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EClaiRE: Context Matters! — Comparing Word Embeddings
for Relation Classification

Lena Hettinger,l Albin Zehe! Alexander Dallmann! Andreas Hotho!

Abstract: In recent years, there has been an increasing interest in the task of relation classification,
which aims to label a relation between two semantic entities. In this work, we investigate how
domain-specific information influences the performance of ClaiRE, an SVM-based system combining
manually crafted features with word embeddings. To this end, we experiment with a wide range of
word embeddings and evaluate on one general and two scientific relation classification datasets. We
release all of our code for relation classification and data for scientific word embeddings to enable the
reproduction of our experiments.?
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1 Introduction

Finding an appropriate representation for a word is a challenging task in Natural Language
Processing, especially considering the fact that words can have multiple meanings. Word
ambiguity becomes most apparent when looking at datasets from different domains. For
example, the word string can either denote a “string of cotton” or a “string of characters”,
depending on whether it appears in its most common or a domain specific context like
computer science. In this paper, we want to examine the role of ambiguous or domain-specific
expressions for the relation classification task (cf. Sect. 4).

The goal of relation classification is to label the semantic relation between two selected
entities in a sentence. There are two reasons why this is a fitting task to examine word
representations. First, there exist indications that a semantically correct representation
is important for good performance [Hel8]. Second, it is obvious that a certain relation
described between two entities might not correspond to the most general meaning of a word,
as exemplified in Fig. 1. Identifying words only with their most common meaning, the
sentence in the example would not make sense and the expressed relation would be unclear.

Since our focus is more on understanding the influence of domain-specific word senses than
on providing a new state of the art, we decided to use an SVM-based model rather than a
neural network, which requires far less computational power and therefore enables us to
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Fig. 1: Problems in relation classification arising from word representations that do not reflect
domain-specific meaning.

investigate a wider range of settings. Specifically, we use ClaiRE [He18], an SVM based on
both hand-crafted features and word embeddings. ClaiRE has already been shown to be
highly dependent on the word embeddings used to encode the input, making it a suitable
model for our research.

We investigate a wide range of word embeddings, which can generally be partitioned
into three classes: (a) Publicly available static embeddings trained on general corpora,
(b) our own domain specific, static embedding trained on a corpus of scientific articles and
(c) publicly available context-sensitive embeddings trained on a general corpus.

We show that domain-specific word embeddings outperform general ones on the scientific
domain, and, conversely, that specialised word embeddings can not be transferred to the
general domain. We also find that context-sensitive embeddings outperform both types of
static embeddings on each domain, but further improvements can be reached by combining
them with domain-specific embeddings.

2 Related Work

Relation classification is an interesting topic of research, as relations between pairs of
entities are studied across a wide range of domains. It was the topic of several challenges,
e. g. SemEval-2010 (general domain) [He09] and SemEval-2018 (scientific domain) [G418].
Although neural network based approaches currently claim state of the art on both do-
mains [RHZ18, Wal6], SVM based approaches with lexical and semantic features have
shown competitive performance in the past [Hel8, RH10]. For a more in-depth coverage
of related work on relation classification we refer to [Hel8, RHZ18]. In this work we
investigate the dependency of relation classification on feature and task domain. Hence, we
do not focus on achieving state-of-the-art results.
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Word embeddings have been proven effective for a wide range of NLP tasks [Kil4, Mal4].
Consequently, much work has been done on word embeddings in recent years. We will
provide an overview of some commonly used models in Sect. 3.

Although word embeddings often improve the performance of downstream tasks, word
embeddings derived from general corpora can be suboptimal if used in specialised do-
mains [Tal4]. For example, word embeddings trained on a domain-specific corpus improve
relation classification performance in the scientific domain [He18]. However, large corpora
needed for training a word embedding model from scratch are not always available. As a
result, some work has been done on leveraging multiple corpora by training cross-domain em-
beddings [BMiK15, YLZ17]. Another direction of research focuses on adapting pre-trained
language models to a specific domain [HR18, LL.13, Nil7, Yul7].

