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Abstract

Text document clustering plays an important role
in providing intuitive navigation and browsing
mechanisms by organizing large amounts of in-
formation into a small number of meaningful
clusters. The bag of words representation used
for these clustering methods is often unsatisfac-
tory as it ignores relationships between impor-
tant terms that do not co-occur literally. In or-
der to deal with the problem, we integrate back-
ground knowledge — in our application Word-
net — into the process of clustering text docu-
ments. We cluster the documents by a standard
partitional algorithm. Our experimental evalua-
tion on Reuters newsfeeds compares clustering
results with pre-categorizations of news. In the
experiments, improvements of results by back-
ground knowledge compared to the baseline can
be shown for many interesting tasks.

1. Introduction

With the abundance of text documents available through
corporate document management systems and the World
Wide Web, the efficient, high-quality partitioning of texts
into previously unseen categories is a major topic for appli-
cations such as information retrieval from databases, busi-
ness intelligence solutions or enterprise portals. So far,
however, existing text clustering solutions only relate doc-
uments that use identical terminology, while they ignore
conceptual similarity of terms such as defined in termino-
logical resources like WordNet (Miller, 1995).

In this paper we investigate which beneficial effects can be
achieved for text document clustering by integrating an ex-
plicit conceptual account of terms found in WordNet. In
order to come up with this result we have performed an
empirical evaluation. We compare a simple baseline (Sec-
tion 2) with different strategies for representing text docu-
ments that take background knowledge into account to var-
ious extent (Section 3). For instance, terms like “beef” and

“pork” are found to be similar, because they both are sub-
concepts of “meat” in WordNet. The clustering is then per-
formed with Bi-Section-KMeans, which has been shown to
perform as good as other text clustering algorithms — and
frequently better (cf. the seminal paper (Steinbach et al.,
2000)). For the evaluation (cf. Section 4), we have in-
vestigated the Reuters corpus on newsfeeds, which comes
with a set of categorizing labels attached to the documents.
The evaluation results (cf. Section 5) compare the original
classification with the partitioning produced by clustering
the different representations of the text documents. Fur-
thermore, by analysing the manually defined Reuters cat-
egories, we find explanations of when background knowl-
edge helps.

In Section 6, we point to some related work. Finally, we
conclude that the best strategies that involve background
knowledge are most often better than the baseline when
word sense disambiguation and feature weighting are in-
cluded (Section 7).

2. Baseline Text Document Representation

For the clustering experiments described subsequently, we
have prepared different representations of text documents
suitable for the clustering algorithms.

Let us first consider documents to be bags of terms (cf.
(Salton, 1989)). Let tf(d; t) be the absolute frequency of
term t 2 T in document d 2 D, where D is the set
of documents and T = ft1; : : : ; tmg is the set all dif-
ferent terms occurring in D. We denote the term vectors
~td = (tf(d; t1); : : : ; tf(d; tm)). Later on, we will need the
notion of the centroid of a set X of term vectors. It is de-
fined as the mean value ~tX := 1

jXj

P
~td2X

~td of its term
vectors. In the sequel, we will apply tf also on sets of terms:
for T 0 � T , we let tf(d; T 0) :=

P
t2T 0 tf(d; t).

As initial approach we have produced this standard rep-
resentation of the texts by term vectors. The initial term
vectors are further modified as follows.

Stopwords are words which are considered as non–



descriptive within a bag–of–words approach. Following
common practice, we removed stopwords from T , using
a standard list with 571 stopwords.1

We have processed our text documents using the Porter
stemmer introduced in (Porter, 1980). We used the
stemmed terms to construct a vector representation ~td for
each text document.

