
InDiReCT: Language-Guided Zero-Shot Deep Metric Learning for Images

Konstantin Kobs Michael Steininger Andreas Hotho
University of Würzburg

Am Hubland, 97074 Würzburg
{kobs,steininger,hotho}@informatik.uni-wuerzburg.de

Abstract

Common Deep Metric Learning (DML) datasets spec-
ify only one notion of similarity, e.g., two images in the
Cars196 dataset are deemed similar if they show the same
car model. We argue that depending on the application,
users of image retrieval systems have different and changing
similarity notions that should be incorporated as easily as
possible. Therefore, we present Language-Guided Zero-Shot
Deep Metric Learning (LanZ-DML) as a new DML setting in
which users control the properties that should be important
for image representations without training data by only using
natural language. To this end, we propose InDiReCT (Image
representations using Dimensionality Reduction on CLIP
embedded Texts), a model for LanZ-DML on images that
exclusively uses a few text prompts for training. InDiReCT
utilizes CLIP as a fixed feature extractor for images and
texts and transfers the variation in text prompt embeddings
to the image embedding space. Extensive experiments on five
datasets and overall thirteen similarity notions show that,
despite not seeing any images during training, InDiReCT
performs better than strong baselines and approaches the
performance of fully-supervised models. An analysis reveals
that InDiReCT learns to focus on regions of the image that
correlate with the desired similarity notion, which makes
it a fast to train and easy to use method to create custom
embedding spaces only using natural language.

1. Introduction
Deep Metric Learning (DML) is the task of training deep

neural networks that map input items to a low-dimensional
manifold such that similar items are represented by vec-
tors close to each other [22, 11]. In the usual DML setting,
training examples are needed that let the model learn which
image properties make an image pair (dis)similar. For ex-
ample, in the Cars196 dataset’s setting [15], two images are
deemed similar if they show the same car model. Factors
such as the car color, its orientation, or the image’s environ-
ment should be suppressed by the embedding process. Other

similarity notion:

car model

...

Dimensionality Reduction Dimensionality Reduction

“A photo of a Tesla Model S”,

“A photo of a FIAT 500”, ...

“A red car”, “A green car”, ...

similarity notion:

car color

Training

Inference

frozen CLIP

Image Encoder

frozen CLIP Text Encoder

te
xt

 e
xa

m
pl

es

of

 c
ha

ra
ct

er
is
ti
cs

C
L
IP

 e
m

be
dd

in
gs

te
st

 i
m

ag
es

custom car model emb. space custom car color emb. space

C
L
IP

 e
m

be
dd

in
gs

Figure 1. During InDiReCT’s training (top half), different aspects
of the desired similarity notion (e.g. car model or color) are col-
lected in form of text prompts. CLIP’s frozen text encoder embeds
them and a dimensionality reduction method is learned to extract
the dimensions that encode the similarity notion’s aspects. During
inference (bottom half), the trained dimensionality reduction is ap-
plied to CLIP encoded images to obtain custom image embeddings
representing the desired similarity notion.

datasets have different image properties to define when two
images are similar. We call this high-level interpretation
of when two inputs are deemed similar a similarity notion.
For Cars196, the similarity notion is “Two car images are
similar if they show the same car model”. During testing,
the ability of the neural network to generalize this learned
similarity notion to new unseen classes (e.g. new car models)
is measured.

Often, people have different similarity notions depending

ar
X

iv
:2

21
1.

12
76

0v
1 

 [
cs

.C
V

] 
 2

3 
N

ov
 2

02
2



on the task at hand or personal preference. It is thus desirable
to be able to quickly adapt to changing similarity notions.
However, large labeled training datasets are needed to train a
model for a new similarity notion, which is time-consuming
and tedious for users to create. We thus aim for a zero-shot
setting, where no training images and labels are needed.
We argue that users often can express the desired similarity
notion using words, e.g., “Two car images are similar if both
cars have the same color”. This is especially the case when
there are categorical aspects with names that sort the images
into disjoint classes. More specifically, users can list a set
of distinct aspects describing the similarity notion, e.g. “a
red car”, “a green car”, ... The use of language simplifies
the process of expressing custom similarity notions, which
alleviates the problem of collecting new labeled datasets.

As a first contribution of this work, we introduce a
new task called Language-Guided Zero-Shot Deep Met-
ric Learning (LanZ-DML): Given a set of images I and a
desired similarity notion S that is described using text TS .
Train a Deep Metric Learning model using only the text input
TS such that the resulting model can embed images I → Rn

to n-dimensional embedding vectors, making image embed-
dings more similar if they are deemed similar regarding the
similarity notion. For optimization, no training images or
labels are allowed (thus zero-shot).

Our second contribution is InDiReCT (Image represen-
tations using Dimensionality Reduction on CLIP embed-
ded Texts), a model for LanZ-DML that uses a list of text
prompts as input and learns a transformation that maps im-
ages to a vector space that reflects the desired similarity
notion. It utilizes the Contrastive Language-Image Pretrain-
ing (CLIP) [26] model as a static general purpose feature
extractor for images and texts. We assume that CLIP em-
beddings for images and texts encode similar concepts in
similar directions of the embedding space and that image
descriptions can focus on certain properties. For example,
the text description “a photo of a red car” focuses on the car
color and not on other features, such as the car’s position,
orientation, or environmental factors.

Figure 1 gives an overview of InDiReCT. During training,
CLIP’s fixed text encoder represents different characteristics
of a desired similarity notion S as 512-dimensional vectors,
e.g. “a red car”, “a white car”, and so on to encode the
car color. We then extract the largest variations of these
vectors in the embedding space by applying a dimensionality
reduction method to these text representations, focusing on
the changing aspects and abstracting away other non-related
dimensions. Learning the dimensionality reduction is fast
and often, only a few dozen text prompts are needed. Also,
no training images or labels are used, only text prompts.

During inference, images are fed through CLIP’s fixed
image encoder and the trained dimensionality reduction. As-
suming that CLIP’s embeddings encode similar concepts

in similar embedding space directions for both modalities,
the resulting image representations are focused on the same
dimensions as described by the text prompts. Finally, lower-
dimensional vectors can be used to find images similar to an
image w.r.t. the desired similarity notion.

For our third contribution, we provide experimental evi-
dence on five datasets and overall thirteen similarity notions,
i.e. different properties by which the image embeddings
should vary. We show that InDiReCT consistently achieves
better performance in retrieving similar images w.r.t. the
desired similarity notion than strong baselines in the zero-
shot setting and even approaches fully supervised baselines.
We also analyze the influence of changing embedding sizes,
CLIP model sizes, and number of text prompts, and visualize
the image regions InDiReCT focuses on to create image rep-
resentations. Our qualitative analysis shows that InDiReCT
pays attention to pixels that are important in identifying the
desired similarity notion. Our code is publicly available.1

2. Related Work

Deep Metric Learning (DML) aims to learn neural net-
works that map input items to low-dimensional vectors
such that similar items are close together in the embedding
space [22]. In this work, we focus on images as items, which
can be used for image retrieval [33], face recognition [6],
and image clustering [11]. Usually, the model is trained on
images, organized into classes, so binary similarity annota-
tions are readily available for each pair of data points [11].
Testing then uses a disjoint set of image classes to measure
the model’s generalization ability, but the data is semanti-
cally similar to the training data, e.g. Cars196 [15] only
shows cars and face recognition datasets [6] contain faces.

Studying DML generalization for images outside of the
training domain has recently become popular [20, 28, 19,
8, 7, 32]. However, all proposed methods to improve the
generalization performance to new datasets still use training
images. In our setting, no training images are allowed, but
only text prompts to create an embedding space specifically
tailored to a desired similarity notion. For this, we use a
fixed CLIP [26] model to extract general purpose features.

The ability to rank possible text labels for an image using
the cosine similarity of CLIP embeddings has been used
in the original paper to perform zero-shot image classifi-
cation [26]. For classification, the class names need to be
known during inference while in LanZ-DML, we create
image embedding spaces reflecting the desired similarity
notion. Hence, the model needs to be able to handle images
of unknown objects and characteristics, e.g. new car models.

Baldrati et al. use CLIP to alter fashion image embed-
dings using text prompts [1], e.g. the image of a black dress
is combined with the text “is red” to find images of red

1https://github.com/LSX-UniWue/InDiReCT



dresses. While exploiting similar properties of CLIP, we
only use text prompts for training a transformation to focus
on the desired similarity notion. Image retrieval also uses
joint text-image embeddings search for image contents using
text [18, 2]. We use text exclusively during training, not
during inference. To the best of our knowledge, no other
work has a comparable task setting or method as our paper.

3. Methodology
We now introduce InDiReCT, our method for Language-

Guided Zero-Shot Deep Metric Learning on images. It
makes use of a fixed CLIP [26] as a general-purpose fea-
ture extractor for images and texts, which encodes similar
concepts in both modalities to similar embedding directions.
CLIP consists of encoders for image and text. It is pretrained
on 400 million image-text pairs, optimized to embed both im-
ages and text such that embedding vectors of corresponding
images and texts are more similar than different image-text
pairs. Similarity is measured using cosine similarity, i.e. the
cosine of the angle between two vectors. Due to the training
task, CLIP learns to extract broad image features that can be
correlated with/expressed by language. Intuitively, we aim
to learn a transformation that focuses on the most important
features extracted by CLIP regarding the desired similarity
notion. Figure 1 shows InDiReCT’s training and inference.