Commonly used word embeddings provide a single static vector for every word in the
vocabulary. As a result, different word senses are not accurately represented. This issue
has been addressed by modifying existing models to represent a word by multiple sense
vectors [IPN15, CLS14, JP15]. However, these models still suffer from limitations, for
example by relying on a limited semantic network [JP15]. A recent line of research
addresses these limitations by learning context-sensitive embeddings that compute a word
representation dependent on the context, e.g. the sentence [CCP18]. Evaluation of context-
sensitive embeddings is mostly focused on the general domain [ABV 18, Mc17, Pel8]. In
contrast we aim to investigate the suitability of general context-sensitive embeddings for a
domain specific task and compare the performance to domain-specific static embeddings.

3 Background: Word Embeddings

In order to analyse the connection between the domain of relation classification and word
embeddings, we first need to take a look at the data and models used to create them. This
will later enable us to pose some hypotheses as to why certain embeddings work better
for one or the other context. This chapter provides an overview over the different word
embeddings we use in this work. We classify them into three groups: Traditional embeddings,
domain-specific embeddings and context-sensitive embeddings, as shown in Tab. 1.

3.1 Traditional Embeddings

The first group of embeddings are publicly available sets of vectors that are commonly used
in NLP. There exist multiple algorithms for the creation of these embeddings, where some of
the most commonly used are word2vec [Mil3], GloVe [PSM14] and FastText [Bo17]. We
use publicly available vectors trained with each of these algorithms, as well as ConceptNet
Numberbatch [SCH17], which is a combination of the three aforementioned embeddings
and the knowledge graph ConceptNet. The first part of Tab. 1 provides some details about the
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traditional embeddings used in this work. We retrieve all of these through gensim-data3,
a data repository for pre-trained NLP models.

WE dim Origin size
w2v 300 Google 100.0
GloVe 300 WP, Gigaword 6.0
FastText 300 WP, Gigaword, . . . 16.0
CNB 300 w2v, GloVe, ... n.a.
W2VarXiv 300 arXiv 0.7
ELMo 3072 WP, WMT 5.5
Flair 4096 WMT 0.8

Tab. 1: Details about the pretrained word embeddings used in this paper. WP: Wikipedia, WMT:
Workshop on Statistical Machine Translation. Size of data sets is given in billion tokens.

3.2 Domain-specific Embeddings

To generate domain-specific w2v,x;y embeddings, we use word2vec on a large corpus
of scientific papers. We downloaded I4TEX sources for all papers published in 2016 on
arXiv.org using the provided dumps.# We converted IZTEX sources to plain text using a
manually crafted set of regular expressions. We refer to our source code for details about
the conversion and to [He18] for further details about constructing scientific embeddings.

3.3 Context-Sensitive Embeddings

Context-sensitive embeddings have been on the rise since the publication of CoVe [Mc17].
They represent a change of paradigm, as words are not described by static vectors but are
assigned a different vector depending on the sentence they appear in. The advantage of this
approach is that ambiguous words do not have to be resolved separately. Instead the model is
able to distinguish between the different meanings using the word’s context. In this work we
compare traditional embeddings with the two currently best-performing context-sensitive
models: ELMo, which has shown to perform better than CoVe, and Flair, which outperforms
ELMo for some tasks in conjunction with character features and/or traditional embeddings.
These embeddings make up the third part of Tab. 1.

3https://github.com/RaRe-Technologies/gensim-data
4https://arxiv.org/help/bulk_data
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3.3.1 ELMo

ELMo (Embeddings from Language Models) [Pe18] is a deep bidirectional language model
that produces character based word vectors from its internal states. More specifically, ELMo
computes multiple representations with different amounts of context and semantics in its
layers.

First, the model builds context insensitive word representations (ELMog) by applying a
character based CNN on every word in the sentence. The context sensitive embeddings
(ELMoy, and ELMo, respectively) stem from a 2-layer biLSTM [HS97, SP97] that takes
the previously computed word representations (ELMoy) as input. Ultimately, the biLM
provides three layers of representations for any input token, forming a hypercolumn of the
three vectors ELMo = [ELMogy, ELMo;, ELMo, ].