Then, we have investigated how pruning rare terms affects
results. Depending on a pre-defined threshold Æ, a term t is
discarded from the representation (i. e., from the set T ), ifP

d2D tf(d; t) � Æ. We have used the values 0, 5 and 30
for Æ. The rationale behind pruning is that infrequent terms
do not help for identifying appropriate clusters, but may
still add noise to the distance measures degrading overall
performance.2

Tfidf weighs the frequency of a term in a document with a
factor that discounts its importance when it appears in al-
most all documents. The tfidf (term frequency�inverted
document frequency)3 of term t in document d is defined
by:

tfidf(d; t) := log(tf(d; t) + 1) � log
�

jDj

df(t)

�

where df(t) is the document frequency of term t that
counts in how many documents term t appears. If
tfidf weighting is applied then we replace the term
vectors ~td := (tf(d; t1); : : : ; tf(d; tm)) by ~td :=
(tfidf(d; t1); : : : ; tfidf(d; tm)). There are more sophisti-
cated measures than tfidf in the literature (see, e. g., (Amati
et al., 2001)), but we abstract herefrom, as this is not the
main topic of this paper.

Based on the initial text document representation, we have
first applied stopword removal. Then we performed stem-
ming, pruning and tfidf weighting in all different combi-
nations. This also holds for the initial document repre-
sentation involving background knowledge described sub-
sequently. When stemming and/or pruning and/or tfidf
weighting was performed, we have always performed them
in the order in which they have been listed here.

3. Compiling Background Knowledge into the
Text Document Representation

The background knowledge we have exploited is given
through a simple ontology. We first describe its structure,
then the actual ontology and its integration into the initial
text document representation by various strategies.

1See http://www.aifb.uni-karlsruhe.de/WBS/aho/clustering
2We have also investigated the influence of the document fre-

quency of a term t for pruning, but it showed that this parameter
hardly effects the clustering results.

3tfidf actually refers to a class of weighting schemata. Above
we have given the one we have used.

3.1. Ontology

The background knowledge we will exploit further on is
encoded in a core ontology. We here present those parts
of our wider ontology definition (cf. (Bozsak et al., 2002))
that we have exploited:

Definition: A core ontology is a tuple O := (C;�C) con-
sisting of a set C whose elements are called concept identi-
fiers, and a partial order�C on C, called concept hierarchy
or taxonomy.

Often we will call concept identifiers just concepts, for sake
of simplicity.

Definition: If c1 <C c2, for c1; c2 2 C, then c1 is a sub-
concept of c2, and c2 is a superconcept of c1. If c1 <C c2
and there is no c3 2 C with c1 <C c3 <C c2, then c1 is a
direct subconcept of c2, and c2 is a direct superconcept of
c1. We note this by c1 � c2.

According to the international standard ISO 704, we pro-
vide names for the concepts (and relations). Instead of
‘name’, we here call them ‘sign’ or ‘lexical entries’ to bet-
ter describe the functions for which they are used.

Definition: A lexicon for an ontologyO is a tuple Lex :=
(SC ;Ref C) consisting of a set SC whose elements are
called signs for concepts, and a relation Ref C � SC � C

called lexical reference for concepts, where (c; c) 2 Ref C
holds for all c 2 C \ SC . Based on Ref C , we define, for
s 2 SC , Ref C(s) := fc 2 C j (s; c) 2 Ref Cg and, for
c 2 C, Ref �1

C (c) := fs 2 SC j (s; c) 2 Ref Cg. An ontol-
ogy with lexicon is a pair (O;Lex ) where O is an ontology
and Lex is a lexicon forO.

This definition allows for a very generic approach towards
using ontologies for clustering. For the purpose of actual
evaluation of clustering with background knowledge, we
needed a specific resource, which fits to the document col-
lection. We have chosen Wordnet 1.7,4 as it fits to the gen-
erality of the Reuters corpus. Wordnet (Miller, 1995) com-
prises a core ontology and a lexicon. It consists of 109377
concepts (synsets in Wordnet terminology) and 144684
lexical entries5 (called words in Wordnet). One example
synset is “foot, ft” and a corresponding word is “foot”. In
Wordnet, the function Ref C relates terms if they have a
lexical entry (e.g., s1 = “foot” and s2 = “feet”) with their
corresponding concepts (e.g., synsets c1 = “foot, ft”, c2 =
“foot, human foot, pes”, ...). Thus, for a term t appearing
in a document d, Ref C(t) allows for retrieving its corre-

4http://www.cogsci.princeton.edu/˜wn/obtain.shtml
5The actual number of lexical entries is higher in our count, as

for one stem like “foot”, Wordnet includes several morphological
derivations like “feet”.



sponding concepts.

