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Preface

Social tagging systems are Web 2.0 applications that promote user participa-
tion through facilitated content sharing and annotation of that content with
freely chosen keywords, called tags. Despite the potential of social tagging to
improve organization and sharing of content, without efficient tools for con-
tent filtering and search, users are prone to suffer from information overload
as more and more users, content, and tags become available on-line. Recom-
mender systems are among the best known techniques for helping users to
filter out and discover relevant information in large datasets. However, social
tagging systems put forward new challenges for recommender systems since
– differently from the standard recommender setting where users are mainly
interested in content – in social tagging systems users may additionally be
interested in finding tags and even other users.

The goal of this book is to bring together important research in a new fam-
ily of recommender systems aimed at serving social tagging systems. While
by no means exhaustive, the chapters introduce a wide variety of recent ap-
proaches, from the most basic to the state-of-the-art, for providing recom-
mendations in social tagging systems. The focus is on tag recommendations
and tag-aware recommendations, which are the prevalent recommendation
tasks in the literature and real-world social tagging systems. The material
covered in the book is aimed at graduate students, teachers, researchers, and
practitioners in the areas of web mining, e-commerce, information retrieval,
and machine learning.

The idea for this book emerged from a long history of fruitful cooperation
between the authors, who have been actively contributing in many of the
topics covered in this book. Many parts of the book are built on top of the
authors’ previous book chapter entitled Social Tagging Recommender Systems
published in the Recommender Systems Handbook in 2011; which triggered
the cooperation with Springer for extending it into a book.

The book is organized into three parts. Part I provides introductory ma-
terial on social tagging systems and recommender systems. Part II presents
a wide variety of recommendation techniques, ranging from the most basic
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methods to the state-of-the-art, as well as strategies for evaluating these rec-
ommender systems. Part III provides a detailed case study on the technical
aspects of deploying and evaluating recommender systems in BibSonomy, a
real-world social tagging system of bookmarks and scientific references.
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Chapter 1

Social Tagging Systems

Social Tagging Systems (STS for short) are web applications where users
can upload, tag, and share resources (e. g., websites, videos,photos, etc.) with
other users. STS promote decentralization of content control and lead the
web to be a more open and democratic environment. As we will see in the
course of this book, STS put forward new challenges and opportunities for
recommender systems, but before we delve into how to design and deploy
efficient recommender systems for STS, in this chapter we formally define
social tagging systems and their data structures, elaborate on the different
recommendation tasks demanded by STS users, introduce real-world STS
that already feature recommendation services, and fix the notation we will
use throughout the book. The chapter is based on work published in [9].

1.1 Introduction

The idea of tagging objects with categories in order to make them more
recognizable and understandable was first systematized by Aristotle in his
Categories treatise1, where he analyzes the differences between classes and
objects. Since then, categorization has been used for a wide range of differ-
ent purposes, such as library classification, product catalogs, biological tax-
onomies, yellow pages of telephone directories, web catalogs, semantic web
ontologies, etc. A property shared by most of these classification systems is
that there is a restricted and selective number of persons involved in the
conception, assignment, and maintenance of the categories. Those persons
are usually experts on the respective domain, e. g., biologists for biological
taxonomies and librarians for document categorization. However, with the ad-

1 An English translation of the original Aristotle treatise is provided by E. M. Edghill
at http://www.classicallibrary.org/aristotle/categories/index.htm.

3L.B. Marinho et al., Recommender Systems for Social Tagging Systems, SpringerBriefs in
78-1-4614-1894-8_1, he Author(s) 2012 Electrical and Computer Engineering, DOI 10.1007/9 © T

http://www.classicallibrary.org/aristotle/categories/index.htm


4 1 Social Tagging Systems

vent of social tagging systems, the democratization of content creation and
categorization enabled ordinary users to become the “experts” themselves.

Social tagging systems are Web 2.0 applications concerned with the publi-
cation and tagging of web resources by ordinary internet users. These systems
are now widespread, with millions of people using them daily to organize
and retrieve on-line content. STS, such as Delicious,2 BibSonomy,3 Flickr,4

Last.fm,5 etc., bring people together through their shared interests, e. g.,
music in Last.fm, photos in Flickr, and scientific publication references and
bookmarks in BibSonomy. In STS users can upload resources, e. g., URLs of
websites in Delicious, BibTEX entries in BibSonomy, photos in Flickr, sound
tracks in Last.fm, etc., and annotate them with a list of freely chosen key-
words typically called tags. Although the primary goal of tags is to help
individual users to organize and retrieve their own content, the exposition
of tags by the system ends up benefiting other users since they can adopt
each other’s tags for browsing and annotating resources. With the increase
of tagging activity, a lightweight collaborative classification system, typically
known as folksonomy,6 emerges. STS have raised a lot of attention recently
due to their potential to improve search and personal organization of re-
sources, while introducing new opportunities for data mining and new forms
of social interaction.

This chapter is structured as follows: In Section 1.2 we present a formal
model of folksonomies and in Section 1.3 we show how users can navigate the
folksonomy through tag clouds. In Section 1.4 we present the different data
structures of STS. In Section 1.5 we present the recommendation tasks in
STS and in Section 1.6 we briefly present some real-world STS that already
feature some kind of recommendation service. In Section 1.7 we fix some
general notation to be used throughout the book. We finally close with further
reading and references.

1.2 Folksonomies

Folksonomies are the underlying structure of social tagging systems. They
result from the practice of collaboratively creating and managing tags to an-
notate and categorize content. Tags, in general, are a way of grouping content
by category to make it easy to view by topic. This is a grass-root approach to
organize a site and help users to find content they are interested in. Formally,
a folksonomy is defined as a relational structure F := (U,R, T, Y ) in which

2 http://www.delicious.com/
3 http://www.bibsonomy.com/
4 http://www.flickr.com/
5 http://last.fm/
6 The term folksonomy refers to a blend of the two words folk and taxonomy.

http://last.fm/
http://www.flickr.com/
http://www.bibsonomy.com/
http://www.delicious.com/
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• U , R, and T are disjoint non-empty finite sets, whose elements are called
users, resources, and tags, respectively, and

• Y is the set of observed ternary relations between them, i. e., Y ⊆ U×R×T ,
whose elements are called tag assignments [5].

• A post corresponds to the set of tag assignments of a user for a given
resource, i. e., a triple (u, r, Tu,r) with u ∈ U , r ∈ R, and a non-empty set
Tu,r := {t ∈ T | (u, r, t) ∈ Y }.
Users are typically described by usernames, whereas tags may be arbitrary

strings. What is considered a resource depends on the type of the system.
For instance, in Delicious, the resources are URLs, in Flickr pictures, in Bib-
Sonomy URLs or publication references, and in Last.fm, the resources can be
artists, song tracks or albums.

1.3 Tag Clouds

Tag clouds provide an easy way to navigate the tags, resources, and users of
a folksonomy. A tag cloud is a visual representation of user-generated tags,
where the popularity of a tag is denoted by its font size, i. e., the larger
the font, the more popular the tag. Thus, both finding a tag by alphabet
and by popularity is possible, and consequently, the collection of resources
that are associated with a tag. Tag clouds first appeared in Flickr [1], being
rapidly adopted by other STS, namely Delicious and Technorati,7 and today
are an inherent component of any social tagging system. The idea has been
extended to other systems, where the same principle is used for visualizing
data, text, and even results of search engines [4]. Figure 1.1 depicts a tag
cloud displaying the most popular tags used in Last.fm.

As a side effect, tag clouds may introduce a bias in favor of the most
popular tags in the system. It is usually possible to see the tag clouds in all
different levels of granularity of the folksonomy, i. e., the tag cloud per user
or per resource.

1.4 Data Representation

Folksonomy data can be represented in different ways, and as we will see
in Part II of this book, different representations stimulate different types of
models.

7 http://technorati.com/

http://technorati.com/
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Fig. 1.1 Tag cloud showing the most popular tags used in Last.fm.

1.4.1 Folksonomies as Tensors

The set of tag assignments in Y can be represented as third-order tensor
(3-dimensional array) A = (au,r,t) ∈ R

|U |×|R|×|T |. There are different ways
to represent Y as a tensor. Panagiotis et al. [11], for example, proposed to
interpret Y as a binary tensor where 1 indicates observed tag assignments
and 0 missing values (see the left-hand side of Figure 1.2):

au,r,t :=

{
1, (u, r, t) ∈ Y

0, else

Rendle et al. [10], on the other hand, distinguish between positive and
negative tag assignments and missing values in order to learn a personal-
ized ranking of tags (see Chapter 4). The idea is that positive and negative
examples are only generated from observed tag assignments. Observed tag
assignments are interpreted as positive feedback, whereas the non-observed
tag assignments of an already tagged resource are negative evidences. All
other entries, i. e., all tags for a resource that a user has not tagged yet, are
assumed to be missing values (see the right-hand side of Figure 1.2).

1.4.2 Folksonomies as Hypergraphs

An equivalent, but maybe more intuitive representation of a folksonomy, is
an undirected tripartite hypergraph GF := (V,E), where V := U ∪̇R ∪̇T is
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Fig. 1.2 Left [11]: sparse tensor representation where positive feedback is interpreted
as 1 and the rest as 0. Right [10]: observed tag assignments are considered positive
feedback while the non-observed tag assignments for a given already tagged resource
are marked as negative feedback. All other entries are missing values [9].

the set of nodes, and E := {{u, r, t} | (u, r, t) ∈ Y } is the set of hyperedges
(see Figure 1.3).

Fig. 1.3 Tripartite undirected hypergraph representation of a folksonomy [9].

1.5 Recommendation Tasks in STS

If on the one hand STS bring new opportunities for improving search and per-
sonal organization of resources, they revive old problems on the other, namely
the problem of information overload. Millions of individual users and inde-
pendent providers are flooding STS with content and tags in an uncontrolled
way, thereby reducing the user’s ability to retrieve relevant information. One
of the most successful approaches for increasing the level of relevant content
over the “noise” that continuously grows as more and more content becomes
available on-line lies on Recommender Systems (RS for short). Recommender
systems are applications that help users finding useful objects by automati-
cally reducing the space of choices to the most relevant ones. In the typical
scenario, RS algorithms operate over second-order tensors, or matrices, rep-
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resenting binary relations between users and resources, e. g., users’ purchase
history on an e-commerce site, with the aim of recommending resources. Two
notable examples are the e-commerce sites Amazon,8 providing recommen-
dations of products (e. g., books), and Netflix9, featuring recommendations
of movies.

In STS, however, data is represented as third-order tensors (or hyper-
graphs) denoting ternary relations between users, resources, and tags, and
therefore, recommendations can be provided for any of these entity types.
We will refer to RS that can recommend more than one entity type, or mode,
as multi-mode recommender systems (cf. Chapter 2). Since there are three
modes in STS, there are 18 possible recommendation tasks, i. e.,

• 3×3 tasks where given an entity of class i, we want to predict an entity of
class j with i, j ∈ {U,R, T}(see Figure 1.4). For example, given a target
user, recommend other resources he/she hast not yet tagged. We will refer
to this kind of recommendation task as single input.

• 3× 3 tasks where given an entity of class i and one of class j, we want to
predict an entity of class k. For example, given a user and a resource predict
a tag, or given a user and a resource predict another resource. Notice that
in this kind of recommendation tasks, most of the existing methods only
deal with scenarios where i �= j, and so do we in this book. We will refer
to this kind of recommendation task as multi-input. In fact, we will focus
on two types of multi-input recommendation tasks, namely tag and tag-
aware recommendation, which are the prevalent recommendation tasks in
the literature and real-world social tagging systems.

In the following we briefly comment on some of the main recommendation
tasks currently supported by real-world social tagging systems.

1.5.1 User Recommendation

Considering single-input, this task predicts other users for a given target
user. For example, Last.fm users could be interested in other users sharing
similar musical preferences. For multi-input, this task predicts other users
given a pair of entities of the other types. For example, Last.fm users could
be interested in other users who have also tagged their resources with the
tags rock and blues, for example. By browsing the profiles of similar users,
users can improve their ability in discovering relevant content.

8 http://www.amazon.com/
9 http://netflix.com/

http://netflix.com/
http://www.amazon.com/
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Fig. 1.4 Single input recommendation tasks on STS. Figure is adapted from Bogers
(2009) [2]

1.5.2 Resource Recommendation

For single input, the resources most likely to be relevant to a given target user
are predicted. For example, a Last.fm user might be interested in receiving
recommendations about song tracks that he or she has not yet heard before.
Or in the case of multi-input, this same user might want to receive only
musical resources tagged with rock as recommendations. In Chapters 2 and
3 we provide more details on this recommendation task.

Typically, only the resources that the user has not yet accessed are recom-
mended. The reason is that in most STS users do not pick the same resource
twice, e. g., users do not upload the same photo twice in Flickr or do not
upload the same scientific reference twice in CiteULike or BibSonomy. This
is not the case for tag recommendation, where the users can use the same tag
more than once to annotate different resources.

1.5.3 Tag Recommendation

Tag recommendation can relieve users from the eventually time consuming
task of coming up with a good set of tags, since recognizing which tags to
use for annotating a given resource requires far less cognitive effort than
conceiving. Another nice property of tag recommendation is that the user
can learn about a resource just by looking at the recommendation list. If a
user adds a random song, about which he/she has no previous information,
to a playlist in Last.fm, for instance, the tag recommendation list provided
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by Last.fm can give hints about this particular song regarding, for example,
its genre. For single input, the tags most likely to be used for annotating a
given target resource are predicted, while for multi-input the tag predictions
are tailored to a given target user/resource pair. In Parts II and III of the
book we present several techniques for tag recommendation in STS.