ELMo claims that lower-level LSTM states capture aspects of syntax, while higher-level
states model aspects of word meaning in context. It has proven its success on different tasks
such as question answering, semantic role labeling and named entity extraction. However, it
has not been applied to the task of relation classification before. To the best of our knowledge,
the performance of ELMo across different domains of data has not been researched yet
explicitly. For our experiments, we use an officially published ELMo model> that has been
pre-trained on a 5.5 billion token general dataset and produces context sensitive token
representations ELMo € R372,

3.3.2 Flair

Flair [ABV 18] is a context-sensitive model which claims to outperform ELMo on tasks
such as named entity recognition and chunking. Similar to ELMo it leverages the internal
states of a trained language model, but uses characters as atomic units for a 1-layer biLSTM.
Flair is thus trained without any explicit notion of words and at each point in the sequence
predicts the next character. This is different from the character-aware LM used by ELMo,
which operates on word level and character convolutions.

In this work we utilise Flair embeddings trained on the 1-billion word corpus [Ch13].¢ A
Flair vector consists of the 2048 hidden states of a forward and backward LSTM, which
can be described as a hypercolumn: Flair = [Flairy, Flair, ] € R4 We try different
combinations of Flair vectors (as well as for ELMo), to see which best fits the relation
classification task in Sect. 6.3.

Shttps://allennlp.org/elmo, (Original 5.5B)
Shttps://github.com/zalandoresearch/flair/blob/master/resources/docs/
TUTORIAL_WORD_EMBEDDING.md, (news-forward/ -backward)
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4 Task: Relation Classification

We will now describe the task of relation classification and the model we utilise to investigate
the effect of task and feature domain in detail.

4.1 Task Description

The goal of relation classification is to classify semantic relations between entities into a
predefined set of categories. In order to further illustrate the problem we are dealing with in
this paper, we picture two specific relation samples for each domain, general and scientific
text, in Tab. 2. Relations are marked as reversed, if the order their entities appear in does
not match the class order (cf. Sect. 4.2).

Across domains, some tokens have ambiguous meaning. For example, while the word
“paper” is commonly associated with a material, in the scientific domain it will mostly stand
for a publication. As words may be linked to specific relation classes, representing different
appearances with a single static vector and thus ignoring the context they appear in might
lead to misclassification.

Domain Label Sample

General Component- The tailpiece anchors the strings to the lower bout of the
Whole violin by means of the tailgut.

General Instrument- Stanford researchers have coated paper with carbon nan-
Agency (rev) otubes [...].

Science Result Combination methods are an effective way of improving

system performance.
Science Usage (rev) In this paper we describe a speaker dependent system for

predicting segmental duration from text [. .. ].

Tab. 2: Examples for relation classification samples from the general and scientific domain. Relation
entities are denoted by bold font.

4.2 Feature Extraction: ClaiRE

We will use ClaiRE?” as a base system for relation classification. ClaiRE is based on an SVM
trained on a combination of word embeddings with manually crafted features. We selected
this method as the original paper has shown that both the manual features and the word
embeddings are critical for the performance on SemEval-2010 Task 8. Thus, it is reasonable
to keep the manual features fixed while swapping different word embeddings to compare
their performance.

7https://gitlab2.informatik.uni-wuerzburg.de/dmir/claire



EClaiRE: Context Matters! 197

In Tab. 3, we provide a short overview on hand-crafted lexical features constructed from
text and numeric features based on word embeddings, for more details see [Hel18]. When
constructing features for relation classification, the relevant parts of a sentence consist of
the two entities that are part of a relation and their context, meaning the words in between
entities. We distinguish between a start and end entity of a relation. If the start entity appears
after the end entity within a sentence, the direction of a relation is reversed, as can be seen
in Tab. 2.