In addition, Wordnet provides a ranking on the set Ref C(s)
for each lexical entry s indicating the frequency of its us-
age in English language. For example, Ref C(s1) returns
as the first concept c1 and then c2. Corresponding to our
definition of a core ontology, Wordnet also offers access
functions to its concept hierarchy�C .

So far, from all the descriptions given in Wordnet, we have
exploited only information about nouns. I.e., we have used
only 68:1% of the synsets available in Wordnet.

Using the morphological capabilities of Wordnet rather
than a Porter stemmer we achieved improved results.
Therefore, when using background knowledge, stemming
has only been performed for terms that do not appear as
lexical entries in Wordnet.

3.2. Term vs. Concepts Vector Strategies

Enriching the term vectors with concepts from the core on-
tology has two benefits. First it resolves synonyms; and
second it introduces more general concepts which help
identifying related topics. For instance, a document about
beef may not be related to a document about pork by the
cluster algorithm if there are only ‘beef’ and ‘pork’ in
the term vector. But if the more general concept ‘meat’
is added to both documents, their semantical relationship
is revealed. We have investigated different strategies for
adding or replacing terms by concepts:

Add Concepts (“add”6). When applying this strategy, we
have extended each term vector ~td by new entries for Word-
net concepts c appearing in the document set. Thus, the
vector ~td was replaced by the concatenation of ~td and ~cd,
where ~cd := (cf(d; c1); : : : ; cf(d; cl)) is the concept vec-
tor with l = jCj and cf(d; c) denotes the frequency that a
concept c 2 C appears in a document d as indicated by
applying the reference function Ref C to all terms in the
document d. For a detailed definition of cf, see next sub-
section.
Hence, a term that also appeared in Wordnet as a synset
would be accounted for at least twice in the new vector
representation, i. e., once as part of the old ~td and at least
once as part of ~cd. It could be accounted for also more of-
ten, because a term like “bank” has several corresponding
concepts in Wordnet.

Replace Terms by Concepts (“repl”). This strategy works
like ‘Add Concepts’ but it expels all terms from the vec-
tor representations ~td for which at least one corresponding
concept exists. Thus, terms that appear in Wordnet are only
accounted at the concept level, but terms that do not appear
in Wordnet are not discarded.

6These abbreviations are used below in Section 5.2

Concept Vector Only (“only”). This strategy works like
‘Replace Terms by Concepts’ but it expels all terms from
the vector representation. Thus, terms that do not appear in
Wordnet are discarded; ~cd is used to represent document d.

3.3. Strategies for Disambiguation

The assignment of terms to concepts in Wordnet is ambigu-
ous. Therefore, adding or replacing terms by concepts may
add noise to the representation and may induce a loss of
information. Therefore, we have also investigated how the
choice of a “most appropriate” concept from the set of al-
ternatives may influence the clustering results.

While there is a whole field of research dedicated to word
sense disambiguation (e.g., cf. (Ide & Véronis, 1998)), it
has not been our intention to determine which one could
be the most appropriate, but simply whether word sense
disambiguation is needed at all. For this purpose, we have
considered two simple disambiguation strategies besides of
the baseline:

All Concepts (“all”). The baseline strategy is not to do
anything about disambiguation and consider all concepts
for augmenting the text document representation. Then,
the concept frequencies are calculated as follows:

cf(d; c) := tf(d; ft 2 T j c 2 Ref C(t)g) :