3.1. Training

In the training phase, n different text prompts are created
that describe certain characteristics of the desired similarity
notion. For example, if the target images show cars and we
want to differentiate them by their color, we create a list
of texts TS such as “a red car”, “a blue car”, “a white car”,
and so on. The text prompts should only vary in the notion
that we want to differentiate (here, the color descriptions).
Note that the aspects in the training text prompts are chosen
independently from inference data, since inference labels are
not known during training and we want to generalize to new
aspects of the similarity notion as well.

When feeding all texts through CLIP’s text encoder,
the resulting r-dimensional vectors2 ti ∈ R1×r for i ∈
{1, . . . , n} vary in certain directions. This is introduced
by the change in aspects of the desired similarity notion in
the text prompts. Here, the variation of the vectors is only
explained by the change of color names in the texts.

Due to CLIP encoding similar concepts to similar em-
bedding dimensions, varying the same aspects in images
and texts should result in embeddings that vary in similar
directions. Our goal is to find these directions using the text
embeddings and suppress all other directions in the image
embedding space, which are influenced by undesired factors.
Given the n text representations ti ∈ R1×r for i ∈ 1, . . . , n,

2r = 512 for CLIP’s base model, but it is not limited to that number

we thus aim to identify the dimensions that vary the most in
order to learn a transformation that retains these directions
while reducing the embedding to r′ dimensions (similar to
dimensionality reduction techniques such as PCA [31]). For
this, we transform the text representations ti using a matrix
U ∈ Rr×r′ and reconstruct them using U⊤. We optimize U
with gradient descent to minimize reconstruction loss L:

tnorm
i =

ti
∥ti∥

(1)

t′i =
tnorm
i U

∥tnorm
i U∥ (2)

trecon
i =

t′iU
⊤

∥t′iU⊤∥ (3)

L =
1

n

n∑

i=1

arccos(tnorm
i trecon

i
⊤) . (4)

CLIP’s use of cosine similarity as a similarity measure
for embeddings disregards the length of all vectors, so we
map input vectors ti and their reconstructions to a unit hy-
persphere (Equations (1) and (3)). Then we minimize the
mean spherical distance (Equation (4)) between the input
and reconstructed vectors [12]. It is the distance between
the vectors along the surface of the hypersphere, scaling lin-
early with the vector angle. The training objective effectively
minimizes the angles between the inputs and reconstructions.

In addition, the lower-dimensional embedding projections
t′i are also mapped to a unit hypersphere (Equation (2)). This
ensures that the reconstruction only uses the angles between
the r′-dimensional vectors, keeping cosine similarity as a
similarity measure in the lower-dimensional space, while
preserving the varying directions of the text embeddings.

Since only up to a few hundred text prompts are used and
only the matrix U must be optimized, L typically converges
really fast. The whole optimization process usually finishes
in less than a minute on a common laptop’s CPU, allowing
InDiReCT to adapt to new similarity notions fast.

3.2. Inference

Given query and reference images, we feed them through
CLIP’s fixed image encoder and apply the learned trans-
formation to map these embeddings vi ∈ R1×r (i ∈
{1, . . . ,m}) to r′ dimensions on a unit hypersphere:

vnorm
i =

vi
∥vi∥

(5) v′i =
vnorm
i U

∥vnorm
i U∥ . (6)

These vectors can be compared using the cosine/dot prod-
uct similarity to find similar images w.r.t. the desired sim-
ilarity notion. Since the transformation learns to suppress
dimensions that do not vary in the text prompts, these di-
mensions are also suppressed for images, e.g., a car model
dimension in the CLIP embedding space is suppressed when
training with the similarity notion “car color”.

4. Experiments
We now perform multiple experiments using InDiReCT

and other baselines. Since we are in a zero-shot learning



setting, we have no access to labeled training images. Hy-
perparameters cannot be tuned on a validation dataset, since
labeled data is not allowed. We thus define prompts and set
hyperparameters based on commonly used values or edu-
cated guesses. This resembles the real world scenario, where
users do not have any training data at hand to verify and
optimize their input to the system.

We implement InDiReCT using PyTorch [23] and sample
the initial values of U from N (0, 0.1). We then optimize U
using Adam [13] with a learning rate of 0.01 until it does
not improve the loss L (Equation (4)) for 100 consecutive
iterations. We reduce CLIP’s vectors to 128 dimensions,
which is a common embedding size for DML models [22].

We train models and compute image embeddings for each
dataset and similarity notion. We follow the standard evalua-
tion setting of DML and measure the retrieval performance
for these embeddings using the Mean Average Precision at
R (MAP@R) and Precision at 1 (Prec@1) [22]. Results for
other evaluation metrics are in the appendix.

4.1. Datasets and Similarity Notions

We experiment with five datasets and overall thirteen
similarity notions, which are listed in Table 1. For each
dataset, we define one to four similarity notions, e.g. the
“Car Model” similarity notion of the Synthetic Cars [14] and
Cars196 [15] datasets can be expressed as “Two car images
are similar if they show the same car model”. Other notions
can be formulated accordingly. Given a similarity notion,
the datasets are split into different numbers of test classes
(shown in the “Class Count” column), e.g. we use the 98 car
models from Cars196’s test dataset. We create multiple text
prompts for each similarity notion by collecting possible as-
pects and inserting them into a prompt template (listed in the
corresponding columns). The varying aspects are collected
from different sources, such as an online car dealer website
(“Car Model” and “Manufacturer”), the CSS2.1 color names
(“Car Color” and “Background Color”), or the dataset’s
training data’s labels (e.g. “Bird Species”). This promotes
text prompts being possibly different from the test class la-
bels, ensuring a realistic DML scenario, where train and test
classes are commonly disjoint. More details on datasets,
similarity notions, and prompts are in the appendix.

4.2. Baselines

InDiReCT is the first method for Language-Guided Zero-
Shot Deep Metric Learning, i.e. it can efficiently generate
specialized embedding spaces for images based on the de-
sired similarity notions. Visualizations of embeddings pro-
duced by InDiReCT for similarity notions of the Cars196
dataset can be found in the appendix. Since InDiReCT does
not use any training images, it is not fair to compare it to
fully supervised baselines. However, we still contrast some
of InDiReCT’s results with fully supervised models and

an Oracle baseline. We use the following methods in our
experiments to get a sense of how well InDiReCT performs.

Random Baseline For this baseline, we sample r′-
dimensional embedding vectors for each image uniformly
from the unit hypersphere [5]. This baseline indicates the
performance lower bound for all methods.

CLIP [26] This baseline feeds all images through CLIP’s
image encoder and uses the unmodified r-dimensional vec-
tors as embeddings (r = 512). Due to the broad set of
features CLIP extracts, its performance should already be
quite good. However, since it does not focus on specific
dimensions, InDiReCT is assumed to perform better while
having fewer dimensions. Even more so, CLIP cannot adapt
its embeddings based on the desired similarity notion, i.e.,
it always yields the same embeddings for an image. This
limitation holds for all embedding methods that do not use
additional data regarding the desired similarity notion.

Random Transformation InDiReCT optimizes a trans-
formation that is applied to CLIP’s image embeddings to
achieve an embedding specialized towards a similarity no-
tion expressed by text. We evaluate how well the learning
procedure of InDiReCT improves the performance by leav-
ing U as initialized for testing, i.e. sampled from N (0, 0.1).
We hypothesize that this baseline should, on average, be
worse than both InDiReCT and the CLIP baseline.

Principal Component Analysis (PCA) [31] PCA is a
popular dimensionality reduction technique which finds or-
thogonal directions that explain the largest variation in the
data. We test it as a possible alternative to our proposed
method. In contrast to our method, PCA solves for principal
components analytically, requiring r′ to be strictly smaller
than the number of input data points [24]. This is not sat-
isfied for almost all scenarios in our experiments, since we
only use a few text prompts while wanting to reduce CLIP’s
embeddings to a target size of 128 dimensions. We thus can
apply PCA only on the datasets that we collect more than
128 text prompts for, i.e. the “Car Model” similarity notion
for the Synthetic Cars and Cars196 datasets.

Linear Autoencoder (LAE) The LAE is an alternative to
PCA that provably spans the same subspace while being able
to be trained using gradient descent [25]. Formally, we op-
timize the weight matrices W1 ∈ Rr×r′ , W2 ∈ Rr′×r and
bias vectors b1 ∈ R1×r′ , b2 ∈ R1×r with Adam (learn-
ing rate 0.01 and early stopping after 100 iterations) to
minimize the loss function LLAE =

∑n
i=1

∑
j((t

norm
i )j −

(W2(W1t
norm
i + b1) + b2)j)

2. Image vectors are then trans-
formed with v′i = W1v

norm
i + b1.