It is also common to have tag recommendations given a target tag. This
typically involves identifying semantic relations such as synonyms, meronyms
and hyponyms, and might increase the chances of the user in finding the de-
sired resources. For example, if a BibSonomy user is not finding the resources
he wants with the tag data mining , the system could suggest the related tag
machine learning , through which he might now be able to find the desired
resources. For multi-input, the tags to be recommended are filtered by user or
resource, e. g., for a given target user u ∈ U and a tag t ∈ T , the recommender
system predicts the tags in Tu \ {t} that are related to t.

1.6 Recommendations in Social Tagging Systems

Most social tagging systems provide recommendations of some of the afore-
mentioned types. However, most often the details of the methods are not pub-
licly available. In this section we give an overview of recommender systems
in social tagging systems. Relatively well described are the recommendations
provided by BibSonomy and CiteULike. Therefore, we describe them in more
detail.

1.6.1 BibSonomy

BibSonomy contains a tag recommender since 2006. The first implementation
used tags that were extracted from the title combined with the most popu-
lar tags of the user [7]. In 2009 a new tag recommendation framework was
introduced as cornerstone of the ECML PKDD Discovery Challenge’s on-
line tag recommendation task. The framework is presented in Chapter 6, an
evaluation of different recommendation methods follows in Chapter 7. After
the challenge, the winning recommender [8] was chosen as new tag recom-
mender for BibSonomy. Two simple recommenders function as fallback (cf.
Section 6.5.3).

Users get also similar user suggestions. These are computed using different
similarity measures (Jaccard, Cosine, TF-IDF, FolkRank). By clicking on
such a user, one gets a personalized ranking of the users’ posts, based on the
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overlap of the tag clouds.10 If one finds the user interesting, one can follow
him or her (see Figure 1.5).

Fig. 1.5 On the left hand side, the system shows the most recent publications of the
followed users, while on the right hand side, it is presented the followed users and the
recommended users that might be interesting to follow.

Once a user follows another user, he/she can get a personalized ranking of
the other user’s posts.

1.6.2 CiteULike

CiteULike already supports four of the nine single-input recommendation
tasks depicted in Figure 1.4.11 The most recent addition to CiteULike has
been the recommendation of articles in October 2009. It is based on work by
Toine Bogers [3] and exploits the historical preferences of users for certain
articles and research areas, to locate and recommend relevant articles that
are new to the user. Users can copy a recommended article to his/her profile
or ‘reject’ the recommendation. In the first six weeks after the introduction,
9930 articles were rejected and 2323 accepted.12

CiteULike also presents a user his/her neighbors based on the overlap
between his/her and other user’s bookmarked articles. For that list CiteULike
filters out users that have less than the median number of articles in common.

10 http://blog.bibsonomy.org/2009/05/new-features-released-similar-users.html
11 http://blog.citeulike.org/?p=11
12 http://blog.citeulike.org/?p=136

http://blog.citeulike.org/?p=136
http://blog.citeulike.org/?p=11
http://blog.bibsonomy.org/2009/05/new-features-released-similar-users.html
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1.6.3 Other Systems

Last.fm, a social on-line internet radio, features user, resource, and tag rec-
ommendations. Notice that resources in Last.fm can be albums, artists, or
sound tracks (see Figure 1.6).

Fig. 1.6 Resource recommendations in Last.fm.

YouTube, in turn, provides resource and tag recommendations. Delicious
recommends web pages and other tags related to a user’s tag since 2005.13

Furthermore, related web pages are recommended for bookmarks. Table 1.1
summarizes the recommendation tasks supported by some of the most pop-
ular social tagging systems available.

Table 1.1 Recommendation modes supported by real-world social tagging systems.
A “X” denotes that the system supports recommendations of the corresponding entity
class.

STS User Resource Tag
BibSonomy X X X
CiteULike X X X
Last.fm X X X

Delicious – X X
YouTube – X X

13 http://blog.delicious.com/blog/2005/08/people who like.html

http://blog.delicious.com/blog/2005/08/people_who_like.html
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1.7 Notation

In this section we fix some general notation for the book. For a set X and a
(injective) function f : X → R,

k
argmax

x
f(x) := X ′ ⊆ X : |X ′| = k, ∀x′ ∈ X ′, x ∈ X \X ′ : f(x′) ≥ f(x)

denotes the set of k largest elements from X (with respect to f). If f is not
injective, i. e., it could happen that two elements have the same f -value, and
this definition is not unique, by abuse of notation argmaxkx f(x) denotes a
random set of k largest elements (i. e., ties are broken at random).
For a statement A,

δ(A) :=

{
1, if A,

0, otherwise

We denote tensors by calligraphic uppercase letters (e. g., A, B), matrices
by uppercase letters (e. g., A, B), scalars by lowercase letters (e. g., a, b), and
vectors by bold lowercase letters (e. g., a, b).
For a vector x ∈ R

n,

x̄ :=
1

n

n∑
i=1

xi

denotes the mean value.
For a set A,

P(A) := {B ⊆ A}
denotes the power set of A.

For later convenience, we define several subsets of elements of a folksonomy
in Table 1.7.

Table 1.2 Subset notation for denoting elements of a folksonomy.

Notation Description
Yt tag assignments where tag t ∈ T appears.
Yu,t tag assignments where both user u ∈ U and tag t ∈ T appear.
Yu,r tag assignments where both user u ∈ U and resource r ∈ R appear.
Yr,t tag assignments where both resource r ∈ U and tag t ∈ T appear.
Tu set of tags assigned by a given user u ∈ U .
Tr set of tags assigned to a given resource r ∈ R.
Tu,r set of tags assigned to a given resource r ∈ R by user u ∈ U .
Ur set of users who tagged the resource r ∈ R.
Ru set of resources tagged by user u ∈ U .
Rt set of resources tagged with tag t ∈ T .
Ru,t set set of resources tagged by user u ∈ U with tag t ∈ T .
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The set of recommendations of an entity type E ∈ {U,R, T} of the folkso-
nomy, given a target entity i or a pair of target entities (i, j), is denoted by Êi

or Êi,j where x and y are elements of distinct entity types. For example, the
set of top-n recommended tags for a target user u ∈ U and a given resource
r ∈ R is denoted by T̂u,r, while the set of recommended resources for a target

user u ∈ U is denoted by R̂u.

1.8 Further Reading

The concept of shared on-line resources started with the launch of itList
dating back to April 1996 [12]. The service was free and allowed users to
store, organize, and share their bookmarks on-line with other users. Within
the next few years, other similar services appeared and became competitive,
such as Backflip14 and Blink15 [6]. Founded in 2003, Delicious was responsible
for coining the term social bookmarking and pioneered tagging. Inspired by
the increasing popularity of Delicious, several other STS started to appear,
supporting different kinds of resources, such as CiteUlike,16 Connotea,17 (also
called social citation services), and Connectbeam,18 which included a social
tagging service aimed at businesses and enterprises [12].

The issue of multi-mode search in STS was first investigated by Hotho et
al. [5], where they formalized the notion of folksonomies and introduced an
adaptation of PageRank, called FolkRank, for retrieving users, resources, and
tags in social tagging systems. This algorithm was later used for personalized
tag recommendations (cf. Chapter 4).
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Chapter 2

Recommender Systems

In the following we will describe systematically and formally the most impor-
tant problems related to recommender systems and give some references to
actual solutions. Our focus here is to describe the general recommender sys-
tems setting as a base for social recommender systems. See [11, 3] for a more
general introduction to recommender systems and a more thorough overview
of the state-of-the-art, respectively.

2.1 Rating and Item Prediction

The two most basic recommendation problems are rating prediction and item
prediction.

In rating prediction, there are users that rate items (e. g., movies, books,
electronic devices, articles, resources in the terminology of social systems
etc.) explicitely on some scale, say with the numbers 1 to 5, where 1 denotes
the least preferred item and 5 the most preferred one. Given such ratings
we would like to predict ratings of users for items they did not rate yet. In
the most basic scenario, users and items are treated as entities about which
nothing else is known, i. e., as IDs or nominal levels. Formally, there are given

• a set U of users,
• a set I of items,
• a set R ⊆ R of ratings, e. g., R := {1, 2, 3, 4, 5},
• a set Dtrain ⊆ U × I ×R of (user, item, rating) triples,
• a (rating) loss function � : R× R → R where �(r, r̂) quantifies how bad it

is to predict rating r̂ if the actual rating is r. A typical choice for the loss
is absolute error or squared error:

�AE(r, r̂) := |r − r̂|, �SE(r, r̂) := (r − r̂)2

Sought is the prediction of the rating for a user and item, i. e.,

17L.B. Marinho et al., Recommender Systems for Social Tagging Systems, SpringerBriefs in
78-1-4614-1894-8_ , he Author(s) 2012 Electrical and Computer Engineering, DOI 10.1007/9 © T2
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r̂ : U × I → R

s. t. for some test set Dtest ⊆ U × I ×R of (user, item, rating) triples (from
the same unknown distribution as the train set and not available for the
construction of r̂) the test risk

risk(r̂;Dtest) :=
1

|Dtest|
∑

(u,i,r)∈Dtest

�(r, r̂(u, i))

is minimal.
In the second problem scenario, item prediction, there are no ratings, but

just co-occurrences of users and items, e. g., users may view or buy some of
the items. Formally, there are given

• a set U of users,
• a set I of items,
• a set Dtrain ⊆ U × I of (user, item) co-occurrences,
• a (ranking) loss function � : P(I)× R

I → R, e. g., recall at k

recallk(J, r̂) :=
1

|J | |J ∩ k
argmax

i′∈I
r̂(i′)|, J ⊆ I

Sought is for every user a ranking of the items, i. e., a score function

r̂ : U → R
I or equivalently r̂ : U × I → R

s. t. for some test set Dtest ⊆ U × I of (user, item) co-occurrences (from
the same unknown distribution as the train set and not available for the
construction of r̂) the test risk

risk(r̂;Dtest) :=
1

|U(Dtest)|
∑

u∈U(Dtest)

�(Iu(Dtest), r̂(u)),

with U(D) := {u ∈ U | ∃i ∈ I : (u, i) ∈ D}, Iu(D) := {i ∈ I | (u, i) ∈ D}

is minimal.
If the score function is injective (or made injective by breaking ties at

random), it defines for each user u a linear order over the items by

i ≺u j :⇔ r̂(u, i) > r̂(u, j), i, j ∈ I

2.2 Rating Prediction as Regression Problem

Recommendation problems such as rating and item prediction can be viewed
as instances of broader problem classes. The rating prediction problem ba-
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sically is an (ordinal) regression problem where an (ordinal/numeric) target
variable (rating) should be predicted based on two nominal variables (user,
item). Among the specific characteristics of the rating prediction is (i) the
high number of levels of each of the two nominal variables (many users, many
items) and consequently (ii) the extreme sparsity, i. e., that ratings are ob-
served for only very few user/item pairs. Regression problems of this type
are also described lucidly as matrix completion problems where rows and
columns of the matrix are indexed by the nominal levels of the two variables
and cell values are the ratings, most cells being not observed (see e. g., [6]).

Treating the rating prediction problem in a naive way, say, with binary
indicator variables for the nominal levels of users and items and a linear
model on these variables, leads to a very simple model

r̂(u, i) := μ+ μU (u) + μI(i), μ ∈ R, μU : U → R, μI : I → R

where μ denotes a global average rating and μU and μI model independent
user and item effects (often called user and item bias). This model is unsuited
for personalized predictions as it does not catch any user/item interactions.
If one would use it, again in a naive way, for ranking items for a given target
user, then this ranking would be the same for all users. On the other hand,
adding an explicit interaction effect between user and item indicator to the
model would lead to |U | × |I| parameters, as many as there are observations
in the completed rating matrix.

Therefore, historically, researchers were looking for other methods to
model the rating prediction regression problem. For its simplicity, especially
the nearest neighbor model got a lot of attention [7, 20, 23]. Here, rating pre-
diction is viewed as a separate problem for each item. Then the user indicator
variable is the only variable remaining. Between users a similarity measure
is defined based on their rating vectors, e. g., the Pearson correlation of their
jointly rated items

sim(u, v) :=corrpearson(r|u,Iu∩Iv , r|v,Iu∩Iv )

with

Iu :={i ∈ I | ∃r : (u, i, r) ∈ Dtrain}, u ∈ U

r|u,J :=(r(u, j))j∈J ∈ R
|J|, J ⊆ I

corrpearson(x, y) :=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
, x, y ∈ R

n

For each target item, then the k nearest neighbors having the target item
rated are determined and the rating of a given target user for a given target
item is predicted by a k-nearest-neighbor rule, e. g.,

r̂(u, i) :=μU (u) +
∑

v∈Nu,i

sim(u, v)∑
v′∈Nu,i

sim(u, v′)
(r(v, i)− μU (v))
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with

Nu,i :=
k

argmax
v∈U : i∈Iv

sim(u, v)

Alternatively, one could swap the roles of users and items, i. e., decompose
the problem into separate problems for each item, define a similarity measure
between items based on their rating vector by users and predict ratings by a k
nearest neighbor rule on items. Nearest neighbor models often are called col-
laborative filtering or memory-based models in the context of recommender
system problems. If users are the instances, they are called user-based, oth-
erwise item-based.