Some features are slightly modified in this work, noted by a star in Tab. 3. In contrast
to [Hel8], we did not utilise SpaCy?® for preprocessing text and treated dist and sim as
numeric features instead of boolean to provide more information. We utilise the WordNet
Lemmatizer of nltk® for lemmatisation and the Stanford POS Tagger [To03] for Part-of-
Speech (POS) tags. Before computing features, all lemmatised context words below a certain
threshold were discarded to limit the vocabulary. Preliminary tests have shown that the
optimal lemma frequency is 5 for both datasets.

Feature Set Description
bow* BOW (lemmatised) from context
pos* Stanford POS tags from context
pospath* concatenated POS tags from context
dist* number of words in context
lc Levin classes of verbs in context
ents entity (head) without order
startEnt entity (head)of relation start
endEnt entity (head) of relation end
c embedding vector of context
el embedding vector of first entity
e embedding vector of second entity
Sink similarity score of two entity vectors
simb similarity bucket of similarity score

Tab. 3: Generated features for use in relation classification, grouped by type: lexcial context, lexical
entity and embedding features. Features which differ slightly from [He18] are marked by *.

5 Datasets: General and Scientific Relations

Since we want to compare the performance of different word embeddings across domains,
we need datasets from different domains of text. There have been multiple SemEval tasks
concerned with the task of relation classification in the past, some on general corpora and
some on data from specialised domains. We use the dataset from SemEval-2010 Task 8
(SE10-8) as an example of a “general” corpus and the dataset from SemEval-2018 Task 7
for a specialised corpus, in particular for the scientific domain.

Shttps://spacy.io/
9 nltk.stem.wordnet. WordNetLemmatizer
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SE10-8 consists of 10717 samples of semantic relations between nominals in a sentence,
collected by pattern-based web search, where 8000 samples are used for training (SE10-8y4i5)
and 2717 as a test set (SE10-8.). Each sample is labelled with one of 10 classes, see [He09]
for a detailed description. In addition to the relation label, the direction of a relation has
to be predicted for this task. We decided to model the direction as part of the label (e. g.
Cause-Effect-Reverse) instead of using a two-stage approach (i.e., predicting the label and
the direction separately) as initial experiments have shown that this performs better for
ClaiRE.

The relation classification task (task 7) of SemEval-20181° is comprised of two subtasks.
In the first subtask participants were provided with 1228 training samples and a test set
(SE18-71ean) With 355 relations, where both entities and relations were manually labelled.
The second subtask consists of 1245 training samples and a different test set (SE18-74sy)
with 355 relations, but here entities have been extracted automatically, thus introducing
noise. Samples for both subtasks stem from abstracts from the ACL Anthology Corpus.

Combining both training sets has been shown to improve performance on both sub-
tasks [Hel8], thus we form our final training set (SE18-7,i,) by combining the training
samples from both tasks. The final training set then has 2473 samples and each sample
belongs to one of the six domain-specific classes in Tab. 4. As the relation direction is not
part of the classification task it can be utilised as a feature in this case.

Note that both test sets SE18-7jean and SE18-7 455y contain classes (TOPIC, COMPARE)
that are heavily underrepresented. This leads to some artifacts in the evaluation score for
this dataset, which we will discuss in Sect. 6.2.

label SE18-7¢iean SE18-Tpoisy

COMPARE 21 5.9 % 3 0.8 %
MODEL-F. 66 18.6% 75 21.1%
PART_W. 70 19.7% 56 15.8%

RESULT 20 5.6 % 29 8.2 %
TOPIC 3 0.8 % 69 19.4%
USAGE 175 493% 123  34.6%

Tab. 4: Distribution of class labels for the SE18-7 datasets with absolute values and relative frequency.

6 Comparison of Embeddings and Datasets from Different Domains

We will now describe the experimental setup used in our relation classification evaluation
and the results we obtained.

O https://competitions.codalab.org/competitions/17422
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6.1 Experimental Setup

In order to assess the relative quality of different embeddings for a domain, we follow the
setting in [He18], using an rbf-SVM as a base classifier and the features described therein
with changes as noted in Sect. 4.2. We keep the hand-crafted features fixed while varying
the embedding-based features, constructing them from our different embeddings. We also
experiment with using a combination of multiple embeddings. In this case, we construct all
embedding features using the concatenation of the embeddings.