First Concept (“first”). As mentioned in Sec. 3.1, Word-
net returns an ordered list of concepts when applyingRef C
to a set of terms. Thereby, the ordering is supposed to re-
flect how common it is that a term reflects a concept in
“standard” English language. More common term mean-
ings are listed before less common ones.
For a term t appearing in SC , this strategy counts only
the concept frequency cf for the first ranked element of
Ref C(t), i.e. the most common meaning of t. For the other
elements of Ref C(t), frequencies of concepts are not in-
creased by the occurrence of t. Thus the concept frequency
is calculated by:

cf(d; c) := tf(d; ft 2 T j first(Ref C(t)) = cg)

where first(Ref C) gives the first concept c 2 Ref C accord-
ing to the order from Wordnet.

Disambiguation by Context (“context”). The sense of a
term t that refers to several different concepts Ref C(t) :=
fb; c; : : :gmay be disambiguated by a simplified version of
(Agirre & Rigau, 1996)’s strategy:

1. Define the semantic vicinity of a concept c to be the
set of all its direct sub- and superconcepts

V (c) := fb 2 Cjc � b or b � cg.
2. Collect all terms that could express a concept from

the conceptual vicinity of c by
U(c) :=

S
b2V (c)Ref

�1
C (b).

3. The function dis:D � T ! C with dis(d; t) :=



firstfc 2 Ref C(t) j c maximizes tf(d; U(c))g
disambiguates term t based on the context provided
by document d.

4. Let cf(d; c) := tf(d; ft 2 T j dis(d; t) = cg).

3.4. Strategies for considering Hypernyms

The third set of strategies varies the amount of background
knowledge. Its principal idea is that if a term like ‘beef’
appears, one does not only represent the document by the
concept corresponding to ‘beef’, but also by the concepts
corresponding to ‘meat’ and ‘food’ etc. up to a certain level
of generality. The following procedure realizes this idea by
adding to the concept frequency of higher level concepts
in a document d the frequencies that their subconcepts (at
most r levels down in the hierarchy) appear, i.e. for r 2 N 0 :
The vectors we consider are of the form

~td := (tf(d; t1); : : : ; tf(d; tm); cf(d; c1); : : : ; cf(d; cn))
(the concatenation of an initial term representation with a
concept vector). Then the frequencies of the concept vec-
tor part are updated in the following way: For all c 2 C,
replace cf(d; c) by

cf0(d; c) :=
P

b2H(c;r) cf(d; b);
where H(c; r) := fc0j9c1; : : : ; ci 2 C: c0 � c1 � : : : �
ci = c; 0 � i � rg gives for a given concept c the r next
subconceps in the taxonomy. In particular H(c;1) returns
all subconcepts of c. This implies: The strategy r = 0 does
not change the given concept frequencies, r = n adds to
each concept the frequency counts of all subconcepts in the
n levels below it in the ontology and r = 1 adds to each
concept the frequency counts of all its subconcepts.

4. Partitional Clustering

Our incorporation of background knowledge is rather inde-
pendent of the concrete clustering method. The only re-
quirements we had were that the baseline could achieve
good clustering results in an efficient way on the Reuters
corpus. In (Steinbach et al., 2000) it has been shown
that Bi-Section-KMeans – a variant of KMeans – fulfilled
these conditions, while frequently outperforming standard
KMeans as well as agglomerative clustering techniques.

For our experiments, the similarity between two text doc-
uments d1; d2 2 D is measured by the cosine of the angle
between the vectors ~t1;~t2 representing them:

cos(^(~t1;~t2)) =
~t1�~t2

k~t1k�k~t2k

4.1. Evaluation Setting

The principal idea of the experiments was the comparison
of clustering results on a standard text corpus against a
manually predefined categorization of the corpus. Such a
predefined categorization exists only for few text corpora.