At the end of the 90s, probabilistic latent class models, especially the as-
pect model [9, 10] have been developed that allowed a richer modelling of the
user/item effects through a set of non-observed classes. These models nowa-
days can be understood as regularized sparse low-rank matrix factorization
models [25]. In sparse low-rank matrix factorization models one associates a
latent feature vector φ with every level of each nominal variable and mod-
els the interaction between two such variables by a function of their latent
feature vectors, e. g., by their scalar product

r̂(u, i) :=μ+ μU (u) + μI(i) + 〈φU (u), φI(i)〉, φU : U → R
k, φI : I → R

k

These models are called sparse matrix factorization models, because when
identifying the rating and latent feature functions with the matrices of their
values, the rating matrix can be reconstructed by the product of the feature
matrices:

r̂ := μI+ μU1T + 1(μI)T + φU (φI)T ,

where I denotes the |U | × |I| matrix containing only 1’s and 1 the vector
containing |U | many 1’s (or I many 1’s, respectively). As most entries of this
matrix are not observed, one measures the reconstruction error only on the
sparse submatrix of observed entries, i. e.,

�(r, r̂) := ||W train � (r − r̂)||

where W train ∈ R
|U |×|I| is a weight matrix, usually

W train
u,i := δ(∃r : (u, i, r) ∈ Dtrain), u ∈ U, i ∈ I

and || · || a matrix norm, e.g.,

||A|| :=
n∑

i=1

m∑
j=1

A2
i,j , A ∈ R

n×m

and � denotes element-wise matrix multiplication. They are called low-rank
because the dimension k of the feature vectors (and thus the rank of the
resulting reconstruction r̂) is small compared to the dimensions |U |, |I| of the
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original matrix. The models are called regularized, as not just the training
loss is minimized, but a combination of training risk and a regularization
term, e. g., Tikhonov regularization

min. f(φU , φI) := risk(r̂;Dtrain) + λ(||φU ||2 + ||φI ||2), λ ∈ R
+
0

Sparse low-rank matrix factorization models are the state-of-the-art mod-
els at the time of writing [13]. They usually provide better performance than
other models, do not require to have all training data available at predic-
tion time and are easy to train. For training, different learning methods have
been researched. Extremely simple and among the fastest training methods
is stochastic gradient descent [13]. Here, one triple (u, i, r) at a time is sam-
pled from the training data and the features are updated along the negative
gradient with some learning rate η ∈ R

+ until convergence:

φU (u) :=φU (u)− η
∂�

∂r̂
(r, r̂(u, i))

∂r̂

∂φU (u)
(u, i)− 2ηλφU (u)

φI(i) :=φI(i)− η
∂�

∂r̂
(r, r̂(u, i))

∂r̂

∂φI(i)
(u, i)− 2ηλφI(i)

So for example, for the squared error loss this simply yields

φU (u) :=φU (u)− 2η(r − r̂(u, i))φI(i)− 2ηλφU (u)

φI(i) :=φI(i)− 2η(r − r̂(u, i))φU (u)− 2ηλφI(i)

Extensions of the simple matrix factorization model also can cope with
the ordinal level of the rating variable [15].

To demonstrate the usefulness of personalized models such as nearest
neighbor models or matrix factorization models in some specific domain,
one usually compares them with non-personalized models. More exactly, non-
personalized models are models that are constant, either the globally constant
model

r̂(u, i) := μ, μ ∈ R

or constant w. r .t. one of the user or item variable, i. e., user or item averages:

r̂(u, i) := μ+ μU (u), μ ∈ R, μU : U → R

r̂(u, i) := μ+ μI(i), μ ∈ R, μI : I → R

2.3 Item Prediction as Ranking Problem

The item prediction problem often is viewed as a set-valued classification
problem (usually called a multi-label classification problem). As such it could
be described as a set of dependant binary classification problems, one for
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each item. A naive Perceptron model again using binary indicator variables
for each level of the user and item variable looks like this:

r̂(u, i) := μ+ μU (u) + μI(i), μ ∈ R, μU : U → R, μI : I → R

It suffers from the very same defect as the naive rating prediction model: it
is not personalized, i. e., there is no interaction term for users and items and
such a term cannot be inserted into the model for all interactions as these
parameters are exactly the output one is trying to learn.

Also for item prediction, nearest neighbor models have been used very
successfully very early on. Similarities no longer can be described by the
correlation of the joint rating vectors, but, e. g., by measures of the overlap
of the item sets for two users, e. g., the Jaccard coefficient

sim(u, v) :=
|Iu ∩ Iv|
|Iu ∪ Iv|

The neigborhood of a user now does not depend on him having rated the
target item, but just on similarity, and the nearest-neighbor rule counts the
fraction of neighbors with the target item:

r̂(u, i) :=
∑
v∈Nu

sim(u, v)∑
v′∈Nu

sim(u, v′)
δ((v, i) ∈ Dtrain)

with

Nu :=
k

argmax
v∈U

sim(u, v)

To better understand the item prediction problem, in our opinion three
ideas have been crucial: (i) the problem has been tackled by a probabilistic
latent class model, the aspect model, closely related to the one used for
rating prediction [9, 10]. (ii) the decomposition by a binary classification
model per item has been found not to work, as typical recommender data
sets have disjoint train and test item sets for the same user, i. e., no repeating
items, while pairwise decompositions have been shown to work well [22]. (iii)
the matrix factorization approach and the direct optimization of a ranking
loss have been applied to the item prediction problem [26]. Nowadays the
simplest and most elegant formulation of the item prediction problem is not
as a classification problem, but as a ranking problem using pairs of positive
items (in the train set) and negative items (not in the train set) as pairwise
input, optimizing a simple ranking loss such as AUC

�AUC(J, r̂) :=
1

|J ||I \ J |
∑

j∈J,i∈I\J
δ(r̂(j) > r̂(i)), J ⊆ I

and using matrix factorization as the ranking function [19].



2.4 User and Item Attributes 23

By approximating the discontinuous step function δ, e. g., by the logistic
function

σ(x) :=
1

1 + e−x

one gets a differentiable (logarithmic) loss

�(r, r̂) := τ(r − r̂), τ(x) := lnσ(x)

that can be optimized directly using a stochastic gradient algorithm on triples
(u, j, i) of users u ∈ U , positive items j ∈ Iu and negative items i ∈ I \ Iu.

φU (u) :=φU (u)− ητ ′(r̂(j)− r̂(i))(φI(j)− φI(i))− 2ηλφU (u)

φI(j) :=φI(j)− ητ ′(r̂(j)− r̂(i))φU (u)− 2ηλφI(j)

φI(i) :=φI(i) + ητ ′(r̂(j)− r̂(i))φU (u)− 2ηλφI(i)

with

τ ′(x) :=1− σ(x)

This model is known as Bayesian Personalized Ranking (BPR) [19].

2.4 User and Item Attributes

In practice, the assumption that users and items are entities about which
there is nothing else known often is too restrictive and does not make use of
some descriptive information about them. For example, in e-commerce, there
are a lot of attributes of the items (products) easily available and there are
some known attributes of users (customers). In these scenarios we say we
have attributes of users or items. We model them by functions

aU : U → R
nU , and aI : I → R

nI

respectively.
Early on models have been developed that partition the recommendation

problem into (independent) subproblems for each user, trying to predict the
rating or item choice based solely on the item attributes (content-based fil-
tering [5]). As this completely disregards all collaborative information from
other users, such models provide useful results only in specific settings where
no such information is available (see the new item problem in Section 2.5) or
as component models in ensembles (sometimes called hybrid models in the
context of recommender systems).

Nowadays, user and item attributes are understood as a second auxiliary
relation in a multi-relational setting. As the user and item attribute relation
share a nominal variable with many levels with the target relation, it makes
sense to factorize both relations and share the features of the shared variable.
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The resulting models are called multi-relational matrix factorization models
[24, 14]. For the case of user and item attributes, the loss of such a model
looks like

�(φU , φI , φAU , φAI) :=�(r, φU (φI)T ) + λAU �(a
U , φU (φAU )T )

+ λAI�(a
I , φI(φAI)T ), λAU , λAI ∈ R

+
0

Such a model could be easily learned again by stochastic gradient descent,
sequentially sampling tuples from the different input matrices. The effect
of factorizing an auxiliary relation could be understood as data-dependent
regularization as we push the latent features φU in a direction where they can
be used to reconstruct not just the target rating or item choice relation, but
also the auxiliary user attribute relation. The weights λAU and λAI determine
how strong this regularization effect should be. As any other regularization
parameters they have to be learned as hyperparameters.

Auxiliary information such as user and item attributes obviously are only
useful when there is not too much primary information, i. e., ratings or item
choices. For some large real recommendation scenarios it has been shown
experimentally that collaborative models based on 10 ratings about an item
provide better predictions than content-based models on thousands of at-
tributes [16]. So user and item attributes mostly are been useful for users
and items that recently joined a system and for whom/which only little rat-
ing/item choice information is available (recent user / recent item problems)
or none at all (new user / new item problems; see next section).

2.5 New User and New Item Problems

A specific class of problems in recommender systems are the so-called new
user or new item problems (also called cold-start problems). A new user
problem describes the situation of a new user entering the system, so that this
user did not yet have rated or choosen any items. In this case obviously none of
the personalized models discussed so far could provide any recommendations.
In practice these problems cover important cases: new users should not be
scared away by getting bad or no recommendations in the beginning, and new
items should not have to wait until they are found and taken up by users by
chance.

For new users, one could resort to content-based filtering, i. e., to build a
separate model for each item that predicts the rating / item choice as func-
tion of the user attributes. Better models have been researched where such
content-based models are mediated by collaborative models for the ratings /
item choices [21].

Besides the question how to deal with new users and new items, the active
learning scenario is of interest for recommender systems, i. e., ratings about
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which items to ask a new or recent user so that his preferences could be
learned as quickly as possible [17, 8].

2.6 Context-aware and Multi-Mode Recommendations

Traditionally, recommender systems describe an interaction between two en-
tities, users and items. In many scenarios further entities may moderate this
interaction and influence a users preference for an item, e. g., the mood of the
target user, the actual location, the actual time, the task the target user is
pursueing, the group the target user is with, etc. These further circumstances
or modes initially have been described in the literature by different names
(location-aware recommendations, time-aware recommendations, group rec-
ommendations, etc.), but now often collectively are called context-aware rec-
ommendations, where the context could be the mood, location, time, etc.
Abstracting from the names of the different entities, this problem could be
described as a multi-mode recommendation problem (in the literature usually
called multidimensional [2, 4]). Formally, the multi-mode rating prediction is
as follows: given

• a set E of entity classes, where each entity class E ∈ E is a set of entity
instances (i. e., a set of users, items, moods, etc.),

• a set R ⊆ R of ratings, e. g., R := {1, 2, 3, 4, 5},
• a set Dtrain ⊆ ∏

E∈E E×R of (entity1, entity2, . . . , entity|E|, rating) tuples,
• a (rating) loss function � : R× R → R where �(r, r̂) quantifies how bad it

is to predict rating r̂ if the actual rating is r.

Sought is the prediction of the rating for an entity instance of each class, i. e.,

r̂ :
∏
E∈E

E → R

s. t. for some test set Dtest ⊆ ∏
E∈E E ×R of (entity1, entity2, . . . , entity|E|,

rating) tuples (from the same unknown distribution as the train set and not
available for the construction of r̂) the test risk

risk(r̂;Dtest) :=
1

|Dtest|
∑

(e1,...,e|E|,r)∈Dtest

�(r, r̂(e1, . . . , e|E|))

is minimal.
The item prediction problem can be generalized in the same way to a multi-

mode item prediction problem. Specifically for item prediction, it sometimes
is interesting to predict another mode than the item mode. As we have seen in
section 1.2, in social tagging systems, tags can be described as a third mode,
and there it will be interesting to predict for a given user and item (resource),
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which tags he is likely to use for the item. Any multi-modal item prediction
model obviously can be used to predict any mode by just subsituting mode
names.

If all modes are nominal (as the user and item modes), a multi-mode
recommendation problem can be modeled by means of factorization models
of higher order, so called tensor factorization models [18, 12].

Related to, but different from the multi-mode rating recommendation
problem is the multi-criteria recommendation problem [1]. Here, the rating
is not just a single (ordinal) overall rating, but a compound rating reflecting
different criteria or different aspects of the item individually, e. g., for movies
suspense, emotion and humor, or for holiday accommodations location, com-
fort, friendliness, etc. The difference between multi-criteria recommendation
problems and multi-mode recommendation problems is that in the latter all
modes are observed for a test case, but for multi-criteria recommendations
ratings for other criteria are not observed, i. e., not available to base the
prediction upon.

If a problem is described as a multi-mode or a multi-criteria problem re-
flects a specific requirement of the application. For example, item recom-
mendation in a social tagging system has useful (but different) applications
as both, as multi-mode recommendation problem and as multi-criteria rec-
ommendation problem. As multi-mode recommendation problem we try to
predict for a given user and a given set of tags, which items the user may
be looking for. Here, the tags may describe the context in which the user
is looking for items. On the other hand, as multi-criteria recommendation
problem we are treating the tags as a (nominal) rating, so for a given user we
are looking for interesting items (and eventually in parallel for tags he may
later associate with that item).