Table 1. Details on the datasets and similarity notions used for our experiments.
Dataset Similarity Notion Class Count Prompt Template Aspects (Count)

Synthetic Cars [14] Car Model 6 “a photo of a [car model]” Volvo S60, BMW X5 M, ... (569)

Car Color 18 “a [color name] car” orange, black, ... (18)

Background Color 18 “a car in front of a [color] background” orange, black, ... (18)

Cars196 [15] Car Model 98 “a photo of a [car model]” Volvo S60, BMW X5 M, ... (569)

Manufacturer 35 “a photo of a car produced by [manufacturer]” Tesla, BMW, ... (46)

Car Type 7 “a photo of a [car type]” convertible, SUV, ... (7)

CUB200 [29] Bird Species 100 “a photo of a [bird species]” Black footed Albatross, Rusty Blackbird, ... (100)

DeepFashion [16] Clothing Category 50 “a photo of a person wearing a [clothing category]” anorak, turtleneck, ... (50)

Texture 7 “a photo of a person wearing clothes with a [texture type] texture” floral, striped, ... (7)

Fabric 6 “a photo of a person wearing clothes made out of [fabric type]” cotton, leather, ... (6)

Fit 3 “a photo of a person wearing clothes with a [fit type] fit” tight, loose, conventional (3)

Movie Posters [3] Genre 25 “a poster of a [genre] movie” Comedy, Action, ... (25)

Production Country 69 “a poster of a movie produced in [country]” USA, India, ... (69)

Nonlinear Autoencoder (AE) While PCA and LAE are
linear models, we also test a more powerful nonlinear Au-
toencoder, which consists of a two-layer encoder and de-
coder with 512 hidden units and leaky ReLU activation func-
tions [17]. We use the same loss function and hyperparame-
ters as for LAE, but add a weight decay of 10−2 to alleviate
overfitting on the few text prompts.

Oracle InDiReCT uses only text prompts to optimize the
transformation matrix U that maps CLIP embeddings to a
more specialized, lower-dimensional unit hypersphere. To
estimate how well InDiReCT could theoretically perform,
we employ an Oracle that optimizes U directly on test images
and their labels. For this, we use the common DML loss
function Normalized Softmax Loss [33]. We first compute
unit-length image embeddings v′i as in Equations (5) and (6)
and then optimize the transformation matrix U to minimize

the loss function LOracle =
1
m

∑m
i=1 − log

(
exp(v′

ic
⊤
li
)

∑
j exp(v′

ic
⊤
j ))

)
,

where m is the number of test images and cli ∈ R1×r′ with
∥cli∥ = 1 is the prototype vector of the class for the label
of the ith image li, which is optimized jointly with U using
Adam (learning rate 0.01, early stopping with patience 100).

Note that in Language-Guided Zero-Shot Deep Metric
Learning, neither images nor their labels are available for
training. We use this baseline method in order to provide
a very optimistic estimate of what performance InDiReCT
could achieve given perfect information. The Normalized
Softmax Loss is a classification-based training objective,
so image embeddings are processed independently. Thus,
the loss does not optimize for the best nearest neighbor
performance, i.e. Precision@1. To compare the Oracle
baseline to other models, we thus primarily use MAP@R.

Low (high) Oracle performance can be used to identify
similarity notions that cannot (can) be reliably represented
using InDiReCT since they are not captured (are captured) in
the CLIP embeddings. If InDiReCT’s performs substantially
worse than the Oracle, it means that the text prompts were

not capable of capturing the desired similarity notion.

5. Results

We report the mean and standard deviation of the evalu-
ation metrics over five runs in Table 2. The CLIP baseline
typically achieves substantially better results than the ran-
dom baseline. Since the embeddings stay the same in each
run, its performance does have a standard deviation of zero
and is omitted for brevity. Despite the fact that the CLIP base-
line uses four times larger embedding vectors, InDiReCT
almost always performs better than CLIP and achieves the
best performance in most datasets and similarity notions.
Depending on the dataset and similarity notion, InDiReCT
can improve CLIP’s MAP@R score by up to 14 percentage
points. Switching the learned matrix to a random transfor-
mation matrix in InDiReCT usually performs worse than
CLIP. As described in Section 4.2, PCA is only applicable
to two datasets and similarity notions. There, InDiReCT
and PCA perform similarly. Training a Linear Autoencoder
(LAE) on the text embeddings usually improves the CLIP
baseline, but does not achieve better performance than In-
DiReCT. Applying a more complex nonlinear Autoencoder
performs oftentimes worse than the CLIP baseline and also
shows substantially larger standard deviations, which might
be due to the model not handling the few datapoints well.
These results show that choosing a suitable dimensionality
reduction technique can improve performance and opens up
new research directions. In general, InDiReCT learns a use-
ful embedding function by using text prompts that describe
different aspects of the desired similarity notion.

The Oracle baseline is optimized directly on the image
dataset and their labels. Despite all this, InDiReCT matches
or exceeds the Prec@1 performance of the Oracle baseline
for Cars196, CUB200, and the “Genre” similarity notion
for the Movie Posters dataset. As discussed in Section 4.2,
this might be due to the classification-based nature of the
Normalized Softmax Loss. For MAP@R, the Oracle is the



Table 2. Results for our experiments. All values are given in percent, best in bold.
Random CLIP (512-dim.) InDiReCT Rand. trans. PCA LAE AE Oracle

Synthetic Cars

Car Model MAP@R 3.3 ± 0.1 43.5 57.4 ± 0.2 39.1 ± 1.6 56.2 ± 0.1 52.5 ± 0.5 39.5 ± 4.4 100 ± 0.0
Prec@1 17.5 ± 0.9 95.4 96.4 ± 0.0 93.4 ± 0.5 96.6 ± 0.1 95.9 ± 0.5 88.7 ± 3.6 100 ± 0.0

Car Color MAP@R 5.0 ± 0.1 6.2 9.1 ± 0.1 6.1 ± 0.1 — 7.3 ± 0.2 8.6 ± 0.4 57.9 ± 0.9
Prec@1 17.5 ± 0.8 27.6 31.4 ± 0.5 26.3 ± 1.3 — 29.4 ± 0.9 30.2 ± 1.3 79.3 ± 0.8

Background Color MAP@R 5.4 ± 0.0 6.2 7.1 ± 0.0 6.1 ± 0.2 — 6.3 ± 0.2 6.1 ± 0.2 74.0 ± 0.9
Prec@1 19.4 ± 1.1 27.0 28.3 ± 0.3 26.6 ± 1.1 — 28.3 ± 0.7 21.6 ± 1.3 88.0 ± 0.4

Cars196

Car Model MAP@R 0.1 ± 0.0 23.5 37.4 ± 0.0 19.2 ± 0.3 37.5 ± 0.1 33.2 ± 0.2 20.0 ± 5.8 41.8 ± 0.0
Prec@1 1.1 ± 0.1 78.0 84.4 ± 0.1 72.9 ± 0.5 84.2 ± 0.1 82.4 ± 0.2 63.8 ± 8.1 76.6 ± 0.1

Manufacturer MAP@R 0.5 ± 0.0 24.4 33.6 ± 0.1 21.2 ± 0.4 — 24.2 ± 0.4 18.0 ± 2.2 51.4 ± 0.0
Prec@1 5.4 ± 0.3 89.0 90.5 ± 0.1 84.7 ± 0.8 — 85.5 ± 0.3 63.1 ± 3.9 84.0 ± 0.1

Car Type MAP@R 3.5 ± 0.0 25.1 36.1 ± 0.3 22.1 ± 0.8 — 27.7 ± 0.6 24.4 ± 1.6 73.8 ± 0.0
Prec@1 17.3 ± 0.4 91.1 90.7 ± 0.2 88.3 ± 0.5 — 89.1 ± 0.4 63.2 ± 3.1 89.1 ± 0.0

CUB200 Bird Species MAP@R 0.1 ± 0.0 18.0 26.5 ± 0.0 15.2 ± 0.3 — 18.8 ± 0.2 15.1 ± 1.9 34.1 ± 0.0
Prec@1 1.2 ± 0.1 58.2 65.3 ± 0.1 52.6 ± 0.3 — 58.1 ± 0.5 44.4 ± 3.6 65.3 ± 0.2

DeepFashion

Clothing Category MAP@R 2.3 ± 0.0 12.5 18.7 ± 0.1 11.3 ± 0.4 — 13.3 ± 0.3 16.9 ± 1.8 32.2 ± 0.1
Prec@1 11.1 ± 0.4 45.2 50.9 ± 0.2 43.0 ± 0.6 — 45.5 ± 0.5 44.5 ± 2.4 55.8 ± 0.6

Texture MAP@R 11.8 ± 0.0 18.7 33.0 ± 0.4 11.2 ± 0.4 — 22.2 ± 0.5 16.3 ± 0.7 66.1 ± 0.1
Prec@1 29.6 ± 0.7 60.2 66.8 ± 0.3 43.3 ± 0.5 — 61.2 ± 0.7 43.8 ± 1.7 80.6 ± 0.3

Fabric MAP@R 32.4 ± 0.0 34.0 37.7 ± 0.2 10.8 ± 0.3 — 35.6 ± 0.3 17.2 ± 0.6 64.2 ± 0.3
Prec@1 49.4 ± 0.6 64.5 66.1 ± 0.6 42.6 ± 0.7 — 65.1 ± 0.6 44.7 ± 1.9 77.8 ± 0.4

Fit MAP@R 51.8 ± 0.0 53.3 53.9 ± 0.4 11.1 ± 1.0 — 53.4 ± 0.3 16.1 ± 1.8 82.0 ± 0.1
Prec@1 66.6 ± 0.6 77.1 76.5 ± 0.4 43.1 ± 0.5 — 76.7 ± 0.7 42.9 ± 1.9 87.8 ± 0.6

Movie Posters
Genre MAP@R 4.1 ± 0.0 11.4 14.9 ± 0.0 9.1 ± 0.3 — 8.4 ± 0.1 9.8 ± 2.4 19.6 ± 0.1