We have chosen the Reuters-21578 news corpus ((Lewis,
1997)7, cf. section 4.3), because it comprises an a priori
categorization of documents, its domain is broad enough
to be realistic, and the content of the news were under-
standable for non-experts (like us) in order to be able to ex-
plain results. Furthermore, Reuters-21578 is a well-known,
freely available and well investigated corpus.

Important reasons for us to use Wordnet as a core ontology
in conjunction with Reuters-21578 as a corpus were that
Wordnet is freely available and that it has not been specif-
ically designed to facilitate the clustering task. We per-
formed a second evaluation on the FAO Document Online
Catalogue,8 in which the Food and Agriculture Organiza-
tion (FAO) of the United Nations stores documents about
agriculture, which are labeled with the controlled vocabu-
lary AGROVOC.9 The evaluation on this domain and with
this specific ontology provided similar results, which we
omit here because of space restrictions.

In the experiments we have varied the different strategies
for plain term vector representation and for vector repre-
sentations containing background knowledge as elaborated
in Sections 2 and 3. We have clustered the representations
using Bi-Section-KMeans and have compared the pre-cate-
gorization with our clustering results using standard mea-
sures for this task, as defined below.

4.2. Evaluation Measures

The purity measure is based on the precision measure as
well-known from information retrieval (cf. (Pantel & Lin,
2002)). Each resulting cluster P from a partitioning P of
the overall document set D is treated as if it were the result
of a query. Each set L of documents of a partitioning L

which is obtained by manually labeling is treated as if it
were the desired set of documents for a query. The two
partitionings P and L are then compared as follows.

The precision of a cluster P 2 P for a given categoryL 2 L

is given by Precision(P;L) := jP\Lj
jP j . The overall value

for purity is computed by taking the weighted average of
maximal precision values:

Purity(P;L) :=
P

P2P
jP j
jDj maxL2L Precision(P;L):

For some selected parameter combinations that proved to
be very good wrt. purity, we also investigated their

InversePurity(P;L) :=
P

L2L
jLj
jDj maxP2PPrecision(L; P ):

Both measures have the interval [0, 1] as range. Their dif-
ference is that purity measures the purity of the resulting
clusters when evaluated against a pre-categorization, while
inverse purity measures how stable the pre-defined cate-

7http://www.daviddlewis.com/resources/testcollections/reuters21578/
8http://www4.fao.org/faobib/index.html
9http://www.fao.org/agrovoc/



gories are when split up into clusters. Thus, purity achieves
an “optimal” value of 1 when the number of clusters k

equals jDj, whereas inverse purity achieves an “optimal”
value of 1 when k equals 1. Another name in the literature
for inverse purity is microaveraged precision. The reader
may note that, in the evaluation of clustering results, mi-
croaveraged precision is identical to microaveraged recall
(cf. e.g. (Sebastiani, 2002)).

4.3. The Reuters-Corpus

We have performed all evaluations on the Reuters-21578
document set. In order to be able to perform compar-
isons with an a priori categorization, we have restricted
ourselves to the 12344 documents that were manually clas-
sified by Reuters. Documents in the manually classified set
were labeled with zero, one, or more of the 135 pre-defined
categories.10 The lack of a label indicates that the human
annotator could not find an adequate category. We gath-
ered all the documents without any category label into a
new category “defnoclass”.11

Standard measures like purity (or mutual information or
entropy) only allow for the comparison of two partition-
ings, but they do not allow for the comparison of structures
when documents are manually assigned to several catego-
rizations and/or documents are automatically assigned to
multiple clusters. Therefore, we have only selected the first
label of each document and ended up with a categoriza-
tion of the documents into overall 82 categories, including
“defnoclass”.

To be able to perform evaluations for more different param-
eter settings, we have restricted the number of documents
from the corpus. First, categories with extremely few doc-
uments have been discarded with the minimum amount of
15 — thus, “outlier categories” are ignored in the evalu-
ation.12 Second, we have restricted the category sizes to
max. 100 documents by sampling. We call the resulting
corpus PRC-min15-max100. It consists of 46 categories
and 2619 documents with an average of 56.93 documents
per category (standard deviation of 33.12). The text docu-
ment representation consists of term vectors of length 1219
to 9924 and concept vectors (or mixed term/concept vec-
tors) of length 1468 to 16157, depending on the applied
strategy.