For reference in the remaining chapters, we instantiate the context-aware
multi-mode item recommendation problem for tags in social systems, for short
called tag recommendation: given

• sets U,R, and T of users, resources, and tags, respectively,
• a set Y := Dtrain ⊆ U ×R× T of user/resource/tag triples,
• a (ranking) loss function � : P(T )× R

T → R, e. g., recall at k

recallk(S, ŝ) :=
1

|S| |S ∩ k
argmax

t′∈T
ŝ(t′)|, S ⊆ T

Sought is for every user/resource pair a ranking of the tags, i. e., a score
function

ŝ : U ×R → R
T or equivalently ŝ : U ×R× T → R

s. t. for some test set Dtest ⊆ U × R × T of user/resource/tag triples (from
the same unknown distribution as the train set and not available for the
construction of ŝ) the test risk
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risk(ŝ;Dtest) :=
1

|UR(Dtest)|
∑

(u,r)∈UR(Dtest)

�(Tu,r(Dtest), ŝ(u, r)),

with UR(D) :={(u, r) ∈ U ×R | ∃t ∈ T : (u, r, t) ∈ D},
Tu,r(D) :={t ∈ T | (u, r, t) ∈ D}

is minimal.
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Part II

Recommendation Techniques for
Social Tagging Systems



Chapter 3

Baseline Techniques

In this chapter we introduce the most basic techniques for recommendations
in STS. Despite their simplicity, these methods are very easy to implement,
cheap to compute, and have proven to attain reasonably good results; fea-
tures that make them good alternatives to start with by anyone planning on
deploying recommendation services in STS.

3.1 Constant Models

The most simple recommender systems are those based on counting frequen-
cies of occurrences or co-occurrences of some given entity (or entities) in the
data. Although typically regarded as baselines, these recommenders are good
alternatives on their own right since they are very cheap to compute and can
work with a minimal amount of data. In the following we present several of
the recommendation tasks defined in Section 1.5 by means of counting-based
techniques.

3.1.1 Tag Recommendation

Recommending the most frequent tags of the folksonomy is the most sim-
plistic approach. We will refer to this method as constant tags, as it always
recommends the same set of tags regardless the target entities given as start-
ing point. For recommending tags, for any user u ∈ U and any resource
r ∈ R, first a linear scan is done in Y for counting each tag’s frequency of
occurrence. So in this case the prediction function is given by

ŝ(u, r, t) := |Yt|

33L.B. Marinho et al., Recommender Systems for Social Tagging Systems, SpringerBriefs in
78-1-4614-1894-8_ , he Author(s) 2012 Electrical and Computer Engineering, DOI 10.1007/9 © T3
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Notice that once we have defined a prediction function, recommending the
top-n entities of interest boils down to sorting these entities in decreasing
order of their scores and selecting the top-n. Therefore, for generating the
tag recommendation set T̂u,r for any user/resource pair, the tags are sorted
in descending order of their predicted scores, and the top-n tags are selected
for recommendation. These steps are summarized in the equation

T̂u,r :=
n

argmax
t∈T

ŝ(u, r, t). (3.1)

Alternatively, one can score a tag by counting the frequency of co-
occurrence of this tag with a given resource (or user), i. e.,

ŝ(u, r, t) := |Yr,t| (or |Yu,t|). (3.2)

3.1.2 User/Tag-aware Recommendation

The same idea can be extended trivially for recommending users or resources.
For predicting the score of a user u′ ∈ U for a given target user u ∈ U , with
u �= u′, we can simply count the number of tags (or resources) that the pair
of users (u, u′) have in common, i. e., |Tu ∩ Tu′ | (or |Ru ∩Ru′ |).

Resource recommender systems that incorporate tags in the recommen-
dation model are usually referred to as tag-aware recommender systems [15].
For computing the score of a resource r ∈ R given a tag t ∈ T , for example,
we can just count how often they co-occur in Y , i. e., |Yr,t|.

3.1.3 Remarks on Complexity

As mentioned in the beginning of this section, the methods based on counting
usually require very modest computational costs. For computing constant tags
recommendations, for example, we just need to do a linear scan in Y in order
to count the frequencies of occurrences of tags, and then sort the tags by
their counts. This results in the following cost:

O(|Y |+ |T | log(n)) (3.3)

where n is the number of tags to recommend. Note that user and resource
recommendation follow the same principles and thus have similar costs.
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3.2 Projection Matrices

Because of the ternary relational nature of STS data, many recommenda-
tion algorithms originally designed to operate on matrices cannot be ap-
plied directly, unless the set Y of ternary relations is broken into sets of
binary relations. Marinho and Schmidt-Thieme [8], for example, considered
2-dimensional projections of the original ternary relational data in order to
apply user-based CF for tag recommendations. The idea is to consider either
the projection matrix of Y restricted to users and resources, i. e.,

X := πURY ∈ R
|U |×|R|

where xu,r ∈ R is a real value denoting the strength of the relation between
user u and resource r and π denotes the unary projection operator; or the
projection matrix of Y restricted to users and tags, i. e.,

X := πUTY ∈ R
|U |×|T |

Notice that one could also use the projection πRTY ∈ R
|R|×|T | restricted to

resources and tags. However, this projection discards the user information and
leads to non-personalized content-based recommendations. While content-
based methods are important in many scenarios, as mentioned in Chapter 2,
in this book we will focus on personalized recommendations.

Most STS do not support ratings, hence the values that xu,r (or xu,t)
assume in practice are: (i) binary values, i. e., 1 if a user co-occurred with
a resource (or a tag) and 0 else; (ii) the frequencies which users accessed
resources or assigned tags to their resources; or weighting functions, such
as TF-IDF [7], applied to users, tags, or resources. Figure 3.1 depicts the
2-dimensional projections derived from Y .

In practice, the matrix X is represented as a sparse user-resource (or user-
tag) matrix X ∈ R

|U |×|R| ∪ {.} (or X ∈ R
|U |×|T | ∪ {.}), where {.} denotes

missing values. The matrix X can be decomposed into row vectors:

X := (x1, . . . ,x|U |)T with xu :=(xu,1, . . . , xu,|R|) or
xu :=(xu,1, . . . , xu,|T |) for u := 1, . . . , |U |

Each row vector xu thus corresponds to a user profile representing the
preferences of a particular user for resources (or tags). This decomposition
usually leads to algorithms that leverage user-user similarities such as the
well known user-based collaborative filtering (cf. Chapter 2). These matrices
can alternatively be represented by their column vectors:

X := (x1, . . . ,x|R|) with xr :=(x1,r, . . . , x|U |,r)T, for r := 1, . . . , |R| or
X := (x1, . . . ,x|T |) with xt :=(x1,t, . . . , x|U |,t)T, for t := 1, . . . , |T |



36 3 Baseline Techniques

resources

tagsresources

u
se

rs

u
se

rs

u
se

rs

ta
gs

Y

πUTYπURY

Fig. 3.1 Projections of Y into the user’s resource and user’s tag spaces.

This representation leverages resource-resource, or tag-tag, similarities and
leads to item-based CF algorithms (cf. Chapter 2).

3.3 Projection-based Collaborative Filtering

Collaborative Filtering (CF for short) is one of the most used recommen-
dation algorithms for personalized RS [3, 11]. Basically, it is an algorithm
for matching people with similar interests under the assumption that similar
people like similar things. Standard CF-based algorithms operate on second-
order tensors (or matrices) representing binary relations between users and
resources. In the following we describe how CF can be applied for computing
tag and resource recommendations in STS through projection matrices.

3.3.1 Tag Recommendations

For computing tag recommendations based on the two projection matrices
defined in Section 3.2, we first compute the neighborhood Nu of a user u, by
considering either the resources or the tags as components of the row vectors
representing the user profiles. Having defined which projection matrix to use,
we can now apply standard user-based CF (see Section 2.2). To compute
user-user similarities the cosine similarity measure is typically used [5, 15],
i. e.,
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sim(xu,xv) :=
〈xu,xv〉
‖xu‖‖xv‖ (3.4)

The score of a tag t ∈ T given a user u ∈ U and a resource r ∈ R as input
is given by:

ŝ(u, r, t) :=
∑
v∈Nu

sim(xu,xv)δ ((v, r, t) ∈ Y ) (3.5)

In words, the score of a tag t ∈ T is the weighted sum of tag values amongst
the best neighbors of the target user.

3.3.2 Tag-aware Recommendations

Note that if we use only the projection πURY for recommending resources,
we would end up at the standard user-based (or item-based) CF algorithms.
However, tags provide additional information about the user preferences, and
thus can be exploited to boost the recommendation quality.

Firan et al. [1] suggested to first compute a ranked list of tags on the user-
tag projection matrix πUTY , whereby the resources annotated with these
tags are aggregated, ranked, and finally presented to the target user. But by
using only πUTY for recommending resources, one discards the information
on the preferences of the target users for resources, which in this case, is the
key mode of interest.

Tso-Sutter et al. [15] proposed to handle this issue by extending the typi-
cal user-resource matrix with tags as pseudo users and pseudo resources (see
Figure 3.2). Note that in this way, the user (or resource) profile is automati-
cally enriched with tags. A fusion algorithm is then proposed for combining
the user-based (ucf ) and item-based CF (icf ) predictions over the extended
matrix. For a given target user u ∈ U , the score of resource r ∈ R is computed
by

ŝiucf(u, r) := λ · ŝucf(u, r) + (1− λ) · ŝicf(u, r) (3.6)

where ŝucf(u, r) and ŝicf(u, r) are the individual scores computed by user-
based and item-based CF respectively, and λ is a parameter controlling the
influences of these individual scores.

Still based on projections of the original set Y of ternary relations, Wetzker
et al. [16] combined a probabilistic latent semantic analysis (PLSA) model [4]
with tags for the recommendation of resources. In the standard PLSA, the
probability that a resource co-occurs with a given user can be computed by

P (r | u) :=
∑
z∈Z

P (r | z)P (z | u), (3.7)
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Fig. 3.2 Extending the user-resource matrix horizontally by including tags as pseudo
resources and vertically by including tags as pseudo users. Figure is adapted from
Tso-Sutter et al. [15].

where z is a hidden topic variable and is assumed to be the origin of observed
co-occurrence distributions between users and resources. The same hidden
topics are then assumed to be the origin of resource/tag co-occurrences, i. e.,

P (r | t) :=
∑
z∈Z

P (r | z)P (z | t). (3.8)

Both models are then combined on the common factor P (r | z) by maximizing
the log-likelihood function

L :=
∑
r∈R

[
λ
∑
u∈U

|Yu,r| logP (r | u) + (1− λ)
∑
t∈T

|Yr,t| logP (r | t)
]
, (3.9)

where λ is a predefined weight balancing the influence of each model. The
usual Expectation-Maximization (EM) algorithm is then applied for perform-
ing maximum likelihood estimation for the model. Resources for a given user
u are then weighted by the probability P (r | u) (see Equation 3.7), ranked,
and the top ranked resources are finally recommended.

3.3.3 User Recommendations

For recommending users, one can either compute the neighborhood of the
target user based on πUTY or πURY and recommend the k-best neighbors.
In order to compute a neighborhood that takes into account both πUTY or
πURY at the same time, one could, for example, either recommend the users
in the neighborhood computed on the matrix extensions proposed by [15] (see
Figure 3.2) or compute a linear combination of the user similarities based on
the user-resource and user-tag projection matrices.
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3.3.4 Remarks on Complexity

Neighborhood-based CF usually suffers from scalability problems, given that
the whole input matrix needs to be kept in memory. In STS, one may have to
eventually keep more than one matrix in memory, depending on which kind
of projections one wants to operate upon. To compute recommendations we
usually need three steps:

1. Computation of projections: In order to compose the projections, we need
to determine the (u, r), (u, t) and/or (r, t) co-occurrences. For that, we just
need to do a linear scan in Y .

2. Neighborhood computation: In traditional user-based CF algorithms, the
computation of the neighborhood Nu is usually linear in the number of
users, as one needs to compute the similarity of a given test user with all
the other users in the database. In addition, we need to sort the similarities
in order to determine the k-nearest neighbors.

3. Recommendations: For predicting the top-n tag/resource recommenda-
tions for a given test user, we need to: (i) count the tags/resources co-
occurrences with the nearest neighbors Nu, (ii) weigh each co-occurrence
by the corresponding neighbor similarity, and (iii) sort the tags/resources
based on their weights (e. g., Equation 3.5).

3.4 Further Reading

Delicious was one of the first STS to announce tag and resource recommen-
dation services.1 Although, no algorithmic details were published, we assume
that these recommendations are based on counting, like those presented in
Section 3.1. Counting-based methods were first used as baselines in [8, 6]
in the context of tag recommendations. Jäschke et al. [5] presented ensem-
bles of counting-based methods and showed empirically that they perform
surprisingly well in comparison to more complex methods.

AutoTag [9] was one of the first tools designed to suggest tags for weblog
posts using collaborative filtering methods. AutoTag identifies useful tags for
a post by examining tags assigned to similar posts. Once the user supplies
a weblog post, posts which are similar to it are identified. Next, the tags
assigned to these posts are aggregated, creating a ranked list of likely tags to
recommend. AutoTag filters and reranks this tag list; finally, the top-ranked
tags are presented to the user, who can now select the tags to annotate to
the post of interest.

TagAssist [14] is another system that also provides tag suggestions for new
blog posts by using existing tagged posts. The system is able to increase the
quality of suggested tags by performing lossless compression over existing tag

1 http://blog.delicious.com/blog/2005/08/people who like.html

http://blog.delicious.com/blog/2005/08/people_who_like.html
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data. TagAssist outperforms AutoTag in terms of accuracy, by introducing
tag compression and case evaluation to filter and rank tag suggestions.