Prec@1 17.5 ± 0.4 41.8 44.0 ± 0.2 38.1 ± 0.7 — 36.6 ± 0.4 33.3 ± 3.0 43.2 ± 0.7

Production Country MAP@R 44.6 ± 0.0 49.3 51.3 ± 0.1 48.9 ± 0.4 — 47.7 ± 0.2 49.4 ± 0.7 58.1 ± 0.0
Prec@1 59.2 ± 0.5 69.3 69.8 ± 0.3 67.9 ± 0.7 — 68.1 ± 0.3 64.9 ± 0.7 71.8 ± 0.3

best model for all datasets and similarity notions.
Even though the comparison is not fair, we contrast InDi-

ReCT’s performance with state of the art models from the
literature that train on a large labeled training dataset regard-
ing the desired similarity notion. Note that only Cars196’s
“Car Model” and CUB200’s “Bird Species” similarity no-
tions have been used in the literature in a DML setting, so we
only compare to them. Jun et al. [10] achieve Prec@1 of 94.8
and 79.2 for Cars196 and CUB200, respectively [27], which
outperform InDiReCT by ten to fourteen percentage points.
However, the trained models output 1536-dimensional vec-
tors, more than ten times the embedding dimensions we use
in our experiments. For embeddings of dimensions 128, Jun
et al. achieve 90.1 (Cars196) and 67.6 (CUB200) Prec@1,
which is only approximately six and two percentage points
better than InDiReCT. These results show that despite not
using any training images, InDiReCT can show strong per-
formance even compared to fully supervised methods.

6. Analysis

What does InDiReCT attend to in the input? We want
to visualize the image regions that are used by InDiReCT to
output a certain embedding. Due to the positive experimental
results, we assume that, for a given similarity notion, InDi-
ReCT attends to subjectively more useful regions than CLIP.
We thus compute saliency maps using the method introduced
by Kobs et al. [14] and subtract InDiReCT’s saliency maps

Image Car Model Manufacturer Car Type

Figure 2. Example images from the Cars196 dataset and the saliency
map differences between each similarity notion and CLIP. InDi-
ReCT focuses more on yellow regions, CLIP more on blue regions.
The patch patterns in the images are due to the patch creation of
CLIP’s Vision Transformer [4]. More examples in the appendix.

from CLIP’s saliency maps to qualitatively showcase the
difference between both methods.

We choose Cars196 and its similarity notions and hy-
pothesize that InDiReCT pays more attention to regions that
represent the desired similarity notion than CLIP. In order
to increase the chance of obtaining visible differences in the
saliency maps, we reduce the number of embedding dimen-
sions for InDiReCT to two, thus only extracting the most
important features to embed the given images. Figure 2
shows two example images (more in the appendix). Yellow
areas indicate image regions InDiReCT pays more attention



to than CLIP, while CLIP focuses more on blue regions.
Grey areas show similarly strong saliency.

Compared to CLIP, InDiReCT focuses more on the area
of the car when using the “Car Model” similarity notion,
which is useful for the task. Interestingly, for “Manufac-
turer”, InDiReCT mostly uses the front of the car, where
the manufacturer’s logo is usually found. Additionally, the
design of the radiator grill and headlights is often relatively
unique to manufacturers. For the “Car Type” similarity no-
tion, InDiReCT focuses more on the back of the car, as car
types such as “convertible”, “van”, or “sedan” differ mainly
in terms of trunk and roof design.

Do other embedding sizes perform differently? While
our experiments set the embedding size arbitrarily to
128, we now measure the performance on the Cars196
dataset with varying target embedding dimensions r′ ∈
{2, 4, 8, . . . , 256, 512}. We plot the MAP@R mean and
standard deviation over five runs for all methods and all
similarity notions in Figure 3. CLIP with its fixed 512 di-
mensions is plotted as a reference line.

InDiReCT matches or exceeds CLIP’s performance when
using at least 16 embedding dimensions and peaks at 64
dimensions for all three similarity notions. The learned
transformation presumably selects, combines, and weights
CLIP’s embedding dimensions such that InDiReCT even
outperforms CLIP for 512 dimensions.

Do larger CLIP models improve performance? For our
experiments, we use the CLIP model “ViT-B/32” [26], i.e.
a Vision Transformer [4] with 12 layers and input patches
of size 32 × 32 pixels. We now test larger CLIP models
as feature extractors in InDiReCT with CLIP’s “ViT-B/16”
and “ViT-L/14” versions, which change the input patches
to 16 × 16 and 14 × 14 pixels, respectively, while “ViT-
L/14” also doubles the transformer layers. Besides other
parameters, “ViT-L/14” also increases CLIP’s outputs from
512- to 768-dimensional vectors.

We test all three ViT sizes to see if larger CLIP versions
lead to better performance [26]. The “Synthetic Cars” dataset
with its similarity notions is used, since the performance of
InDiReCT is quite good for “Car Model”, but bad for “Car
Color” and “Background Color”, compared to the Oracle
baseline. With this analysis, we can investigate whether
larger models can improve performance for these similarity
notions. We use 128 embedding dimensions.

Figure 4 shows that the performance of the Oracle base-
line increases with larger models, which means that the
model extracts more useful features that could potentially be
picked up by InDiReCT. For the “Car Model” similarity no-
tion, this also translates to better performance of InDiReCT
and CLIP in general. On the other two similarity notions,
however, we cannot find any performance improvements.

Since the Oracle baseline improves, we can conclude that
the text prompts used to train InDiReCT lead to a focus on
suboptimal features for these similarity notions. Other text
prompts might increase performance.

Do more text prompts improve performance? Our final
analysis takes a closer look at how the performance of InDi-
ReCT changes if we use different numbers of prompts for
our experiments. We use the Cars196 dataset and focus on
the “Car Model” similarity notion. Originally, we use 569
different car model names from an online car dealer as a
basis for the text prompts (“a photo of a [car model name]”).
We now sample differently sized sets from these car model
names and run our experiment five times with different sam-
ples. Figure 5 shows the means and standard deviations for
sizes {10, 20, . . . , 150}. The performance increases with
larger sample sizes and converges at around 90 prompts to
the performance we observe in our main experiments. This
behavior is expected, since the learned transformation is able
to better capture the important dimensions in the text em-
beddings when more prompts are used. For fewer prompts,
InDiReCT can almost perfectly reconstruct the text embed-
dings, thus is not forced to select the important dimensions.
Figure 5 also shows that with larger prompt sets, the standard
deviation of performance tends to decrease. Overall, we can
observe that more (useful) text prompts should stabilize and
improve performance for InDiReCT.

7. Discussion
Using natural language, the proposed LanZ-DML setting

offers a simple interface for adapting item retrieval systems
to the desired similarity notion. This adaption is not achiev-
able using raw CLIP embeddings or other self-/unsupervised
methods. For InDiReCT, it is not necessary to collect and
annotate example images, which is time-consuming and te-
dious. Expressing the desired similarity notion using text
prompts is certainly simpler, but limits its application to
similarity notions with categorical aspects. However, this is
a limitation that also holds for popular proxy-based DML
loss functions such as Normalized Softmax Loss [33] or
ProxyNCA [21], i.e., loss functions that use class proto-
type vectors. It should also be noted that the quality of
text prompts might vary significantly. In our experiments,
we comply with the zero-shot setting by choosing plausi-
ble prompt templates without validating them on the data.
Overall, we achieve good performance across datasets and
similarity notions. However, as already shown for prompt
engineering [26], there might be prompts that work substan-
tially better. Often, exploiting the peculiarities of the dataset
CLIP has been trained on helps. For example, instead of
using single words as text prompts, short sentences usually
work better [26]. Therefore, it is recommended to test dif-
ferent text prompts when applied in real-world scenarios.



64 128 256 512

Embedding Size

0.0

0.2

0.4

M
A

P
@

R

Car Model

64 128 256 512

Embedding Size

0.0

0.2

0.4

Manufacturer

Random CLIP InDiReCT Rand. trans. PCA LAE AE Oracle

64 128 256 512

Embedding Size

0.0

0.2

0.4

0.6

Car Type

Figure 3. On Cars196, InDiReCT outperforms other zero-shot models for embedding sizes 16 and up, while it peaks at 64 dimensions.

ViT-B/32 ViT-B/16 ViT-L/14
0.0

0.5

1.0

M
A

P
@

R

Car Model

0.6

0.8

1.0

ViT-B/32 ViT-B/16 ViT-L/14
0.0

0.2

Car Color

Random CLIP InDiReCT Rand. trans. PCA LAE AE Oracle

0.8

1.0

ViT-B/32 ViT-B/16 ViT-L/14
0.0

Background Color

Figure 4. Larger CLIP models improve performance for the “Car Model” but not for color similarity notions on Synthetic Cars.

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

Number of prompts

0.25

0.30

0.35

M
A

P
@

R

Figure 5. Performance of InDiReCT for different number of training
prompts. We sample different car model names for each run.

Also, tuning the number of embedding dimensions is not
straightforward without validation data, leading to subopti-
mal performance when using 128- instead of 64-dimensional
vectors for the Cars196 dataset, as shown in our analysis.

Since we use CLIP as a fixed feature extractor, we need
to rely on the usefulness of its embeddings. If CLIP does not
extract properties from images and texts related to a desired
similarity notion, InDiReCT cannot show its full potential.
We have shown that InDiReCT mostly outperforms CLIP,
so the text prompts help to focus on the desired similarity
notion. Given the Oracle results, however, some datasets and
similarity notions (e.g. Synthetic Cars’ color notions) could
potentially work better. In some cases, larger CLIP models
can improve the performance as shown in our analysis.