To further strengthen our model, we use an ensemble of 10 SVMs with shuffled training
data. As we utilise the probability estimates of an SVM to predict test labels [WLW04],
we average over all probabilities in the ensemble and predict the class with the highest
score. We use macro-averaged F1-score to evaluate our models, as the rating in both of the
SemEval tasks was based on this score. We made use of the respective official evaluation
scripts to compute the scores.

6.2 Classification Results

We report overall results for all three datasets in Tab. 5 before taking a closer look at different
embeddings.

The first line reports the best result achieved on the respective datasets by any previously
presented system. The best systems rely on rather complicated neural networks that are
specifically tuned to the task, requiring large amounts of computational power. To enable
fair comparison against an SVM-based system, the next line shows the best SVM so far as a
baseline. Taking only lexical features into consideration and excluding word embeddings
completely (w/o WE), ClaiRE exhibits insufficient performance, once again proving the
worth of word embeddings for the task of relation classification. On the other hand, using
only word embedding features and ignoring the lexical features (only WE) already performs
rather well.

The next part of the table shows the performance of ClaiRE with static word embeddings
(word2vec, GloVe, CNB and FastText) in combination with hand-crafted features. The
embeddings have been pre-trained on large general corpora (see Sect. 3). Our results show
that by utilising these embeddings, ClaiRE performs quite well on the SE10-8 dataset from
the general domain, but the performance deteriorates on the scientific datasets from SE18-7.

The opposite effect can be found for the domain-specific embedding. As expected, W2v,xiy
greatly outperforms traditional WEs on the scientific domain. On the general SE10-8 data,
however, the scientific embedding performs far worse than the general embeddings.

The final part of the table shows the performance of the context-sensitive embeddings ELMo
and Flair. For this summary we utilise the first context-sensitive ELMo-layer (ELMo;) and
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the Flair backward-layer (Flairy, ). We will take a closer look at embedding-layers in Sect. 6.3
and show the reason for that decision. While both ELMo and Flair consistently perform well
on both domains, ELMo achieves better scores on both the SE10-8 and SE18-7jca, dataset.

SE18-7 SE18-7

Model SE10-8 ] °
best 88.00% 81.72° 90.40b
best SVM 82.19¢ 75.114 81.444
w/o WE 73.15 68.58 74.10
only WE 82.42¢ 76.27¢ 85.79f
w2v 78.46 72.28 77.56
GloVe 77.45 67.03 81.21
CNB 79.20 72.18 79.12
FastText 79.50 69.21 81.57
W2Varxiy 74.90 77.76 84.47
ELMo, 83.22 80.34 84.21
Flair, 79.01 77.32 85.38

best 2-WE 83.818 81.13" 85.638

2 [Wal6] b [RHZI8] ¢ [RH10] 9 [Hel8]
®ELMo; fw2vyxiy &ELMoj/Flairp
D ELMo | /w2varxiy

Tab. 5: Results from relation classification on three datasets using different embeddings. Results are
given as macro-averaged F1-scores. The best result achieved by an SVM for each dataset is marked in
bold. Footnotes denote the embedding used on the respective datasets.

We also evaluated combinations of lexical features and two embeddings. The results are
shown in the last line of the table (best 2-WE)!!. Again, context-sensitive ELMo embeddings
contribute substantially to a very good performance, appearing in the best WE-pair of each
dataset.

Overall, ELMo is the best-performing embedding for two out of three datasets. The
automatically built dataset SE18-7,isy forms an exception, as domain-specific W2varxiy
vectors perform best for this task.But as mentioned in Sect. 5, the label distributions of the
scientific test sets are heavily skewed, thus leaving macro-F1 vulnerable to performance
shifts on very small classes. We therefore investigated micro-averaged F1-score, as it
aggregates the contributions of all classes, without noting class imbalance. In our setting,
micro-F1 consistently scores approximately 1% above macro-F1, emphasizing the good
results of our models on big classes. The only special case is, as mentioned above, W2vyxiy
on SE18-7,isy, with a macro-F1 of 85.79 and micro-F1 of only 83.94. By contrast, ELMo;
delivers results of 85.63 macro- and 86.20 micro-F1; in other words, similar macro-F1 but

I We evaluated combinations of three embeddings as well, but results did not improve.
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quite different micro-F1. Hence, the result of w2v,xiy on SE18-7 sy must be a case of
overfitting on small classes and overestimating classifier performance by usage of macro-F1.
Note that we still outperform the best previous SVM for all data sets if we add contextual
embeddings to ClaiRE.

