 9375–9383,

2019.

[15] Le Hou, Chen-Ping Yu, and Dimitris Samaras. Squared

earth mover’s distance-based loss for training deep neural

networks.

[16] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q. Weinberger. Densely connected convolutional net-

works. In 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 4700–4708. IEEE, jul

2017.

[17] Longlong Jing and Yingli Tian. Self-supervised visual fea-

ture learning with deep neural networks: A survey. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

pages 1–1, 2020.

[18] Le Kang, Peng Ye, Yi Li, and David Doermann. Convolu-

tional neural networks for no-reference image quality assess-

ment. In 2014 IEEE Conference on Computer Vision and

Pattern Recognition. IEEE, jun 2014.

[19] Le Kang, Peng Ye, Yi Li, and David Doermann. Simultane-

ous estimation of image quality and distortion via multi-task

convolutional neural networks. In 2015 IEEE International

Conference on Image Processing (ICIP). IEEE, sep 2015.

[20] Keunsoo Ko, Jun-Tae Lee, and Chang-Su Kim. PAC-net:

Pairwise aesthetic comparison network for image aesthetic

assessment. In 2018 25th IEEE International Conference on

Image Processing (ICIP). IEEE, oct 2018.

[21] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Re-

visiting self-supervised visual representation learning. In

2019 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition (CVPR). IEEE, jun 2019.

[22] Nikos Komodakis and Spyros Gidaris. Unsupervised repre-

sentation learning by predicting image rotations. In Inter-

national Conference on Learning Representations (ICLR),

2018.

[23] Christopher Lennan, Hao Nguyen, and Dat Tran. Image

quality assessment. https://github.com/idealo/

image-quality-assessment, 2018.

[24] Sicong Liang and Yu Zhang. A simple general approach

to balance task difficulty in multi-task learning. 14:arXiv–

2002, 2020.

[25] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollar. Focal loss for dense object detection. In 2017

IEEE International Conference on Computer Vision (ICCV).

IEEE, oct 2017.

[26] Xialei Liu, Joost Van De Weijer, and Andrew D. Bagdanov.

RankIQA: Learning from rankings for no-reference image

quality assessment. In 2017 IEEE International Conference

on Computer Vision (ICCV). IEEE, oct 2017.

[27] Kede Ma, Wentao Liu, Kai Zhang, Zhengfang Duanmu,

Zhou Wang, and Wangmeng Zuo. End-to-end blind image

quality assessment using deep neural networks. IEEE Trans-

actions on Image Processing, 27(3):1202–1213, mar 2018.

[28] Shuang Ma, Jing Liu, and Chang Wen Chen. A-lamp: Adap-

tive layout-aware multi-patch deep convolutional neural net-

work for photo aesthetic assessment. In 2017 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 4535–4544. IEEE, jul 2017.

[29] N. Murray, L. Marchesotti, and F. Perronnin. AVA: A large-

scale database for aesthetic visual analysis. In 2012 IEEE

Conference on Computer Vision and Pattern Recognition,

pages 2408–2415. IEEE, IEEE, jun 2012.

[30] Jimmy Omony. Constrained stochastic space search method

for parameter estimation in biological networks. British

Journal of Mathematics & Computer Science, 4(7):952–968,

jan 2014.

[31] Nikolay Ponomarenko, Oleg Ieremeiev, Vladimir Lukin,

Karen Egiazarian, Lina Jin, Jaakko Astola, Benoit Vozel,

Kacem Chehdi, Marco Carli, Federica Battisti, and C.-C. Jay

Kuo. Color image database tid2013: Peculiarities and pre-

liminary results. In European Workshop on Visual Informa-

tion Processing (EUVIP), volume 30, pages 106–111. IEEE,

2013.



[32] Claude Sammut and Geoffrey I. Webb, editors. Springer US,

Boston, MA, 2010.

[33] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. MobileNetV2: Inverted

residuals and linear bottlenecks. In 2018 IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition. IEEE,

jun 2018.

[34] Kekai Sheng, Weiming Dong, Menglei Chai, Guohui Wang,

Peng Zhou, Feiyue Huang, Bao-Gang Hu, Rongrong Ji, and

Chongyang Ma. Revisiting image aesthetic assessment via

self-supervised feature learning. Proceedings of the AAAI

Conference on Artificial Intelligence, 34(04):5709–5716, apr

2020.

[35] Kekai Sheng, Weiming Dong, Chongyang Ma, Xing Mei,

Feiyue Huang, and Bao-Gang Hu. Attention-based multi-

patch aggregation for image aesthetic assessment. In Pro-

ceedings of the 26th ACM international conference on Mul-

timedia, pages 879–886, 2018.

[36] Hossein Talebi and Peyman Milanfar. NIMA: Neural im-

age assessment. IEEE Transactions on Image Processing,

27(8):3998–4011, aug 2018.

[37] The Darktable Development Team. Darktable. https://

www.darktable.org.

[38] Frank Wilcoxon. Individual comparisons by ranking meth-

ods. Biometrics Bulletin, 1(6):80, dec 1945.

[39] Qingbo Wu, Hongliang Li, King N. Ngan, Bing Zeng, and

Moncef Gabbouj. No reference image quality metric via

distortion identification and multi-channel label transfer. In

2014 IEEE International Symposium on Circuits and Sys-

tems (ISCAS). IEEE, jun 2014.

[40] Yi Zhang and Damon M. Chandler. Opinion-unaware blind

quality assessment of multiply and singly distorted images

via distortion parameter estimation. IEEE Transactions on

Image Processing, 27(11):5433–5448, nov 2018.