Since we use pretrained CLIP embeddings and only a
handful of text prompts, training the dimensionality reduc-
tion is fast. It also allows us to precompute CLIP embeddings

for a whole image database and adaptively transform them
with a trained dimensionality reduction. The disadvantage
of this is that, for each search, the transformation matrix
must be applied to all vectors in the image collection. Poten-
tially, existing vector search databases [30, 9] can efficiently
incorporate the transformation to retrieve relevant images.

8. Conclusion
In this paper, we have introduced Language-Guided Zero-

Shot Deep Metric Learning (LanZ-DML), a setting where no
training data and labels but only texts are allowed to guide a
Deep Metric Learning model for a given similarity notion.
Our proposed model InDiReCT is based on fixed CLIP em-
beddings of text prompts describing the varying aspects of a
given similarity notion. We have shown that InDiReCT out-
performs strong baselines and approaches fully supervised
methods. Our analyses show that InDiReCT focuses on im-
age regions that are subjectively important for the desired
similarity notion. We have also investigated the influence of
different hyperparameters on the model performance.

Due to its simple design and fast training, InDiReCT
can be useful for users to customize the similarity notion of
item retrieval systems. The need to define multiple prompts
based on the changing aspects of a similarity notion could be
facilitated, e.g. by directly learning the transformation from
sentences such as “Two car images are similar if both cars are
the same model”. Automatic selection of hyperparameters
and developing methods for LanZ-DML on other modalities,
e.g. audio or texts, are also interesting research directions.



References
[1] Alberto Baldrati, Marco Bertini, Tiberio Uricchio, and Al-

berto Del Bimbo. Conditioned image retrieval for fashion
using contrastive learning and clip-based features. In ACM
Multimedia Asia, pages 1–5. 2021.

[2] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy,
Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu. Uniter:
Universal image-text representation learning. In European
conference on computer vision, pages 104–120. Springer,
2020.

[3] Wei-Ta Chu and Hung-Jui Guo. Movie genre classification
based on poster images with deep neural networks. In Pro-
ceedings of the Workshop on Multimodal Understanding of So-
cial, Affective and Subjective Attributes, pages 39–45, 2017.

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[5] Marsaglia George. Choosing a point from the surface of a
sphere. Ann. Math. Statist, 43:645–646, 1972.

[6] Junlin Hu, Jiwen Lu, and Yap-Peng Tan. Discriminative
deep metric learning for face verification in the wild. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1875–1882, 2014.

[7] Zhanxuan Hu, Danyang Wu, Feiping Nie, and Rong Wang.
Generalization bottleneck in deep metric learning. Informa-
tion Sciences, 581:249–261, 2021.

[8] Mengdi Huai, Hongfei Xue, Chenglin Miao, Liuyi Yao, Lu Su,
Changyou Chen, and Aidong Zhang. Deep metric learning:
The generalization analysis and an adaptive algorithm. In
IJCAI, pages 2535–2541, 2019.

[9] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale
similarity search with GPUs. IEEE Transactions on Big Data,
7(3):535–547, 2019.

[10] HeeJae Jun, Byungsoo Ko, Youngjoon Kim, Insik Kim, and
Jongtack Kim. Combination of multiple global descriptors
for image retrieval. arXiv preprint arXiv:1903.10663, 2019.

[11] Mahmut Kaya and Hasan Şakir Bilge. Deep metric learning:
A survey. Symmetry, 11(9):1066, 2019.

[12] Lyman M Kells. Plane and Spherical Trigonometry with
Tables by Lyman M. Kells, Willis F. Kern, James R. Bland. US
Armed Forces Institute, 1940.

[13] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[14] Konstantin Kobs, Michael Steininger, Andrzej Dulny, and
Andreas Hotho. Do different deep metric learning losses lead
to similar learned features? In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 10644–
10654, 2021.

[15] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
4th International IEEE Workshop on 3D Representation and
Recognition (3dRR-13), Sydney, Australia, 2013.

[16] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou
Tang. Deepfashion: Powering robust clothes recognition and
retrieval with rich annotations. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
June 2016.

[17] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rec-
tifier nonlinearities improve neural network acoustic models.
In ICML, volume 30, page 3. Citeseer, 2013.

[18] Danny Merkx, Stefan L Frank, and Mirjam Ernestus. Lan-
guage learning using speech to image retrieval. arXiv preprint
arXiv:1909.03795, 2019.

[19] Timo Milbich, Karsten Roth, Biagio Brattoli, and Björn Om-
mer. Sharing matters for generalization in deep metric learn-
ing. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(1):416–427, 2020.

[20] Timo Milbich, Karsten Roth, Samarth Sinha, Ludwig
Schmidt, Marzyeh Ghassemi, and Bjorn Ommer. Charac-
terizing generalization under out-of-distribution shifts in deep
metric learning. Advances in Neural Information Processing
Systems, 34, 2021.

[21] Yair Movshovitz-Attias, Alexander Toshev, Thomas K Leung,
Sergey Ioffe, and Saurabh Singh. No fuss distance metric
learning using proxies. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 360–368,
2017.

[22] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A metric
learning reality check. In European Conference on Computer
Vision, pages 681–699. Springer, 2020.

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates,
Inc., 2019.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[25] Elad Plaut. From principal subspaces to principal components
with linear autoencoders. arXiv preprint arXiv:1804.10253,
2018.

[26] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision.
In International Conference on Machine Learning, pages
8748–8763. PMLR, 2021.

[27] Steffen Rendle. Evaluation metrics for item recommendation
under sampling. arXiv preprint arXiv:1912.02263, 2019.

[28] Karsten Roth, Timo Milbich, Samarth Sinha, Prateek Gupta,
Björn Ommer, and Joseph Paul Cohen. Revisiting train-



ing strategies and generalization performance in deep metric
learning, 2020.

[29] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. Technical Re-
port CNS-TR-2011-001, California Institute of Technology,
2011.

[30] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu,
Shengjun Li, Xiangyu Wang, Xiangzhou Guo, Chengming
Li, Xiaohai Xu, et al. Milvus: A purpose-built vector data
management system. In Proceedings of the 2021 International
Conference on Management of Data, pages 2614–2627, 2021.

[31] Svante Wold, Kim Esbensen, and Paul Geladi. Principal
component analysis. Chemometrics and intelligent laboratory
systems, 2(1-3):37–52, 1987.

[32] Xinyi Xu, Huanhuan Cao, Yanhua Yang, Erkun Yang, and
Cheng Deng. Zero-shot metric learning. In IJCAI, pages
3996–4002, 2019.

[33] Andrew Zhai and Hao-Yu Wu. Classification is a
strong baseline for deep metric learning. arXiv preprint
arXiv:1811.12649, 2018.



Appendix for “InDiReCT: Language-Guided Zero-Shot Deep

Metric Learning for Images”

Konstantin Kobs Michael Steininger Andreas Hotho

1 Full Results

In Table 1, we show all evaluation metric results for our experiments. Namely, these are Mean Aver-
age Precision at R (MAP@R) [22], Precision at 1 (Prec@1), R-Precision (R-Prec), Adjusted Mutual
Information (AMI), Normalized Mutual Information (NMI), Mean Average Precision (MAP), and
Mean Reciprocal Rank (MRR). For a overview of different evaluation metrics in the context of
Deep Metric Learning, we refer the reader to the appendix of the paper by Roth et al. [28].

2 Details of Datasets and Similarity Notions

We experiment with five datasets and overall thirteen similarity notions. In the following, we give
more insights into the datasets, their similarity notions, and how we obtained aspects that were
embedded in the string templates.

2.1 Synthetic Cars [14]

This dataset contains 3D-rendered car images with different car models, car colors, background
colors, car orientations, sun positions, and camera angles, all sampled independently at random.
We use the first 1000 images to speed up evaluation (not training, since no images are used for
training).

Since the images have annotated image properties, we are able to use different properties as
different similarity notions. Note that we do not use the provided labels for training, only for
evaluation. We use the following similarity notions and corresponding text prompts:

• Car model (“Two car images are similar if they show the same car model”): The dataset
provides six different car models. To train the dimensionality reduction, we use a list of
car models scraped from an online car dealer.1 Each of the 569 car model’s name is then
embedded in the text prompt template “a photo of a [car model]”.

• Car color (“Two car images are similar if both cars have the same color”): The dataset
samples the car and background colors uniformly from the hue, saturation, and value (HSV)
color space. To get binary similarities for evaluation, we find the nearest CSS2.1 color name
(overall 18 possible colors, e.g. “orange”, “black”) for each HSV color. We use all color names
in the string template “a [color name] car” as text prompts.

• Background color (“Two images are similar if they show the same background color”): We
use the same process as for the car color but only change the text prompt template to “a car
in front of a [color] background”.

1https://www.kbb.com/car-make-model-list/new/view-all/make/

1

ar
X

iv
:2

21
1.

12
76

0v
1 

 [
cs

.C
V

] 
 2

3 
N

ov
 2

02
2



2.2 Cars196 [15]

Cars196 is a common dataset in Deep Metric Learning, which features 16 185 real world car images.
Usually, it is split into 196 classes, each one representing images of one car model. As commonly
done in Deep Metric Learning papers, we use the second half of the classes (8131 images) for
the evaluation to be able to compare our method to methods from the literature that are trained
explicitly on the training split of the dataset.