Peng et al. [10] proposed a method of joint Resource-Tag Recommen-
dations. In particular, their method first generates joint resource-tag recom-
mendations, with tags indicating topical interests of users in target resources.
These joint recommendations are then refined by the “wisdom of the crowd”
and projected to the resource space for final resource recommendations. Peng
et al.’s [10] approach also integrates two different research directions. It com-
bines the models of recent studies that try to represent the ternary (i. e., user,
resource, tag) relationship as tensors with other models which rely on the bi-
partite interactions between any two of these three entities. Moreover, they
have experimentally shown that their method outperforms the PLSA model
proposed by Wetzker et al. [16].

Another research work that provides resources recommendations based on
tags are Tagommenders [13]. Tagommenders are recommender algorithms
that predict users’ preferences for resources based on their inferred prefer-
ences for tags. The users’ preferences can be inferred using tag signals, e. g.,
the tags he/she selected for browsing resources or the tags he used to an-
notate his/her resources, or resource signals e. g., a movie rating or a click
in movie hyperlink. Based on these inferred resource/tag preferences, the au-
thors proposed to combine tag preference inference algorithms with tag-aware
recommenders and showed empirically that their approach outperforms clas-
sic CF algorithms and may lead to novel interfaces for recommender systems.

Santander and Brusilovsky [12] proposed several collaborative filtering
techniques for the recommendation of scientific articles. In particular, they
developed and compared four collaborative filtering approaches for resource
recommendation in CiteULike. The first one and the baseline was the classic
CF (CCF). The second approach, Neighbor-weighted Collaborative Filtering
(NwCF), enhances traditional ranking (prediction) by taking into account
the number of raters in the ranking formula of the recommendations. The
third approach explores an innovative way to form the user neighborhood
based on the Okapi BM25 [7] model over tags, while keeping the CCF rank-
ing step intact. Okapi BM25 refers to a ranking function used by search
engines to rank matching documents according to their relevance to a given
search query. Finally, the combination of Okapi BM25 with NwCF approach
uses the Okapi BM25 for neighborhood formation and NwCF for ranking.
Their results demonstrate that the hybrid BM25-NwCF approach gives the
best results, by combining the potential of each approach, i. e., increasing the
coverage of users and items with BM25 and improving the precision with
NwCF.

Finally, Gemmell et al. [2] proposed a weighted hybrid tag recommender
that blends multiple recommendation components drawing separately on
complementary dimensions. In particular, the weighted hybrid tag recom-
mender consists of two popularity/counting-based recommenders and four
collaborative filtering recommenders (KNNur, KNNut, KNNru, KNNrt).
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All different recommenders scores are combined in a linear model, which as-
signs different weights (importance) to each recommender.
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Chapter 4

Advanced Techniques

In this chapter we describe the state-of-the-art in social tagging recommender
systems. Many of the algorithms presented here borrow ideas and techniques
from other areas such as information retrieval, machine learning, and statis-
tical relational learning. In Section 4.3 we also describe many approaches for
exploiting additional sources of information such as the content of resources
and the social relations of users.

4.1 Factorization Models

The idea of representing data in lower dimensional spaces has been exten-
sively used in natural language processing where it is usually known as latent
semantic analysis (LSA), or latent semantic indexing (LSI) in the particular
context of information retrieval [9]. LSA-based methods are appealing for sce-
narios in which the data is too large, too sparse, and/or too noisy, since the
reduced representation of the data can be interpreted as a de-noisified approx-
imation of the “true” data. Given that these problems, namely large-scale,
noise, and sparsity, are recurrent issues in recommender systems, LSA-based
techniques appear as an interesting tool to be exploited. Hofmann [15], for ex-
ample, used a probabilistic version of LSI for the prediction of resources/rat-
ings in recommender systems. There, and in any low dimensional factor model
in fact, it is assumed that there is only a small number of factors influencing
the users’ preferences, and that a user’s preference for a resource is determined
by how each factor applies to the user and the resource. More recently, due
to the Netflix challenge1, research on matrix factorization methods, a class of
latent factor models, gained renewed momentum in the recommender systems

1 The Netflix challenge was a competition for the best recommender system algorithm
to predict user ratings for movies. The competition was held by Netflix (http://www.
netflixprize.com/), an on-line DVD-rental service.

43L.B. Marinho et al., Recommender Systems for Social Tagging Systems, SpringerBriefs in
78-1-4614-1894-8_ , he Author(s) 2012 Electrical and Computer Engineering, DOI 10.1007/9 © T4
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literature, given that many of the best performing methods on the challenge
were based on matrix factorization techniques [26, 45, 27].

As mentioned in Chapter 1, the ternary relation Y can be represented
as a third-order tensor A, such that tensor factorization techniques can be
employed in order to exploit the underlying latent semantic structure in A.
While the idea of computing low rank tensor approximations has already
been used for many different purposes [28, 46, 25, 51, 7, 47], just recently it
has been applied for the problem of recommendations in STS. The basic idea
is to cast the recommendation problem as a third-order tensor completion
problem — completing the non-observed entries in A. The approximation Â
of tensor A yields the recommendation scores, e.g., for tag prediction:

ŝ(u, r, t) := âu,r,t

In the following we present several approaches for recommending in STS
based on tensor factorization.

4.1.1 Higher Order Singular Value Decomposition –
HOSVD on Tensors

HOSVD is a generalization of singular value decomposition and has been suc-
cessfully applied in several areas. In this section, we summarize the HOSVD
procedure.

4.1.1.1 From SVD to HOSVD

The singular value decomposition (SVD) [1] of a matrix FI1×I2 can be written
as a product of three matrices, as shown in Equation 4.1:

FI1×I2 = QI1×I1 · SI1×I2 · V T
I2×I2, (4.1)

where Q is the matrix with the left singular vectors of F , V T is the transpose
of the matrix V with the right singular vectors of F , and S is the diagonal
matrix of ordered singular values 2 of F .

By preserving only the largest k < min{I1, I2} singular values of S, SVD
results in matrix F̂ , which is an approximation of F . In information retrieval,
this technique is used by LSI [11], to deal with the latent semantic associations
of terms in texts and to reveal the major trends in F .

Formally, a tensor is a multi-dimensional matrix. A N -order tensor A
is denoted as A ∈ R

I1...IN , with elements ai1,...,iN . The high-order singular

2 The singular values determined by the factorization of Equation 4.1 are unique and
satisfy σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σI2

≥ 0.
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value decomposition [28] generalizes the SVD computation to tensors. To
apply HOSVD on a 3-order tensor A, three matrix unfolding3 operations are
defined as follows [28]:

A1 ∈ R
I1×(I2I3), A2 ∈ R

I2×(I1I3), A3 ∈ R
(I1I2)×I3

where A1, A2, A3 are called the mode-1, mode-2, mode-3 matrix unfolding
of A, respectively. The unfoldings of A in the three modes are illustrated in
Figure 4.1.

Fig. 4.1 Visualization of the three unfoldings of a 3-order tensor.

Example 1: Define a tensor A ∈ R
3×2×3 by a1,1,1 = a1,1,2 = a2,1,1 =

−a2,1,2 = 1, a2,1,3 = a3,1,1 = a3,1,3 = a1,2,1 = a1,2,2 = a2,2,1 = −a2,2,2 =
2, a2,2,3 = a3,2,1 = a3,2,3 = 4, a1,1,3 = a3,1,2 = a1,2,3 = a3,2,2 = 0. The tensor
and its mode-1 matrix unfolding A1 ∈ R

I1×I2I3 are illustrated in Figure 4.2.
Next, we define the mode-n product of a N -order tensor A ∈ R

I1×···×IN

by a matrix Q ∈ R
Jn×In , which is denoted as A ×n Q. The result of the

mode-n product is an (I1 × I2 × · · · × In−1 × Jn × In+1 × · · · × IN )-tensor,
the entries of which are defined as follows:

(A×n Q)i1i2...in−1jnin+1...iN =
∑
in

ai1i2...in−1inin+1...iN qjn,in (4.2)

Since we focus on 3-order tensors, n ∈ {1, 2, 3}, we use mode-1, mode-2,
and mode-3 products.

In terms of mode-n products, SVD on a regular two-dimensional matrix
(i. e., 2-order tensor), can be rewritten as follows [28]:

3 We define as “matrix unfolding” of a given tensor the matrix representations of
that tensor in which all the column (row, . . . ) vectors are stacked one after the other.
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Fig. 4.2 Visualization of tensor A ∈ R3×2×3 and its mode-1 matrix unfolding.

F = S ×1 Q
(1) ×2 Q

(2) (4.3)

where U (1) = (q
(1)
1 q

(1)
2 . . . q

(1)
I1

) is a unitary (I1 × I1)-matrix 4, Q(2) =

(q
(2)
1 q

(2)
2 . . . q

(2)
I1

) is a unitary (I2 × I2)-matrix, and S is a (I1 × I2)-matrix
with the properties of:

i. pseudo-diagonality: S = diag(σ1, σ2, . . . , σmin{I1,I2})
ii. ordering: σ1 ≥ σ2 ≥ · · · ≥ σmin{I1,I2} ≥ 0.

By extending this form of SVD, HOSVD of a 3-order tensor A can be
written as follows [28]:

A = S ×1 Q
(1) ×2 Q

(2) ×3 Q
(3) (4.4)

where Q(1), Q(2), Q(3) contain the orthonormal vectors (called the mode-
1, mode-2 and mode-3 singular vectors, respectively) spanning the column
space of the A1, A2, A3 matrix unfoldings. S is called core tensor and has the
property of “all orthogonality”.5 This decomposition also refers to a general
factorization model known as Tucker decomposition [49].

4 An n× n matrix Q is said to be unitary if its column vectors form an orthonormal
set in the complex inner product space Cn. That is, Q×QT = In.
5 All- orthogonality means that the different “horizontal matrices” of S (the first index
i1 is kept fixed, while the two other indices, i2 and i3, are free) are mutually orthogonal
with respect to the scalar product of matrices (i. e., the sum of the products of the
corresponding entries vanishes); at the same time, the different “frontal” matrices (i2
fixed) and the different “vertical” matrices (i3 fixed) should be mutually orthogonal
as well. For more information, see [28].
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4.1.1.2 HOSVD for Recommendations in STS

In this subsection we elaborate on how HOSVD can be employed for com-
puting recommendations in STS and present an example on how one can
recommend resources according to the detected latent associations. Although
we illustrate only the recommendation of resources, once the approximation
Â is computed the recommendation of users or tags is straightforward [48].

Recall from Chapter 3 that Y can be represented by the binary tensor
A = (au,r,t) ∈ R

|U |×|R|×|T | where 1 indicates observed tag assignments and
0 missing values, i. e.,

au,r,t :=

{
1, (u, r, t) ∈ Y

0, else

Now, we express the tensor decomposition as

Â := Ĉ ×u Û ×r R̂×t T̂ (4.5)

where Û , R̂, and T̂ are low-rank feature matrices representing a mode, i. e.,
user, resources, and tags respectively, in terms of its small number of latent
dimensions kU , kR, kT , and Ĉ ∈ R

kU×kR×kT is the core tensor representing
interactions between the latent factors. The model parameters to be opti-
mized are represented by the quadruple θ̂ := (Ĉ, Û , R̂, T̂ ) (see Figure 4.3).

The basic idea of the HOSVD algorithm is to minimize an element-wise
loss on the elements of Â by optimizing the square loss, i. e.,

argmin
θ̂

∑
(u,r,t)∈Y

(âu,r,t − au,r,t)
2

After the parameters are optimized, predictions can be done as follows:

ŝ(u, r, t) :=
∑
ũ

∑
r̃

∑
t̃

ĉũ,r̃,t̃ · ûu,ũ · r̂r,r̃ · t̂t,t̃ (4.6)

where indices over the feature dimension of a feature matrix are marked with
a tilde, and elements of a feature matrix are marked with a hat (e. g., t̂t,t̃).

Example 2: The HOSVD algorithm takes A as input and outputs the re-
constructed tensor Â. Â measures the strength of associations between users,
resources, and tags. Each element of Â can be represented by a quadruplet
{u, r, t, p}, where p measures the likeliness that user u will tag resource r
with tag t. Therefore, resources can be recommended to u according to their
weights associated with the {u, t} pair.

In this subsection, in order to illustrate how HOSVD for resource recom-
mendation works, we apply HOSVD to a toy example. As illustrated in Fig-
ure 4.4, three users tagged three different resources (web links). In Figure 4.4,
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Fig. 4.3 Tensor decomposition in STS. Figure adapted from [43].

the part of an arrow line (sequence of arrows with the same annotation) be-
tween a user and a resource represents that the user tagged the corresponding
resource, and the part between a resource and a tag indicates that the user
tagged this resource with the corresponding tag. Thus, the annotated num-
bers on the arrow lines gives the correspondence between the three types of
objects. For example, user u1 tagged resource r1 with tag “BMW”, denoted
as t1. The remaining tags are “Jaguar”, denoted as t2, “CAT”, denoted as
t3.

Fig. 4.4 Usage data of the running example.

From Figure 4.4, we can see that users u1 and u2 have common interests
on cars, while user u3 is interested in cats. A 3-order tensor A ∈ R

3×3×3,
can be constructed from the usage data. We use the co-occurrence frequency
(denoted as weights) of each triplet user, resource, and tag as the elements of
tensor A, which are given in Table 4.1. Note that all associated weights are
initialized to 1. Figure 4.5 presents the tensor construction of our running
example.