10The categories are called “topics” in Reuters-21578. To be
more general, we will refer to them as “category” in the sequel.

11The 12344 documents are indicated by an attribute “TOPIC”
set to yes and contain the text surrounded by the “BODY” tag.

12We investigate in the technical report (Hotho et al., 2003) the
influence of the 36 discarded outlier categories with their overall
136 documents. We observe a 2% lower purity for both the best
baseline as well as for the results with background knowledge.
The general results are the same.

5. Results

Each evaluation result described in the following denotes
an average from 20 test runs performed on the given cor-
pus for a given combination of parameter values with ran-
domly chosen initial values for Bi-Section-KMeans. The
results we report here have been achieved for k = 60 clus-
ters. Varying the number k of clusters for the parameter
combinations described below has not altered the overall
picture.

On the results we report in the text, we have applied t-tests
to check for significance with a confidence of 99.5%. All
differences that are mentioned below are significant within
a confidence of � = 0:5%.

5.1. Clustering without Background Knowledge

Without background knowledge, averaged purity values
ranged from 46.1% to 57% (cf. Figure 1). We have ob-
served that tfidf weighting decisively increased purity val-
ues irrespective of what the combination of parameter val-
ues was (see for instance Figure 1). Pruning with a thresh-
old of 5 or 30 has not always shown an effect. But it in-
creased always purity values when it was combined with
tfidf weighting.

5.2. Clustering with Background Knowledge

For clustering using background knowledge, we have also
performed pruning and tfidf weighting as described above.
The thresholds and modifications have been enacted on
concept frequencies (or mixed term/concept frequencies)
instead of term frequencies only. We have computed the
purity results for varying parameter combinations as de-
scribed before.

A subset of all cross evaluations is depicted in Figure 1.
Each data point indicates a combination of values as fol-
lows:

X-axis: On the X-axis, different parameter combinations
are indicated. From bottom to top there are:

� Without background knowledge (Section 2) vs. with
background knowledge (Section 3), (Ontology =
false/true).

� No use of hypernyms (r=0) vs. five levels of hyper-
nyms added to concept frequencies (r = 5), cf. Sec-
tion 3.4 (Hypdepth = 0 / 5).

� Disambiguation strategy: All concepts / First concept
/ Disambiguation by context; cf. Section 3.3 (Hypdis
= All/First/Context).

� Add Concepts vs. Replace Terms by Concepts vs.
Concept Vector Only; cf. Section 3.2 (Hypint =
add/repl/only).
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Figure 1. Comparing clustering without background knowledge
(leftmost column) against various combinations of parameter set-
tings using background knowledge on PRC-min15-max100 with
k = 60.

Y-axis: On the Y-axis the resulting purity averaged over 20
test runs for each data point is shown.

Different Lines represent different combinations of tfidf
weighting / no weighting with different pruning thresholds
(0 vs. 5 vs. 30).

Results. The baseline, i. e., the representation without
background knowledge, is given by the best value, 57%, in
the leftmost sector (the one for tfidf weighting and a prun-
ing threshold of 30 in Figure 1). The best overall value is
achieved by the following combination of strategies: Back-
ground knowledge with five levels of hypernyms (r = 5),
using “disambiguation by context” and term vectors ex-
tended by concept frequencies. Purity values then reached
61.8%, thus yielding a relative improvement of 8.4% com-
pared to the baseline.

Without the application of tfidf weighting, all different pa-
rameter combinations achieve lower values. Also the dif-
ference between the best baseline result (47%) and the best
results achieved by adding background knowledge (48,6%)
decreases considerably. Furthermore, strategies that con-
sider hypernyms without weighting, like r = 5 without
tfidf weighting, even decrease the purity compared to the
baseline.