The following similarity notions and string templates are used:

• Car model (“Two car images are similar if they show the same car model”): The default
definition for this dataset. We use the same list of car models and the same text prompt
template as for the synthetic car dataset.

• Manufacturer (“Two car images are similar if both cars have the same manufacturer”):
This is a superset of classes from the car model definition, i.e. the multiple car models belong
to one manufacturer. In the test dataset, there are 35 different car manufacturers. We use the
template “a photo of a car produced by [manufacturer]” with all 46 manufacturers extracted
from the same website as for the car models.

• Car type (“Two car images are similar if both cars have the same car type”): Car types like
convertibles, SUV’s etc. are coming from different manufacturers, but usually look similar.
Cars196’s dataset has seven different car types, which are also used for prompting, since there
are only a certain amount of car types. They are embedded in the template string “a photo
of a [car type]”.

2.3 CUB200 [29]

CUB200 is a commonly used dataset in Deep Metric Learning, consisting of images showing birds,
usually grouped by bird species. While the dataset has 200 classes, we again use the second half
of classes for evaluation. Due to the lack of additional metadata for each image, we only use the
default similarity notion for evaluation:

• Bird species (“Two bird images are similar if they show the same bird species”): As text
prompts, we use the very generic “a photo of a [bird species]” with all bird species used in
the training dataset. This ensures that the test class names are not used in our method.

2.4 DeepFashion [16]

The dataset contains images of persons wearing different clothes. It has 4000 test images we use
for evaluation. The similarity notions and the corresponding text prompts for training are:

• Category (“Two clothing images are similar if they show the same type of clothing”): 50
categories are available in the dataset (e.g. “Anorak”, “Turtleneck”). We use all categories
in our text prompts with template “a photo of a person wearing a [clothing category]”.

• Texture (“Two clothing images are similar if they share the same texture”): There are seven
different texture types in the dataset (e.g. “striped”). We use all of them for our prompts
with template “a photo of a person wearing clothes with a [texture type] texture”.

• Fabrics (“Two clothing images are similar if they use the same kind of fabric”): We use all
six different fabric types (e.g. “cotton”) in the template “a photo of a person wearing clothes
made out of [fabric type]”.

2



• Fit (“Two clothing images are similar if they have the same fit”): We use all three fit types
(“tight”, “loose”, “conventional”) in “a photo of a person wearing clothes with a [fit type]
fit”.

2.5 Movie Posters [3]

This is a dataset of movie posters and corresponding metadata about the movie. We overall are
able to read 8052 different movie posters and use them in our experiments. While this dataset is
not a commonly used dataset in Deep Metric Learning, it still can be used in our setting and with
an interesting task: Finding similar movie posters and thus movies based on the desired similarity
notion.

We use the following definitions and prompt templates:

• Genre (“Two movie posters are similar if both films share the same genre”): This similarity
notion assumes that there are visual clues in the movie posters that indicate the genre. We
argue that this is the case, at least for certain genres, such as action movies, where the
protagonist is often shown with a gun while looking serious. There are 25 genres (each movie
can have multiple genres, so we only take the main one) in the dataset that we use in the
string template “a poster of a [genre] movie”.

• Production country (“Two movie posters are similar if both films were mainly produced
in one country”): There are 69 different production countries listed for the dataset (we again
use only the main one if there are multiple for one movie). We use all of these countries in
the string template “a poster of a movie produced in [country]”. Again, the task assumes
that the main production country is somehow visible in the movie poster, which is usually
true for, for example, movies from the USA and India.

3 Saliency Maps

Figure 2 shows six randomly chosen example images from the Cars196 [15] dataset. As in the
main paper, we compute the saliency maps for CLIP and each of InDiReCT’ similarity notions and
visualize their difference.

4 Embedding Space Visualizations

We visualize the embeddings produces by InDiReCT for multiple similarity notions of the Cars196
dataset using TriMap [?]. In addition to the “Car Model”, “Car Manufacturer”, and “Car Type”
similarity notions, we also add the “Car Color” similarity notion, which is not present in the
original dataset’s metadata. For visualization purposes only, we rudimentary label each image with
one of eight colors (‘black’, ‘blue’, ‘white’, ‘yellow’, ‘silver’, ‘red’, ‘mixed’, ‘other’). Note that since
InDiReCT does not need labeled images, this process was only necessary for this visualization of
the embedding space. The visualizations still show that cars with the same properties are clustered
relatively well, even though InDiReCT does not use any training images but only text prompts.

3



References

[1] Alberto Baldrati, Marco Bertini, Tiberio Uricchio, and Alberto Del Bimbo. Conditioned image
retrieval for fashion using contrastive learning and clip-based features. In ACM Multimedia
Asia, pages 1–5. 2021.

[2] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng,
and Jingjing Liu. Uniter: Universal image-text representation learning. In European conference
on computer vision, pages 104–120. Springer, 2020.

[3] Wei-Ta Chu and Hung-Jui Guo. Movie genre classification based on poster images with deep
neural networks. In Proceedings of the Workshop on Multimodal Understanding of Social,
Affective and Subjective Attributes, pages 39–45, 2017.

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

[5] Marsaglia George. Choosing a point from the surface of a sphere. Ann. Math. Statist, 43:645–
646, 1972.

[6] Junlin Hu, Jiwen Lu, and Yap-Peng Tan. Discriminative deep metric learning for face veri-
fication in the wild. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1875–1882, 2014.

[7] Zhanxuan Hu, Danyang Wu, Feiping Nie, and Rong Wang. Generalization bottleneck in deep
metric learning. Information Sciences, 581:249–261, 2021.

[8] Mengdi Huai, Hongfei Xue, Chenglin Miao, Liuyi Yao, Lu Su, Changyou Chen, and Aidong
Zhang. Deep metric learning: The generalization analysis and an adaptive algorithm. In
IJCAI, pages 2535–2541, 2019.

[9] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs.
IEEE Transactions on Big Data, 7(3):535–547, 2019.

[10] HeeJae Jun, Byungsoo Ko, Youngjoon Kim, Insik Kim, and Jongtack Kim. Combination of
multiple global descriptors for image retrieval. arXiv preprint arXiv:1903.10663, 2019.

[11] Mahmut Kaya and Hasan Şakir Bilge. Deep metric learning: A survey. Symmetry, 11(9):1066,
2019.

[12] Lyman M Kells. Plane and Spherical Trigonometry with Tables by Lyman M. Kells, Willis F.
Kern, James R. Bland. US Armed Forces Institute, 1940.

[13] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[14] Konstantin Kobs, Michael Steininger, Andrzej Dulny, and Andreas Hotho. Do different deep
metric learning losses lead to similar learned features? In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 10644–10654, 2021.

[15] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for
fine-grained categorization. In 4th International IEEE Workshop on 3D Representation and
Recognition (3dRR-13), Sydney, Australia, 2013.

[16] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou Tang. Deepfashion: Powering ro-
bust clothes recognition and retrieval with rich annotations. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2016.

4



[17] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural
network acoustic models. In ICML, volume 30, page 3. Citeseer, 2013.

[18] Danny Merkx, Stefan L Frank, and Mirjam Ernestus. Language learning using speech to image
retrieval. arXiv preprint arXiv:1909.03795, 2019.

[19] Timo Milbich, Karsten Roth, Biagio Brattoli, and Björn Ommer. Sharing matters for gen-
eralization in deep metric learning. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(1):416–427, 2020.

[20] Timo Milbich, Karsten Roth, Samarth Sinha, Ludwig Schmidt, Marzyeh Ghassemi, and Bjorn
Ommer. Characterizing generalization under out-of-distribution shifts in deep metric learning.
Advances in Neural Information Processing Systems, 34, 2021.

[21] Yair Movshovitz-Attias, Alexander Toshev, Thomas K Leung, Sergey Ioffe, and Saurabh Singh.
No fuss distance metric learning using proxies. In Proceedings of the IEEE International
Conference on Computer Vision, pages 360–368, 2017.

[22] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A metric learning reality check. In
European Conference on Computer Vision, pages 681–699. Springer, 2020.

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F.
d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[25] Elad Plaut. From principal subspaces to principal components with linear autoencoders. arXiv
preprint arXiv:1804.10253, 2018.

[26] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021.

[27] Steffen Rendle. Evaluation metrics for item recommendation under sampling. arXiv preprint
arXiv:1912.02263, 2019.

[28] Karsten Roth, Timo Milbich, Samarth Sinha, Prateek Gupta, Björn Ommer, and Joseph Paul
Cohen. Revisiting training strategies and generalization performance in deep metric learning,
2020.

[29] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-
200-2011 Dataset. Technical Report CNS-TR-2011-001, California Institute of Technology,
2011.

[30] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xiangyu Wang,
Xiangzhou Guo, Chengming Li, Xiaohai Xu, et al. Milvus: A purpose-built vector data
management system. In Proceedings of the 2021 International Conference on Management of
Data, pages 2614–2627, 2021.

5



[31] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemometrics
and intelligent laboratory systems, 2(1-3):37–52, 1987.

[32] Xinyi Xu, Huanhuan Cao, Yanhua Yang, Erkun Yang, and Cheng Deng. Zero-shot metric
learning. In IJCAI, pages 3996–4002, 2019.