After performing the tensor reduction analysis, we can get the recon-
structed tensor of Â, which is presented in Table 4.2, whereas Figure 4.6
depicts the contents of Â graphically (the weights are omitted). As shown in
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Table 4.1 Tensor constructed from the usage data of the running example.

Arrow Line User Resource Tag Weight
1 u1 r1 t1 1
2 u2 r1 t1 1
3 u2 r2 t2 1
4 u3 r3 t3 1

1 0

1 0

0 0

0

0 0

0 0

0  0

0 1

0 0

0

0

0

0

0

0

0

0

0

1

Fig. 4.5 The tensor construction of our running example.

Table 4.2 and Figure 4.6, the output of the tensor reduction algorithm for
the running example is interesting, because a new association among these
objects is revealed. The new association is between u1, r2, and t2. This as-
sociation is represented with the last (bold faced) row in Table 4.2 and with
the dashed arrow line in Figure 4.6).

If we have to recommend to u1 a resource for tag t2, then there is no
direct indication for this task in the original tensor A. However, we see that
in Table 4.2 the element of Â associated with (u1, t2, r2) is 0.44, whereas
for u1 there is no other element associating other tags with r2. Thus, we
recommend resource r2 to user u1, who used tag t2. For the current example,
the resulting Â tensor is presented in Figure 4.7.

Table 4.2 Tensor constructed from the usage data of the running example.

Arrow Line User Item Tag Weight
1 u1 r1 t1 0.72
2 u2 r1 t1 1.17
3 u2 r2 t2 0.72
4 u3 r3 t3 1
5 u1 r2 t2 0.44

The resulting recommendation is reasonable, because u1 is interested in
cars rather than cats. That is, the tensor reduction approach is able to capture
the latent associations among the multi-type data objects: user, resources,
and tags. The associations can then be used to improve the resource recom-
mendation procedure.
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Fig. 4.6 Illustration of the tensor reduction algorithm output for the running exam-
ple.

0.72 
0

1.17 
0

0 0

0

0 0

0 0

0 0.44 

0
0.72 

0 0

0

0

0

0

0

0

0

0

0

 1 

Fig. 4.7 The resulting Â tensor for the running example.

4.1.1.3 Combining HOSVD with Content-based Methods

Social tagging has become increasingly popular in music information retrieval
(MIR). It allows users to tag music resources like songs, albums, or artists.
Social tags are valuable to MIR, because they comprise a multifaceted source
of information about genre, style, mood, users’ opinion, or instrumentation.

Symeonidis et al. [37] examined the problem of personalized song rec-
ommendation (i. e., resource recommendation) based on social tags. They
proposed the modeling of social tagging data with 3-order tensors, which
capture cubic (3-way) correlations between users-tags-music items. The dis-
covery of latent structure in this model is performed with HOSVD, which
helps to provide accurate and personalized recommendations, i. e., adapted
to the particular users’ preferences.

However, the aforementioned model suffers from sparsity that incurs in
social tagging data. Thus, to further improve the quality of recommendation,
Nanopoulos et al. [36] enhanced the HOSVD model with a tag-propagation
scheme that uses similarity values computed between the music resources
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based on audio features. As a result, this hybrid model effectively combines
both information about social tags and audio features. Nanopoulos et al. [36]
examined experimentally the performance of the proposed method with real
data from Last.fm. Their results indicate the superiority of the proposed
approach compared to existing methods that suppress the cubic relationships
that are inherent in social tagging data. Additionally, their results suggest
that the combination of social tagging data with audio features is preferable
than the use of the former alone.

4.1.1.4 Limitations of HOSVD

The HOSVD approach has two major drawbacks:

Modeling: The runtime complexity is cubic in the size of the latent dimen-
sions. This can be seen in Equation 4.6, where three nested sums have to
be calculated just for predicting a single (user, resource, tag)-triple. There
are several approaches to improve the efficiency of HOSVD [25, 50, 10].

Learning: HOSVD is optimized for least-squares on the whole tensor A.
However, recommendation is a ranking task not a regression task and also
the non-observed posts are not taken into account by HOSVD.

We will study both issues in the following.

4.1.2 Scalable Factorization Models

The limitation in runtime of HOSVD stems from its model which is the Tucker
Decomposition. In the following, we will discuss several factorization models
that have been proposed for tag recommendation. We investigate their model
assumptions, complexity and their relations among each other.

4.1.2.1 Tucker Decomposition

The underlying tensor factorization model of HOSVD is the Tucker Decompo-
sition (TD) [49]. As noted before, for tag recommendation, the model reads:

Â := Ĉ ×u Û ×r R̂×t T̂ (4.7)

or equivalently

âu,r,t =

kU∑
ũ=1

kR∑
r̃=1

kT∑
t̃=1

ĉũ,r̃,t̃ · ûu,ũ · r̂r,r̃ · t̂t,t̃ (4.8)
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The reason for the cubic complexity (i. e., O(k3) with k := min(kU , kR, kT ))
of TD is the core tensor.

4.1.2.2 Parallel Factor Analysis (PARAFAC)

The Parallel Factor Analysis (PARAFAC) [14] model aka canonical decom-
position [5] reduces the complexity of the TD model by assuming a diagonal
core tensor.

cũ,r̃,t̃
!
=

{
1, if ũ = r̃ = t̃

0, else
(4.9)

which allows to rewrite the model equation:

âu,r,t =
k∑

f=1

ûu,f · r̂r,f · t̂t,f (4.10)

In contrast to TD, the model equation of PARAFAC can be computed in
O(k). In total, the model parameters θ̂ of the PARAFAC model are:

Û ∈ R
|U |×k, R̂ ∈ R

|R|×k, T̂ ∈ R
|T |×k (4.11)

The assumption of a diagonal core tensor is a restriction of the TD model.

4.1.2.3 Pairwise Interaction Tensor Factorization (PITF)

Whereas TD and PARAFAC directly express a ternary relation, the idea of
the pairwise interaction tensor factorization (PITF) [44] is to model pairwise
interactions instead. The motivation is that observations are typically very
limited and sparse in tag recommendation data, and thus it is often easier to
estimate pairwise interactions than ternary ones. This assumption is reflected
in the model equation of PITF which reads:

âu,r,t =
k∑
f

ûu,f · t̂Ut,f +
k∑
f

r̂r,f · t̂Rt,f (4.12)

with model parameters θ̂

Û ∈ R
|U |×k, R̂ ∈ R

|R|×k, T̂U ∈ R
|T |×k, T̂R ∈ R

|T |×k (4.13)

Note that in contrast to PARAFAC, there are two factor matrices for the
tags. One (TU ) for the interaction of tags with users and a second one (TR)
for the interaction of tags with resources. In general, one could also add an
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interaction between users and resources but it would not play any role for tag
recommendation because it is invariant to ranking [44] if a proper ranking
optimization is chosen (see Sec. 4.1.3).

4.1.2.4 Factorization Machines (FM)

The tensor factorization approaches discussed so far can only deal with pre-
diction problems involving three categorical variables (i. e., user, resource
and tag). Often additional knowledge is present, e. g., the title or text of
resources or some information about the user or context-information of the
tagging event such as time.

Factorization machines (FM) [41] have been proposed as a generic model
that allows to describe a wide variety of data by feature engineering. FMs
combine the flexibility of feature engineering with the advantages of factor-
ization. The model equation of an FM reads

ŝ(x) = w0 +

p∑
j=1

xj wj +

p∑
j=1

p∑
j′>j

xj xj′

k∑
f=1

vj,f vj′,f (4.14)

where x is the input data describing e. g., a (user, resource, tag)-triple and θ̂
are the model parameters

w0 ∈ R, w ∈ R
p, V ∈ R

p×k. (4.15)

For applying FMs to social tag recommendation, the prediction ŝ of an FM
gives the score for a (user, resource, tag)-triple which is encoded using the
real-valued feature vector x. In general, any information that can be de-
scribed with real-valued features can be used in x. A simple encoding for tag
recommendation has been proposed in [41], where the triple about user u,
resource r, tag t is described with a feature vector x ∈ R

p

xu,r,t :=

⎛
⎜⎝0, . . . ,

u︷︸︸︷
1 , 0, . . .︸ ︷︷ ︸

|U |

, 0, . . . ,

r︷︸︸︷
1 , 0, . . .︸ ︷︷ ︸

|R|

, 0, . . . ,

t︷︸︸︷
1 , 0, . . .︸ ︷︷ ︸

|T |

⎞
⎟⎠ (4.16)

where p := |U | + |R| + |T |. Using this encoding, the FM model is similar
to PITF and generates also empirically a comparable quality in comparable
runtime [41]. However, FMs are much more flexible as they allow to encode
any kind of additional data, e. g., the input vector x can be extended with
features for the words of a resource’s title, the age of a user, the time, etc.
which results in tag recommender that are content-aware, user-attribute-
aware, time-aware, etc.
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Fig. 4.8 Relationship between Tucker Decomposition, Parallel Factor Analysis
(PARAFAC) and Pairwise Interaction Tensor Factorization (PITF) [40].

4.1.2.5 Relationship of Factorization Models

A graphical representation of Tucker Decomposition (TD), Parallel Factor
Analysis (PARAFAC) and Pairwise Interaction Tensor Factorization (PITF)
is shown in Figure 4.8. It can be seen that any PARAFAC model can be
expressed by a TD model (with diagonal core tensor) and every PITF model
can be expressed as a PARAFAC model where parts of PARAFAC’s latent
user (and resource) factors are constantly 1.

Let M be the set of models that can be represented by a model class. In
[40] it is shown that for tag recommendation

MTD ⊃ MPARAFC ⊃ MPITF (4.17)

This means that any PARAFACmodel can be expressed with a TD model but
there are TD models that cannot be represented with a PARAFAC model.
The same holds for PITF which is a true subclass of PARAFAC models.
In [44, 40] it was pointed out that this does not mean that TD is guaran-
teed to have a higher prediction quality than PARAFAC and PARAFAC a
higher quality than PITF. On the contrary, as all model parameters are es-
timated from limited data, restricting the expressiveness of a model can lead
to higher prediction quality if the restriction is in line with the true param-
eters. Empirically this has been shown in [44] where PITF outperforms the
more expressive TD and PARAFAC models in prediction quality. Rendle [40]
mentions that the positive effect of restricting the expressiveness can also
be achieved by regularization, e. g., assuming a non-zero mean for the prior
distribution; e. g., non-zero Gaussian priors on some of PARAFACs factors
would result in a PITF-like PARAFAC model. More details about the rela-
tionship of the factorization models as well as complexities can be found in
[40].
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4.1.3 Learning Tag Recommendation Models

So far, factorization models have been discussed which rely on model param-
eters. Now, learning approaches are presented that find the optimal values
for the model parameters θ̂ based on the observed data Y .

In the HOSVD approach, the TD model is optimized for least squares.
However tag recommendation is a ranking rather than a regression task. In
[43] and [44] it has been shown how model parameters can be optimized
for optimal ranking of tags. First, the observed tag assignments are divided
in positive, negative, and missing values as follows (cf. Section 1.4.1). Let
PA be the set of all distinct user/resource combinations in Y (called πU,RY
in Chapter 3), now the sets of positive and negative tags of a particular
(u, r) ∈ PA are defined as

T+
u,r := {t | (u, r) ∈ PA ∧ (u, r, t) ∈ Y }

T−
u,r := {t | (u, r) ∈ PA ∧ (u, r, t) �∈ Y }

From this, pairwise tag ranking constraints can be defined for the values of
Â:

au,r,t1 > au,r,t2 ⇔ (u, r, t1) ∈ T+
u,r ∧ (u, r, t2) ∈ T−

u,r (4.18)

Two optimization criteria based on ranking constraints have been proposed:
AUC optimization and pairwise classification.

AUC Optimization. In [43], the ranking statistic AUC (area under the
ROC-curve) is maximized. The AUC measure for a particular post (u, r) ∈
PA is defined as:

AUC(θ̂, u, r) :=
1

|T+
u,r||T−

u,r|
∑

t+∈T+
u,r

∑
t−∈T−

u,r

H0.5(âu,r,t+ − âu,r,t−) (4.19)

where Hα is the Heaviside function:

Hα :=

⎧⎪⎨
⎪⎩
0, x < 0

α, x = 0

1, x > 0

(4.20)

The overall optimization criterion with respect to the ranking statistic AUC
and the observed data is then:

AUC-OPT(θ̂) :=
∑

(u,r)∈PA

AUC(θ̂, u, r) (4.21)

Note that optimizing (4.19) directly is hard since H0.5 is discontinuous and
therefore not differentiable at 0. Hence, Hα is usually replaced by a smoother
function that shares properties with the unit step function, for example, the
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s-shaped sigmoid function:

σ(x) :=
1

1 + e−x
(4.22)

In [43], this approach of AUC optimization is named RTF (Ranking with
Tensor Factorization) and applied to the TD model. For optimizing model
parameters w. r. t. AUC-OPT (Equation 4.21), a post-wise gradient descent
algorithm is proposed. Calculating the gradients per post (u, r) ∈ PA, allows
caching parts of the TD model equation and speeds up learning (see [43] for
details).