Inverse Purity. As may be seen from the description
in Section 4.2, purity does not discount evaluation results
when splitting up large categories. Therefore, we have in-
vestigated how the inverse purity values would be affected
for the best baseline (in terms of purity) and a typically
good strategy based on background knowledge (again mea-
sured in terms of purity). Table 1 summarizes the results fa-
voring background knowledge over the baseline by 51.4%
over 47.9%.

Inverse Purity and Variance Analysis. We also inves-
tigated when and why background knowledge improves

ONTO HYPDEPTH HYPINT Purity InversePurity
avg� std avg� std

false 0,57� 0,019 0,479� 0,016
true 0 add 0,585� 0,014 0,492� 0,017

only 0,603� 0,019 0,504� 0,021
5 add 0,618� 0,015 0,514� 0,019

only 0,593� 0,01 0,500� 0,016

Table 1. Results on PRC-min15-max100 k = 60, prune=30 (with
background knowledge also HYPDIS = context, avg denotes av-
erage over 20 cluster runs and std denotes standard deviation)

the results of Bi-Section-KMeans by analyzing the within-
class variance of the Reuters categorization of PRC-min15-
max100. For X � D the variance is defined as:

var(X) :=
P

d2X jj~td � ~tX jj
2 :

Based on this, we define the normalized variance within
a class L as follows, where the denominator performs a
normalization adjusting the variance to the corresponding
overall variance of D:

varin(L) :=
var(L)
var(D) :

This variance can be computed both for vector represen-
tations with and without background knowledge. We thus
obtain two values for each class L, namely varwithin (L) and
varwithoutin (L).13 The normalized difference of the vari-
ances is obtained by

vd(L) := varwith
in

(L)�varwithout
in

(L)

varwithout
in

(L)
:

The decreasing line in Figure 2 shows this normal-
ized difference of the within-class variance between
the representations with (strategy hypdepth=5, hyp-
int=add, hypdis=context, prune=30) and without back-
ground knowledge. As becomes evident, for the large ma-
jority of pre-defined categories, background knowledge re-
duces the within-class variance, and hence makes them eas-
ier to identify for clustering algorithms which aim at mini-
mizing variance, like Bi-Section-KMeans.

Exceptions can be found when the category is character-
ized best by syntactic means (e.g., the category “earn” may
best be clustered by stop words like ‘vs.’ which are not
contained in Wordnet; see leftmost category in Fig 2).

Furthermore, there is a clear tendency that a smaller vari-
ance within predefined categories goes along with a higher
inverse purity compared to the best baseline. This tendency
becomes evident when one compares the variance differ-
ence against the individual inverse purity values

ipv(L;P) := maxP2PPrecision(L; P )
— which again can be computed with (ipvwith) and with-
out (ipvwithout) background knowledge. This comparison
is done in Figure 2 by comparing the variance difference
against the inverse purity difference

ipd(L) := ipvwith(L;P)�ipvwithout(L;P)
ipvwithout(L;P)

13Observe that in varin both var(L) and var(D) change when
background knowledge is incorporated.
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Figure 2. Comparing the variance difference for each given cate-
gory against the change of clustering results in terms of individ-
ual inverse purity values when the preprocessing strategy changes
from best baseline to ‘standard’ (good) background knowledge
(strategy hypdepth=5, hypint=add, hypdis=context, prune=30) on
PRC-min15-max100 with k = 60.

and against its linear interpolation. The diagram shows that
the linear interpolation increases with decreasing variance
difference. The correlation coefficient of �0:34 between
variance difference and individual inverse purity supports
this observation.

We have analyzed the categories whose identification by
the cluster algorithm is not positively influenced by back-
ground knowledge according to the inverse purity differ-
ence. Besides of the ones for which within-class variance
is not reduced, problems occur for categories that have se-
mantic overlap. For instance, ‘dlr’, and ‘money-fx’ are all
about money and finance and often co-occur (as second or
third Reuters label).