[33] Andrew Zhai and Hao-Yu Wu. Classification is a strong baseline for deep metric learning.
arXiv preprint arXiv:1811.12649, 2018.

6



Table 1: Results for our experiments on five datasets and thirteen similarity notions.
Random CLIP InDiReCT Rand. trans. PCA LAE AE Oracle

Synthetic Cars

Car Model

MAP@R 0.033 ± 0.001 0.435 0.574 ± 0.002 0.391 ± 0.016 0.562 ± 0.001 0.526 ± 0.005 0.395 ± 0.044 1.000 ± 0.000
Prec@1 0.175 ± 0.009 0.954 0.964 ± 0.000 0.934 ± 0.005 0.966 ± 0.001 0.959 ± 0.005 0.887 ± 0.036 1.000 ± 0.000
R-Prec 0.167 ± 0.001 0.548 0.662 ± 0.001 0.510 ± 0.014 0.653 ± 0.001 0.624 ± 0.004 0.517 ± 0.036 1.000 ± 0.000

AMI -0.000 ± 0.002 0.623 0.737 ± 0.006 0.559 ± 0.086 0.730 ± 0.004 0.713 ± 0.010 0.539 ± 0.060 0.896 ± 0.000
NMI 0.007 ± 0.002 0.626 0.738 ± 0.006 0.562 ± 0.085 0.732 ± 0.004 0.715 ± 0.010 0.542 ± 0.059 0.897 ± 0.000
MAP 0.172 ± 0.001 0.591 0.716 ± 0.002 0.546 ± 0.016 0.706 ± 0.001 0.675 ± 0.005 0.551 ± 0.041 1.000 ± 0.000
MRR 0.367 ± 0.009 0.974 0.980 ± 0.000 0.961 ± 0.003 0.981 ± 0.000 0.977 ± 0.003 0.928 ± 0.024 1.000 ± 0.000

Car Color

MAP@R 0.050 ± 0.001 0.062 0.091 ± 0.001 0.061 ± 0.001 — 0.073 ± 0.002 0.086 ± 0.004 0.579 ± 0.009
Prec@1 0.175 ± 0.008 0.276 0.314 ± 0.005 0.263 ± 0.013 — 0.294 ± 0.009 0.302 ± 0.013 0.793 ± 0.008
R-Prec 0.174 ± 0.001 0.198 0.250 ± 0.002 0.196 ± 0.002 — 0.218 ± 0.001 0.238 ± 0.004 0.676 ± 0.007

AMI -0.003 ± 0.004 0.029 0.170 ± 0.003 0.027 ± 0.008 — 0.073 ± 0.002 0.156 ± 0.016 0.629 ± 0.009
NMI 0.058 ± 0.004 0.088 0.220 ± 0.003 0.086 ± 0.008 — 0.129 ± 0.002 0.207 ± 0.015 0.652 ± 0.008
MAP 0.179 ± 0.001 0.197 0.247 ± 0.002 0.196 ± 0.002 — 0.213 ± 0.001 0.236 ± 0.005 0.712 ± 0.007
MRR 0.336 ± 0.007 0.451 0.493 ± 0.003 0.439 ± 0.014 — 0.474 ± 0.008 0.477 ± 0.011 0.859 ± 0.006

Background
Color

MAP@R 0.054 ± 0.000 0.062 0.071 ± 0.000 0.061 ± 0.002 — 0.063 ± 0.002 0.061 ± 0.002 0.740 ± 0.009
Prec@1 0.194 ± 0.011 0.270 0.283 ± 0.003 0.266 ± 0.011 — 0.283 ± 0.007 0.216 ± 0.013 0.880 ± 0.004
R-Prec 0.183 ± 0.001 0.200 0.218 ± 0.001 0.199 ± 0.003 — 0.204 ± 0.003 0.197 ± 0.004 0.805 ± 0.007

AMI 0.004 ± 0.003 0.017 0.089 ± 0.003 0.025 ± 0.012 — 0.039 ± 0.006 0.048 ± 0.018 0.686 ± 0.008
NMI 0.065 ± 0.002 0.076 0.144 ± 0.003 0.084 ± 0.011 — 0.097 ± 0.006 0.106 ± 0.017 0.705 ± 0.008
MAP 0.188 ± 0.000 0.203 0.218 ± 0.000 0.202 ± 0.002 — 0.205 ± 0.002 0.200 ± 0.004 0.831 ± 0.007
MRR 0.356 ± 0.007 0.444 0.462 ± 0.003 0.439 ± 0.008 — 0.453 ± 0.003 0.391 ± 0.013 0.920 ± 0.003

Cars196

Car Model

MAP@R 0.001 ± 0.000 0.235 0.374 ± 0.000 0.192 ± 0.003 0.375 ± 0.001 0.332 ± 0.002 0.200 ± 0.058 0.418 ± 0.000
Prec@1 0.011 ± 0.001 0.780 0.844 ± 0.001 0.729 ± 0.005 0.842 ± 0.001 0.824 ± 0.002 0.638 ± 0.081 0.766 ± 0.001
R-Prec 0.010 ± 0.000 0.354 0.486 ± 0.000 0.309 ± 0.005 0.487 ± 0.001 0.450 ± 0.002 0.326 ± 0.058 0.545 ± 0.000

AMI -0.000 ± 0.001 0.634 0.766 ± 0.002 0.597 ± 0.010 0.771 ± 0.002 0.738 ± 0.008 0.606 ± 0.073 0.803 ± 0.000
NMI 0.142 ± 0.001 0.685 0.798 ± 0.002 0.653 ± 0.008 0.803 ± 0.002 0.774 ± 0.007 0.661 ± 0.062 0.831 ± 0.000
MAP 0.011 ± 0.000 0.335 0.501 ± 0.000 0.281 ± 0.005 0.504 ± 0.000 0.456 ± 0.003 0.305 ± 0.070 0.573 ± 0.000
MRR 0.047 ± 0.002 0.853 0.898 ± 0.000 0.815 ± 0.004 0.897 ± 0.000 0.885 ± 0.001 0.745 ± 0.063 0.844 ± 0.000

Manufacturer

MAP@R 0.005 ± 0.000 0.244 0.336 ± 0.001 0.212 ± 0.004 — 0.242 ± 0.004 0.180 ± 0.022 0.514 ± 0.000
Prec@1 0.054 ± 0.003 0.890 0.905 ± 0.001 0.847 ± 0.008 — 0.855 ± 0.003 0.631 ± 0.039 0.840 ± 0.001
R-Prec 0.054 ± 0.000 0.363 0.445 ± 0.001 0.333 ± 0.004 — 0.362 ± 0.004 0.309 ± 0.021 0.622 ± 0.000

AMI 0.001 ± 0.001 0.544 0.631 ± 0.002 0.509 ± 0.014 — 0.535 ± 0.008 0.436 ± 0.026 0.725 ± 0.001
NMI 0.023 ± 0.001 0.555 0.640 ± 0.002 0.520 ± 0.013 — 0.546 ± 0.008 0.449 ± 0.026 0.732 ± 0.001
MAP 0.055 ± 0.000 0.358 0.461 ± 0.001 0.321 ± 0.005 — 0.355 ± 0.005 0.293 ± 0.024 0.655 ± 0.000
MRR 0.155 ± 0.002 0.928 0.938 ± 0.001 0.899 ± 0.005 — 0.904 ± 0.003 0.737 ± 0.030 0.891 ± 0.000

Car Type

MAP@R 0.035 ± 0.000 0.251 0.361 ± 0.003 0.221 ± 0.008 — 0.277 ± 0.006 0.244 ± 0.016 0.738 ± 0.000
Prec@1 0.173 ± 0.004 0.911 0.907 ± 0.002 0.883 ± 0.005 — 0.891 ± 0.004 0.632 ± 0.031 0.891 ± 0.000
R-Prec 0.171 ± 0.000 0.407 0.509 ± 0.003 0.381 ± 0.008 — 0.437 ± 0.006 0.420 ± 0.015 0.802 ± 0.000

AMI -0.000 ± 0.000 0.371 0.479 ± 0.012 0.317 ± 0.024 — 0.409 ± 0.011 0.390 ± 0.032 0.744 ± 0.001
NMI 0.001 ± 0.000 0.372 0.480 ± 0.012 0.318 ± 0.024 — 0.410 ± 0.011 0.391 ± 0.032 0.744 ± 0.001
MAP 0.172 ± 0.000 0.413 0.531 ± 0.003 0.383 ± 0.008 — 0.446 ± 0.006 0.421 ± 0.017 0.844 ± 0.000
MRR 0.356 ± 0.003 0.946 0.942 ± 0.001 0.928 ± 0.003 — 0.933 ± 0.002 0.753 ± 0.022 0.929 ± 0.000

CUB200 Bird Species

MAP@R 0.001 ± 0.000 0.180 0.265 ± 0.000 0.152 ± 0.003 — 0.188 ± 0.002 0.151 ± 0.019 0.341 ± 0.000
Prec@1 0.012 ± 0.001 0.582 0.653 ± 0.001 0.526 ± 0.003 — 0.581 ± 0.005 0.444 ± 0.036 0.653 ± 0.002
R-Prec 0.013 ± 0.000 0.297 0.386 ± 0.000 0.265 ± 0.004 — 0.306 ± 0.002 0.261 ± 0.022 0.474 ± 0.000