6.3 Analysis of Contextual Layers

After comparing different word embeddings and embedding types in the previous section,
we will now look at the best configuration of context-sensitive embeddings. Both utilised
context-sensitive models produce word vectors from the internal states of different LM-layers.
As the best combination of ELMo-layers depends on the task at hand [Pe18], we investigate
relation classification performance for different configurations of ELMo- and Flair-layers.

As shown in Fig. 2a, the static ELMo-layer ELMoy performs notably worse for all three
datasets, while ELMo is the best singular layer. Combining different layers does not change
performance for relation classification considerably. For Flair we find that there exists no
clear advantage for a layer combination across datasets (cf. Fig. 2b). As the backwards-layer
Flair;, alone scores best for two out of three tasks, we chose it for our experiments in
Sect. 6.2.
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(b) Flair layers

(a) ELMo layers

Fig. 2: Results as macro-F1 for different combinations of layers from context-sensitive embeddings
(including lexical features).

6.4 Analysis of Nearest Neighbours

To illustrate the behaviour of different embedding types on two domains, general and
scientific, we present nearest neighbours in the embedding space for some ambiguous
words in Tab. 6. We determine closeness by means of cosine similarity and report five
nearest neighbours of any vocabulary entry in the case of w2v and w2v,x;y. We additionally
compute the closest word in the ELMo embedding space for a) a token appearance in
SE10-8 and b) an appearance in SE18-7 and report their associated sentences.
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As shown in Tab. 6, ambiguous word have a different meaning in the general and the scientific
domain, as is evidenced by their neighbourhood in the respective domain embeddings. In
contrast, ELMo embeds words into a vector space depending on their context, enabling
different nearest neighbours matching their word sense. We assume that this distinction
between words senses contributes to a mapping of entities to relations.

WE word (in context) nearest neighbours
w2v trees, pine tree, oak tree, evergreen tree, fir
tree tree
W2VarXiy trees, subtree, subtrees, leaf, graph
S a) An oak tree grows from an  Winter is here and the little fir tree stands
acorn. lonely in the forest.
ELMo b) We use decision trees to learn This paper describes novel and practical
the controllers. Japanese parsers that uses decision trees.
w2v string spate, slew, rash, litany, flurry
W2VarXiv strings, superstring, worldsheet, brane,
worldsheets
S a) A string of pack ponies trotted ~ 1remembered about a string of rosary beads
through the pines behind them. [...]
ELMo b) One is string similarity based We take a selection of both bag of words and
on edit distance. segment order sensitive string comparison
methods [...]

Tab. 6: Most similar words for different static embeddings and ELMo.

7 Conclusion

Our intuition was that general word embeddings would fail to capture the meaning of some
words for relation classification on scientific data, while specialised word embeddings would
in turn fail to work outside their domain. This intuition is supported by our results. We also
hypothesised that context-sensitive word embeddings would be able to generalise across
domains, as they can model multiple meanings of a word and distinguish them by their
current context. This assumption also seems to hold true, as evidenced by the consistently
great performance of ELMo and the good performance of Flair.

Overall, ECLaiRE - our combination of ClaiRE and ELMo - a simple rbf~-SVM with a
few hand-coded features and context-sensitive word embeddings, is able to outperform the
best SVM classifiers so far and even achieves similar results to a complex neural network
architecture for the SE18-7jean task. Thus, it may be useful to introduce context-sensitive
word embeddings, especially ELMo, to more relation classification datasets from different
domains.
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