Pairwise Classification. The second optimization approach that has been
proposed for parameter learning of tag recommenders is an adaptation of the
Bayesian Personalized Ranking (BPR) [42] approach, which was originally
used for item recommendation. BPR for tag recommendation [44] tries to find
model parameters that satisfy as many ranking constraints (Equation 4.18)
as possible. This can be formulated as a classification problem over ranking
constraints. With a probabilistic treatment, the optimization criterion for
maximum likelihood parameter estimation reads:

BPR-OPT(θ̂) :=
∑

(u,r)∈PA

∑
t+∈T+

u,r

∑
t−∈T−

u,r

lnσ(âu,r,t+ − âu,r,t−) (4.23)

Both AUC-OPT and BPR-OPT are closely related [42]. For optimizing model
parameters w. r. t. BPR-OPT (Equation 4.23), a stochastic gradient descent
learning method was proposed [44] where constraints (Equation 4.18, i. e.,
quadruples (u, r, t1, t2)) are drawn by bootstrapping.

The PITF model with BPR-optimization [44] was the winning approach
of the ECML PKDD Discovery Challenge’s task 2 on graph-based tag rec-
ommendations [16].

Regularization. Both AUC-OPT and BPR-OPT are typically extended
with L2 regularization terms that favor small values for model parame-
ters [43, 44]. L2-regularization is also known as Tikhonov regularization, ridge
regression or Gaussian priors. The advantage of a regularized optimization
criterion is that overfitting can be reduced. The regularized optimization task
can be formalized as

argmax
θ̂

(
OPT(θ̂) + λ ||θ̂||2

)
(4.24)

where λ is the strength of the regularization. Often the model parameters are
grouped and every group of model parameters has an individual regulariza-
tion parameter λ.
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4.2 Graph-based Models

In this section we present recommendation methods that exploit the hyper-
graph representation of folksonomies, or transformations of it, for generating
recommendations in social tagging systems.

4.2.1 PageRank-based Recommendations in STS

The analysis of hyperlinks and the graph structure of the Web has greatly
contributed to the development of effective information retrieval techniques,
turning web search engines into indispensable tools for any type of internet
users. Link analysis for the Web borrows the ideas from citation analysis, in
which citations represent the conferral of authority from a scholarly article
to others [34]. In a similar way, link analysis on the Web considers hyperlinks
from a web page to another as a conferral of authority.

The ranking algorithm PageRank [2], for example, reflects the idea that a
web page is important if there are many pages linking to it, and if those pages
are important themselves. Hotho et al. [17] employed the idea of PageRank
for search and ranking in folksonomies. The key idea of the FolkRank algo-
rithm is that a resource which is tagged with important tags by important
users becomes important itself. Note that the same holds symmetrically for
tags and users, which enables a global ranking of users, resources, and tags.
Later on, Jäschke et al. [21] adapted the original FolkRank algorithm for
personalized tag recommendations. In the following, we will first recall the
principles of PageRank and then show how it can be used for computing
recommendations in social tagging systems.

PageRank. PageRank employs the random surfer model, i. e., a random
surfer begins at a web page and executes a random walk on the Web. So, at
each time step, the surfer goes, usually with some uniform probability greater
than 0, from his current web page A to another web page B that is linked by
A. Proceeding in this way, the surfer will end up visiting some pages more
often than others, with the most often visited pages reflecting pages with more
links coming in from other frequently visited web pages. Hence, the basic idea
is that pages visited more often are more important than others visited less
frequently. Additionally, a jump operator is used to denote the probability
that the user will “jump” to any other page in the Web, regardless whether
it is linked by the current page or not. This operator reflects the situation
where, for example, the user directly types a URL address into the URL
bar of his browser, instead of following links from one page to another. In
PageRank, the Web is usually represented as a graph G = (V,E), in which V
is the set of known web pages and E represents hyperlink relations between
the web pages, e. g., (x, y) ∈ E if there is a hyperlink from x to y or vice-versa.
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One iteration of PageRank is computed as follows:

wt+1 ← λATwt + (1− λ)p (4.25)

where w is the surfer vector with one entry for each node in V , A ∈ R
|V |×|V |

is the row-stochastic version of the adjacency matrix A′ associated with the

web graph6, that is, Ai,j =
A′

i,j

deg(i) if {i, j} ∈ E and 0 else, p is a vector

that can be used for asserting preferences for specific nodes, and the jumping
factor 0 < λ < 1 is used for determining the strength of the influence of
p. By normalization of the vector p, the equality ||w||1 = ||p||1 is enforced.
This ensures that the weight in the system will remain constant if each page
has at least one out-link. Therefore one usually removes all pages without
outgoing links before applying PageRank. The random walk with the jump
operator induces an ergodic Markov Chain7, and is guaranteed to converge to
a stationary distribution regardless of where it begins [34]. Hence, the rank
of each node is its value in the limit w := limt→∞ wt of the iteration process.
Another nice consequence of this formulation is that the transition matrix
given by M := λAT + (1− λ)/N has eigenvalue 1, i. e., Mw = 1w, therefore
the right principal eigenvector of the matrix M , the one with eigenvalue 1,
corresponds exactly to the fixed point of Equation 4.25. Among the existing
methods for computing principal eigenvectors, the power iteration is the most
typical one. Note that although the convergence is guaranteed, one can stop
the algorithm earlier if the results are already satisfactory.

PageRank for Folksonomies. Since folksonomies can be represented as
hypergraphs (see Section 1.4.2), PageRank cannot be applied directly. This
is because the original PageRank algorithm is designed to be applied in graphs
of edge size two.8 Therefore, in order to apply the PageRank algorithm to
folksonomies, Hotho et al.[17] proposed to convert the hypergraph GF :=
(V,E) into an undirected tri-partite graph where the co-occurrences between
tags and users, users and resources, and tags and resources, become edges
between the respective nodes. I. e., each triple (u, r, t) in Y results in three
undirected edges {u, r}, {u, t}, and {r, t} in E (see Figure 4.9).

Fig. 4.9 Converting a hyperedge into three undirected edges.

6 A row-stochastic matrix refers to a matrix where the row-wise sum of elements, for
each row in the matrix, is 1.
7 A Markov chain is called an ergodic chain if it is possible to go from every state to
every state.
8 The size of an edge corresponds to the number of vertices it contains.
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After the hypergraph transformation, one has the required setup to apply
the original PageRank algorithm [2]. The following modifications must be
performed though. First, the row-stochastic matrix A ∈ R

N×N , where N :=
|U | + |R| + |T |, is defined in terms of the co-frequency matrix A′, that is,
A′

i,j := c if i and j co-occur exactly c times. For a global ranking, one will
typically choose p = 1, i. e., the vector containing |A| many 1’s. In order to
generate recommendations, however, p can be tuned by giving a higher weight
to the target entity for which one wants to generate a recommendation. The
tag recommendation T̂u,r, for example, is then the set of top-n nodes in the
ranking, restricted to tags.

A remarkable difference between the application of PageRank in folkso-
nomies and its typical application to web pages, is that the graph GF is
undirected. As a side effect, most of the weight that goes through an edge
at moment i will flow back at i+ 1. The results are thus rather similar to a
ranking that is simply based on frequency of vertices’ co-occurrences.9 This
was experimentally observed by [17], who showed that the final ranking is
biased by the global graph structure. As a consequence, [17] developed the
following approach.

FolkRank. The undirectedness of graphGF together with the typical skewed
co-occurrence distribution between the entities of the folksonomy, makes it
very difficult for the non-popular nodes to become highly ranked. This prob-
lem is solved by the FolkRank approach, which is described as follows:

1. Let w(0) be the stationary probability distribution resulting from applying
Equation 4.25 with p = 1. We will call this method GlobalRank.

2. Let w(1) be the stationary probability distribution resulting from applying
Equation 4.25 with p[u] := 1 + |U |, p[r] := 1 + |R|, and p[v] := 1 for
v �= u, r.

3. w := w(1) − w(0) is the final weight. The resulting weight w[k] of an
element k of the folksonomy is then called the FolkRank of k [17].

Multi-mode Recommendations For generating tag recommendations for
a given user/resource pair (u, r), we compute the ranking as described and
the tag nodes yield the recommendation scores

ŝ(u, r, t) := w|T
Similarly, one can compute recommendations for users (or resources) by giv-
ing preference to a certain user (or resource). Since FolkRank computes a
ranking on all three dimensions of the folksonomy, this produces the most
relevant tags, users, and resources for the given user (or resource).

Remarks on Complexity One iteration of the adapted PageRank requires
the computation of dAw+(d−1)p, with A ∈ R

s×s where s := |U |+|R|+|T |. If
9 It is easy to show that the results are exactly equal to the frequency of vertices’
co-occurrences in case of λ = 1.
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tmarks the number of iterations, the complexity would therefore be (s2+s)t ∈
O(s2t). However, since A is sparse, it is more efficient to go linearly over all
tag assignments in Y to compute the product Aw. After rank computation
we have to sort the weights of the tags to collect the top-n tags.

4.2.2 Relational Neighbors for Tag Recommendations

Marinho et al. [35] proposed an approach based on a simple relational neigh-
bor classifier for tag recommendations. The idea is to represent the set
P := {(u, r) | ∃t ∈ T : (u, r, t) ∈ Y } of all distinct user/resource combi-
nations (posts) in Y as a homogeneous,10 undirected graph G := (P,E).
Edges can be annotated with a weight w : P × P → R representing the
strength of the relation. It is assumed that vertices are related to each other
if they share the same user:

Ru := {(p, p′) ∈ P × P | u(p) = u(p′)}

the same resource:

Rr := {(p, p′) ∈ P × P | r(p) = r(p′)}

or either share the same user or resource:

Rr
u := Ru ∪Rr

Figure 4.10 depicts all these three different relational graphs. For convenience,
let u(p) := u and r(p) := r denote the user and resource of post p ∈ P
respectively. Thus, each vertex is connected to each other either in terms of
other users who tagged the same resource, or the resources tagged by the
same user.

This graph representation enables to exploit the different relations be-
tween users in a more fundamental way. As a side effect, we gain tools from
relational classification that can be directly applied to tag recommendations.
Relational classification refers to an active area of machine learning where
classifiers usually consider, additionally to the typical attribute-value data of
objects, relational information. A scientific paper, for example, can be con-
nected to another paper that has been written by the same author or because
they share common citations. It has been shown in many classification prob-
lems that relational classifiers can perform better than purely attribute-based
classifiers [6, 32, 38].

If we consider the graph G := (P,Rr) as input, we can easily derive the
projection-based CF models described in Chapter 3. For that, we simply need

10 By homogeneous we mean that there is only a binary relation R ⊆ P ×P between
objects of the same type.
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Fig. 4.10 Ru (top left), Rr (bottom left) and Rr
u (right) of a given target node

(colored node).

to weigh the edges of the graph with the cosine similarity between the user
profile vectors (w. r. t. tags or resource) of neighboring nodes, i. e., w(p, p′) :=
sim

(
xu(p),xu(p′)

)
with p′ ∈ Np with Np denoting the set of neighbors of node

p. Then, for computing the set T̂u,r of top-n tags to recommend for a given
target node p ∈ P , we would have:

T̂u,r :=
n

argmax
t∈T

∑
{p′∈Np|t∈T (p′)}

w(p, p′) (4.26)

For the sake of simplicity, we will assume that the number of k best neigh-
bors of a specific u(p) in the formula (4.26) above equals |Np|.

We can easily derive a probabilistic version of CF by just normalizing
each tag weight by the sum of similarities between the target node and its
neighbors. So, the probability of a particular t given a target node p ∈ P is
calculated by

P (t | p) =
∑

p′∈Np : t∈T (p′) w(p, p
′)∑

p′∈Np
w(p, p′)

(4.27)

Now, for computing the top-n recommendation list we just need to sort the
tags in descending order of their probabilities, i. e.,

T̂u,r :=
n

argmax
t∈T

P (t | p) (4.28)
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In fact, Equation 4.27 refers to a simple statistical relational classifica-
tion method introduced in [33], that, despite its simplicity, has performed
surprisingly well in many domains, even outperforming many other more so-
phisticated classifiers [33]. We will refer to this method as WeightedAverage
(or WA form short) in the sequel.

A shortcoming of the projection-based CF methods is that they only ex-
ploit the tag assignments of the neighbors, but never the tag assignments of
the target user. Since the users might want to reuse the tags they already
used for other resources in the past, it is important to take those tags into
account as well. Note that with the post graph representation this becomes
straightforward, since we just need to apply WA on Rr

u. The remaining ques-
tion is how to weigh the edges in Ru since the similarity of a user with himself
will always be maximal.

Weight Estimation. Edge weights are an important component of the re-
lational graph since they denote the degree to which neighboring vertices are
related. Marinho et al. [35] defined edge weights in terms of the cosine simi-
larity between node profile vectors. In the following we define different node
profile vectors that cover any situation into which two neighboring nodes can
incur.

1. For two nodes (p, p′) ∈ Rr, we can represent p and p′ as a binary user-tag
profile vectors, where each component is 1, if a tag co-occurred with u(p),
or zero otherwise, i. e.,

φuser-tag :=
(
δ
(
u(p), Ru(p), t

))
t∈T

Recall that Ru corresponds to the set of all unique resources co-occurring
with user u, and that δ(u, r, t) := 1 if (u, r, t) ∈ Y , and 0 else. Since a user
can use the same tag for several resources, we could alternatively consider
the count of co-occurrences between users and tags as components of the
vector, i. e.,

φuser-tag := (|Y ∩ ({u(p)} ×R× {t})|)t∈T

2. If two users do not share any tags, we can still define their similarities in
terms of user-resource profile vectors, i. e.,

φuser-res :=
(
δ
(
u(p), r, Tu(p)

))
r∈R

Note that it does not make much sense to define the user-resource vec-
tor components as frequency of co-occurrences, since a user only upload a
resource once. Also note that these two cases correspond to the user pro-
file vectors defined in terms of the projection matrices πUTY and πURY
respectively, introduced in Chapter 3 .