AMI 0.000 ± 0.002 0.562 0.659 ± 0.003 0.520 ± 0.009 — 0.578 ± 0.010 0.483 ± 0.024 0.736 ± 0.002
NMI 0.160 ± 0.002 0.627 0.711 ± 0.002 0.593 ± 0.007 — 0.642 ± 0.008 0.564 ± 0.020 0.777 ± 0.002
MAP 0.015 ± 0.000 0.268 0.379 ± 0.000 0.235 ± 0.004 — 0.282 ± 0.003 0.241 ± 0.023 0.488 ± 0.000
MRR 0.055 ± 0.001 0.704 0.758 ± 0.001 0.656 ± 0.002 — 0.702 ± 0.003 0.579 ± 0.033 0.758 ± 0.001

DeepFashion

Clothing
Category

MAP@R 0.023 ± 0.000 0.125 0.187 ± 0.001 0.113 ± 0.004 — 0.133 ± 0.003 0.169 ± 0.018 0.322 ± 0.001
Prec@1 0.111 ± 0.004 0.452 0.509 ± 0.002 0.430 ± 0.006 — 0.455 ± 0.005 0.445 ± 0.024 0.558 ± 0.006
R-Prec 0.109 ± 0.000 0.247 0.322 ± 0.001 0.230 ± 0.003 — 0.256 ± 0.003 0.302 ± 0.020 0.449 ± 0.001

AMI -0.001 ± 0.002 0.239 0.350 ± 0.003 0.228 ± 0.010 — 0.266 ± 0.009 0.297 ± 0.027 0.439 ± 0.001
NMI 0.049 ± 0.002 0.276 0.383 ± 0.003 0.266 ± 0.009 — 0.303 ± 0.009 0.333 ± 0.026 0.467 ± 0.001
MAP 0.111 ± 0.000 0.226 0.307 ± 0.001 0.213 ± 0.003 — 0.238 ± 0.004 0.290 ± 0.020 0.449 ± 0.001
MRR 0.242 ± 0.004 0.588 0.631 ± 0.002 0.565 ± 0.004 — 0.585 ± 0.004 0.577 ± 0.022 0.668 ± 0.003

Texture

MAP@R 0.118 ± 0.000 0.187 0.330 ± 0.004 0.112 ± 0.004 — 0.222 ± 0.005 0.163 ± 0.007 0.661 ± 0.001
Prec@1 0.296 ± 0.007 0.602 0.668 ± 0.003 0.433 ± 0.005 — 0.612 ± 0.007 0.438 ± 0.017 0.806 ± 0.003
R-Prec 0.294 ± 0.000 0.358 0.480 ± 0.004 0.229 ± 0.004 — 0.388 ± 0.004 0.296 ± 0.008 0.743 ± 0.000

AMI 0.000 ± 0.000 0.081 0.305 ± 0.014 0.224 ± 0.005 — 0.143 ± 0.012 0.295 ± 0.014 0.551 ± 0.001
NMI 0.003 ± 0.000 0.083 0.307 ± 0.014 0.262 ± 0.004 — 0.145 ± 0.012 0.330 ± 0.013 0.553 ± 0.001
MAP 0.295 ± 0.000 0.363 0.496 ± 0.004 0.211 ± 0.004 — 0.395 ± 0.005 0.282 ± 0.009 0.767 ± 0.000
MRR 0.479 ± 0.006 0.723 0.768 ± 0.001 0.568 ± 0.003 — 0.728 ± 0.004 0.573 ± 0.016 0.865 ± 0.002

Fabric

MAP@R 0.324 ± 0.000 0.340 0.377 ± 0.002 0.108 ± 0.003 — 0.356 ± 0.003 0.172 ± 0.006 0.642 ± 0.003
Prec@1 0.494 ± 0.006 0.645 0.661 ± 0.006 0.426 ± 0.007 — 0.650 ± 0.006 0.447 ± 0.019 0.778 ± 0.004
R-Prec 0.498 ± 0.000 0.526 0.560 ± 0.002 0.224 ± 0.004 — 0.539 ± 0.002 0.307 ± 0.005 0.735 ± 0.002

AMI 0.000 ± 0.000 0.049 0.119 ± 0.004 0.219 ± 0.012 — 0.079 ± 0.012 0.302 ± 0.010 0.403 ± 0.006
NMI 0.003 ± 0.000 0.051 0.121 ± 0.004 0.257 ± 0.011 — 0.081 ± 0.012 0.337 ± 0.010 0.405 ± 0.006
MAP 0.499 ± 0.000 0.524 0.556 ± 0.002 0.208 ± 0.004 — 0.536 ± 0.003 0.294 ± 0.004 0.746 ± 0.002
MRR 0.636 ± 0.004 0.764 0.775 ± 0.003 0.564 ± 0.005 — 0.767 ± 0.004 0.580 ± 0.015 0.848 ± 0.003

Fit

MAP@R 0.518 ± 0.000 0.533 0.539 ± 0.004 0.111 ± 0.010 — 0.534 ± 0.003 0.161 ± 0.018 0.820 ± 0.001
Prec@1 0.666 ± 0.006 0.771 0.765 ± 0.004 0.431 ± 0.005 — 0.767 ± 0.007 0.429 ± 0.019 0.878 ± 0.006
R-Prec 0.666 ± 0.000 0.675 0.680 ± 0.001 0.227 ± 0.009 — 0.677 ± 0.001 0.294 ± 0.017 0.871 ± 0.001

AMI -0.000 ± 0.000 0.002 0.003 ± 0.001 0.217 ± 0.008 — 0.013 ± 0.004 0.284 ± 0.017 0.376 ± 0.002
NMI 0.000 ± 0.000 0.002 0.004 ± 0.001 0.255 ± 0.008 — 0.013 ± 0.004 0.320 ± 0.016 0.377 ± 0.002
MAP 0.667 ± 0.000 0.685 0.689 ± 0.002 0.211 ± 0.009 — 0.685 ± 0.002 0.320 ± 0.016 0.879 ± 0.001
MRR 0.772 ± 0.005 0.850 0.846 ± 0.003 0.566 ± 0.003 — 0.845 ± 0.003 0.565 ± 0.017 0.919 ± 0.003

Movie Posters

Genre

MAP@R 0.041 ± 0.000 0.114 0.149 ± 0.000 0.091 ± 0.003 — 0.084 ± 0.001 0.098 ± 0.024 0.196 ± 0.001
Prec@1 0.175 ± 0.004 0.418 0.440 ± 0.002 0.381 ± 0.007 — 0.366 ± 0.004 0.333 ± 0.030 0.432 ± 0.007
R-Prec 0.174 ± 0.000 0.273 0.306 ± 0.000 0.246 ± 0.003 — 0.237 ± 0.001 0.248 ± 0.031 0.364 ± 0.001

AMI 0.000 ± 0.000 0.186 0.196 ± 0.003 0.150 ± 0.004 — 0.101 ± 0.007 0.107 ± 0.044 0.254 ± 0.001
NMI 0.013 ± 0.000 0.196 0.206 ± 0.003 0.160 ± 0.004 — 0.112 ± 0.007 0.118 ± 0.043 0.263 ± 0.001
MAP 0.175 ± 0.000 0.261 0.298 ± 0.000 0.236 ± 0.003 — 0.227 ± 0.001 0.242 ± 0.028 0.354 ± 0.001
MRR 0.346 ± 0.005 0.573 0.587 ± 0.001 0.540 ± 0.005 — 0.529 ± 0.004 0.495 ± 0.027 0.579 ± 0.006

Production
Country

MAP@R 0.446 ± 0.000 0.493 0.513 ± 0.001 0.489 ± 0.004 — 0.477 ± 0.002 0.494 ± 0.007 0.581 ± 0.000
Prec@1 0.592 ± 0.005 0.693 0.698 ± 0.003 0.679 ± 0.007 — 0.681 ± 0.003 0.649 ± 0.007 0.718 ± 0.003
R-Prec 0.592 ± 0.000 0.625 0.639 ± 0.001 0.621 ± 0.002 — 0.613 ± 0.001 0.624 ± 0.006 0.693 ± 0.000

AMI -0.000 ± 0.001 0.063 0.076 ± 0.001 0.057 ± 0.002 — 0.048 ± 0.002 0.047 ± 0.007 0.110 ± 0.001
NMI 0.046 ± 0.001 0.106 0.118 ± 0.001 0.100 ± 0.002 — 0.093 ± 0.002 0.091 ± 0.007 0.150 ± 0.001
MAP 0.592 ± 0.000 0.634 0.648 ± 0.001 0.629 ± 0.003 — 0.620 ± 0.001 0.629 ± 0.005 0.692 ± 0.000
MRR 0.692 ± 0.003 0.770 0.773 ± 0.001 0.760 ± 0.003 — 0.760 ± 0.001 0.739 ± 0.005 0.788 ± 0.002

7



Image Car Model Manufacturer Car Type

Figure 1: Randomly chosen example images from the Cars196 dataset and the differences in saliency
maps between each similarity notion and CLIP. Yellow regions denote that InDiReCT pays more
attention to that region than CLIP.

8



−50 −25 0 25 50

−40

−20

0

20

40

Car Model

−40 −20 0 20 40 60

−20

0

20

40

60

Car Manufacturer

−40 −20 0 20 40 60

−40

−20

0

20

40

Car Type

−50 0 50

−40

−20

0

20

40

60

Car Color

Figure 2: TriMap visualizations for multiple similarity notions of the Cars196 dataset.

9