A measure considering also the second and third Reuters
label (which is not possible with standard measures like
purity) would probably even indicate a positive influence
of background knowledge on the clustering.

6. Related Work

While we do not know of any research that exploits back-
ground knowledge for text document clustering, there are a
number of related uses.

Wordnet has mostly been used in information retrieval and
in supervised learning scenarios up to now: In information
retrieval, Voorhees (1994) as well as Moldovan and Mihal-
cea (2000) have explored the possibility to use Wordnet for
retrieving documents by keyword search. It has already be-
come clear by their work that particular care must be taken
in order to improve precision and recall.

Buenaga Rodrı́guez et. al. (2000) and Ureña Lóez et. al.
(2001) show a successful integration of the Wordnet re-
source for a document categorization task. They use the
Reuters corpus for evaluation and improve the classifica-
tion results of the Rocchio and Widrow-Hoff algorithms
by 20 points. In (Gonzalo et al., 1998), Wordnet is used
for word sense disambiguation. They show in an informa-
tion retrieval setting the improvement of the disambiguated
synset model over the term vector model. In contrast to
our approach, (de Buenaga Rodrıguez et al., 2000), (Ureña
Lóez et al., 2001), and (Gonzalo et al., 1998) apply Word-
net to a supervised scenario (and not to an unsupervised one
as in our application), do not make use of Wordnet relations
such as hypernyms, and build the term vectors manually.

Approaches like term clustering (Karypis & Han, 2000),
LSI (Deerwester et al., 1990) or PLSI (Hofmann, 1999) use
statistic methods to compute a kind of “concepts”. These
concepts are rather different to our definition of ontology
concepts. They are not able to indicate the meaning of
the concepts and there exists no understandable mapping to
lexical entries. A generalization of their ‘concepts’ is not
possible. We do not know of actual comparisons that relate
KMeans or Bi-Section-KMeans with LSI or PLSI using the
same dataset for clustering.

We have built our numerical comparisons on Bi-Section-
KMeans which has proved to be very robust in a wide va-
riety of experiments (Steinbach et al., 2000). Also to our
experience it performed as good as other algorithms that we
tested informally. Its standard parameter settings evaluated
as good as other ones (e. g., bi–secting based on variance
instead of cardinality; cf. (Steinbach et al., 2000)).

7. Conclusion

In this paper, we have discussed a way of incorporating
background knowledge into a representation for text docu-
ment clustering in order to improve clustering results. We
have performed evaluations on the Reuters data set indicat-
ing good performance.

In particular, we found that the best background knowledge
strategy (e.g., hypint = add, hypdis = context, hypdepth= 5)
can be safely used, as it always improves performance com-
pared to the best baseline.

The principal idea of our approach is that the variance of
documents within one category is reduced by representa-
tion with background knowledge, thus improving results of
text clustering measured in terms of purity and inverse pu-
rity with conventional means like Bi-Section-KMeans. To
this end, different, but semantically similar terms in two
text documents may contribute to a good similarity rating
if they are related via Wordnet synsets or hypernyms.



Our experiments have shown that beneficial effects of back-
ground knowledge require some care. I.e. we used word
sense disambiguation and feature weighting in order to
achieve improvements of clustering results. We conjec-
ture that more advanced word sense disambiguation and
feature weighting schemes will further improve effective-
ness of text clustering.

In our technical report (Hotho et al., 2003), we describe
how to make further use of background knowledge for im-
proving explanation capabilities. There we show how to
exploit concept representations along a hierarchy, based on
Formal Concept Analysis (Ganter & Wille, 1999) in order
to derive commonalities and distinctions between different
clustering results. For instance, one example result derived
there is that several clusters are about ‘food’ — some about
‘coffee’ and some about ‘cacao’. This result is achieved
without ‘food’ appearing somewhere in the documents, but
by taking advantage of the new representation that incorpo-
rates background knowledge.
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