3. If (p, p′) ∈ Ru, we can not apply the vectors defined above since the cosine
similarity between a user and himself will always be 1. Hence, we need to
compute the weight in terms of binary resource-tag profile vectors
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φres-tag :=
(
δ
(
Ur(p), r(p), t

))
t∈T

or co-frequency resource-tag profile vectors

φres-tag := (|Y ∩ (U × {r(p)} × {t})|)t∈T

4. As well as for users, if two resources do not share any tags, we still can try
to define their similarities in terms of binary resource-user profile vectors,
i. e.,

φres-user :=
(
δ
(
u, r(p), Tr(p)

))
u∈U

The edge weight is finally computed by applying the cosine similarity be-
tween the desired profile vectors:

sim(φ(p), φ(p′)) :=
〈φ(p), φ(p′)〉
‖φ(p)‖‖φ(p′)‖ (4.29)

Remarks on Complexity. Assuming that the weighted relational graph is
given, the complexity of WA depends on two steps: (i) computation of tag
weighted sums, which means |Np| passes in T , and (ii) computation of tag
probabilities by normalizing the tag weighted sums, which means a pass in
T . Hence, the whole complexity is given by:

O (|T |(|Np|+ log(n) + 1)) (4.30)

This cost can be reduced by dropping the normalization of tag weights, al-
though at the cost of loosing a probabilistic interpretation.

4.3 Content and Social-Based Models

The recommendation task in a social tagging system can be improved by ex-
ploiting additional sources of information. This section presents an overview
of methods that exploit the content of resources and the social relations be-
tween users as such additional sources.

4.3.1 Exploiting the Content of Resources

Relying solely on social tags for the task of locating relevant resources, can
become problematic when the tags are ambiguous or overly personalized. An
additional problem is the skewness in the occurrence frequency of tags, which
in the extreme case results in individual tags used once per resource.

In a social tagging platform, the problem of automatic tag recommendation
can be explored by considering the fact that user-provided tags can possibly
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reflect various aspects of the content of the resources that these tags are
assigned to. This allows for developing tag-propagation schemes principled
based on the intuition that ‘similar’ resources may contain relevant tags. Such
an approach defines the retrieval-based paradigm [52] that first retrieves a set
with the most similar resources to a query resource from the social tagging
platform, and then assigns the query resource with a set of most relevant tags
associated with the set of most similarly retrieved resources.

Content-based tag recommendation methods exploit a concept of similar-
ity between resources according to their content, in order to apply a propaga-
tion of tags between similar resources. The tagRelevance method [30] follows
such an approach, by proposing a neighbor-voting algorithm for tag relevance
learning. The method propagates common tags through links introduced by
content-based similarity between resources. Each tag accumulates its rele-
vance credit by receiving neighbors’ votes and, thus, tag relevance is esti-
mated by counting neighbors’ votes on it. Li et al. [30] show that under some
realistic assumptions, tagRelevance produces a good tag relevance measure-
ment for tag ranking. This result is also supported by experimental results
on 3.5 million Flickr images for both social image retrieval and image tag
suggestion.

Jeon et al. [19] propose an improved way of recommending tags based on
similarity that is computed from the resources’ content. Their method first
finds the neighboring resources using a subject-based content analysis of the
resources, as the subject of a resource commonly determines the tags provided
by users about it. Next, this method applies a weighted neighbor voting
technique. In contrast to the neighbor voting technique of Li et al. [30], which
considers the tags of most votes among tags in similarity-based neighbor
resources, the method of Jeon et al. [19] first filters the tags of low votes and
extracts relevant tags by measuring the tag relevance using weights based
on a search score that results from the content analysis. In the final step,
the most relevant tags for a resource are predicted based on a tag-ranking
scheme. Jeon et al. [19] develop their method for image data. To measure
similarity they use the Euclidean distance between visual features that are
extracted from the images by first identifying subject regions, using a graph-
based visual saliency method. Next, the method finds tags with more than
the threshold votes. Tag relevance is computed for each extracted tag by
considering the similarity between resources. The relevance rel(t, r) between
a tag t and a resource r is computed as:

rel(t, r) = 1− 1

|RNr,t |
∑

r′∈RNr,t

d(r, r′), (4.31)

where Nr denotes the content-based k nearest neighbors resources of resource
r, RNr,t

denotes the set of resources in Nr that have been assigned the tag t,
and d(r, r′) the distance between the resources r and r′ in the feature space
constructed based on their content. Finally, considering each tag t∗ in the set
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of most relevant tags, which are computed with the score of Equation 4.31,
tags are recommended to a resource r by using the following tag-ranking
score:

s(t∗) =
1

|RNr,t∗ |
∑

r′∈RNr,t∗

o(t∗, Tr′)

|Tr′ | , (4.32)

where o(t∗, Tr′) is the order of t∗ in Tr′ .
Both the approaches by Li et al. [30] and Jeon et al. [19] create a feature-

representation scheme to extract salient content features from resources, and
then are using a standard distance measure to compute distances between re-
sources within the created feature space. Differently from these approaches,
Wu et al. [52] propose a unified Distance Metric Learning (DML) frame-
work for the purpose of improving the accuracy of tag recommendations.
Their DML approach learns metrics from implicit, side information hidden
in resources. The reason for this is that, in contrast to conventional DML
methods, side information in social tagging systems is not provided explic-
itly, neither in the form of pairwise constraints nor as class labels. In a social
tagging system, side information is only implicitly available. As a result, the
proposed unified DML method exploits both the information provided by the
social tagging system and the content of the resources in order to develop an
effective metric.

4.3.2 Exploiting Social Relations

Most recommender systems do not take into account the relations declared
explicitly by users, such as, e. g., the “friendship” relations that some STS
support. Therefore, these relations can be exploited to improve the task of
recommendation. The intuition is that, related users (e. g., “friends”) influ-
ence each other in terms of their tagging behavior.

Liu et al. [31] propose to exploit the social relations between users. In
addition to that, following an approach that resembles the content-based
approaches that are presented in Section 4.3.1, they inject content similarities
between resources into the graph representation of social tagging data.

To measure the similarity among users, it is intuitive to assume that two
users are more similar if they share several direct or indirect social connections
(e. g., “friendships”). By following a standard representation of users’ social
relations as a feature vector (i. e., representing the social connections between
users with a two-dimensional matrix), the similarity between two users is
determined only based on their direct relations (e. g., “friend”) and ignores
intermediate relations to other users. To resolve this problem, Liu et al. [31]
examine several methods to compute similarity based on random-walks over
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nodes in a graph. For two nodes i and j of a graph whose adjacency matrix
is A, they consider the following similarity measures:

Average first-passage time (FPT): In this case, the similarity sim(i, j) =
m(i | j) is defined as the average number of steps for a random walker
starting in j to enter i. FPT is computed withm(i | j) = 1+

∑n
k=1 Pj,km(i |

k), j �= i (and 0 for j = i).
Pseudoinverse of the Laplacian matrix (L+): The Laplacian matrix L of

the graph is defined as L = D −A where Di,i =
∑

j Ai,j and Di,j = 0 for

i �= j. Matrix L+ is the Moore-Penrose pseudoinverse of L.
Matrix-forest-based algorithm (MFA): The similarity matrix in this case is

defined as T = (I + L)−1.

Using a random-walk based similarity measure, a personalized collabora-
tive filtering can combine both the collaborative information and the per-
sonalized tag preferences. In particular, personalized-CF generates the top-n
recommended tags as follows:

T̂u,r =
n

argmax
t∈T

λ · c(u, r, t) + (1− λ) · p(u, t), (4.33)

where λ ∈ [0, 1] is a user-defined parameter, c(u, r, t) is the collaborative
information that is personalized with the user’s tag preference:

c(u, r, t) =
∑

u′∈Nu,r

sim(u, u′) · δ((u′, r, t) ∈ Y ) · sim(u′, t), (4.34)

having p(u, t) = sim(u, t) and Nu,r denotes the the top-k similar users of u
who also have tagged r.

In a similar approach, Jiang et al. [20] propose a tag recommendation
strategy based on social comment context. A social comment network de-
scribes the user, resources, tags, and the comments added to resources. Such
a network forms an alternative way to represent users’ social relations, since
making comments on the information resources of other users is a popular
activity on social networks nowadays. In such cases, the implicitly expressed
(through comments) common interests allow for formulating implicit groups
of users. In their method, Jiang et al. [20] represent the users with a directed,
complete graph structure (each user corresponds to a node in this graph and
there exists an edge between each pair of users), whereas each edge from node
i to node j is weighted according to the number of comments (normalized by
the total number of comments by all users) that user i provided to content of
user j. Based on this representation, it is proposed to quantify the influence
of each user, i. e., the fact that the user’s resources receive many in-links,
with a measure of prestige Pres(ui) for each user ui that is defined as follows:

Pres(ui) =

∑m−1
i=1

∑n
j=1 C(ui, j)

n
, (4.35)
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where m is the total number of users, n is the total number of resources
contributed by user u, j represents the resources, and C(ui, j) is the number
of comments that user ui added to resource j. Based on the above measure,
users are ranked according to their prestige.

For the recommendation of tags, tag co-occurrence between two tags ti
and tj is measured by P (tj | ti):

P (tj | ti) = |ti ∩ tj |
|ti| , (4.36)

where |ti ∩ tj | denotes the number of resources that have been assigned with
both ti and tj . This way, tags are selected for recommendation based on a
boosting factor that weighs tag co-occurrence when the tag pairs have been
used by a user with higher prestige.

Along this line, Rae et al. [39] propose a framework for combining informa-
tion from various contexts, including the content of the resources, the social
contacts of users, which include either direct connections (e. g., “friendship”)
to other individual users or membership to groups of users. Additional infor-
mation from the social network is exploited in this framework for the task
of tag recommendation as well as for expanding queries of users of social
networks.

A significant difference of the approach proposed by Rae et al. [39] com-
pared to the previously examined methods, is that it considers a series of
layers in terms of the contextual information that is extracted from the so-
cial network; Figure 4.11 depicts the interactions between these contextual
layers:

1. The first contextual layer is the personal (PC), which contains the tags of
each individual user.

2. The second contextual layer is the social contact context (SCC), which is
constructed by aggregating, for each specific user u, the tags of all users
that are connected to u.

3. The third contextual layer is the social group context (SGC), which is
constructed by aggregating, for each specific user u, the tags of resources
belonging to (e. g., posted by) groups that u is member of.

4. The fourth and final contextual layer is the collective context (CC), which
is constructed by aggregating the tags of all users.

Within a probabilistic prediction framework proposed by Rae et al. [39],
each contextual layer produces a weighted network of tags, having an edge
between tags, when they have been used to annotate the same resource. For
each tag t, its occurrence tally o(ti) is defined as the number of times that ti
occurs (i. e., used to annotate resources). The weights of the edges in the net-
work are determined by the co-occurrence tally c(ti, tj), which is the number
of times that tags ti and tj are used to annotate the same resource. Recom-
mendations are produced based on a given set of (input) query tags. Each
query tag generates first an intermediate set of recommendations that are
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SCC

SGC

PCCC

Fig. 4.11 The interactions between the series of contextual layers (Figure adapted
from [39]).

later combined. The set of recommendations for a given query tag and for a
given context is then determined by the complete set of tags that co-occur
with that tag in that context’s network. The tags are ranked and penalization
is applied to those tags that are not recommended by all query tags. In par-
ticular, given a set of query tags Q, the ranking score px(t | Q) (probability)
of a tag t for an intermediate suggestion within a contextual layer x is defined
as:

px(t | Q) = px(t)
∏
q∈Q

px(t | q), (4.37)

where for p(t | q) in general (i. e., for each context) it holds that p(t | q) =
c(t, q)/o(q). For the t, q pairs for which p(t | q) = 0, we assign p(t | q) = ε,
where ε is a small positive quantity. According to the px(t | Q) quantity, tags
are ranked in descending order and the top-n tags are recommended as given
by that context’s network of tags for a given query tag set. This approach
can be used in the same way for each type network that can be constructed
based on the aforementioned contextual layers. Experimental results in [39]
indicate the advantage of combining different contextual layers.

In a recent investigation, Chidlovskii et al. [8] suggested a combination
of content and social-based models for tag recommendation in social media
systems. They propose an extension of the k-nearest neighbors (k-NN) clas-
sifier that can predict tags for a given resource, by observing the k most
similar neighbor resources. To avoid exhaustive similarity checks for all pairs
of resources, they define the concept of candidate set that opts to a nearly
optimal size-similarity trade-off that does not compromise the difference from
truly similar resources. To compute candidate sets, Chidlovskii et al. propose
to learn a local distance metric that takes into account both the personal
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space and social context. The personal space of a user is defined as the set
of resources owned by her (in social media sites content is owned by users),
whereas the social context of a user is defined by all resources owned by her
contacts (e. g., ‘friends’). Specifically, the proposed method applies the k-NN
classifier for the case of multi-tag classification based on a Mahalanobis dis-
tance metric between the feature vectors describing the resources within the
personal space and social context.

4.4 Further Reading

In addition to the methods presented in this chapter, there are many other
interesting approaches incorporating other types of information sources as
background knowledge into the recommendation models. Kim [24], for ex-
ample, presents a method for personalized recommendation services using a
tagging ontology for a social e-learning system. This method, based on rea-
soning rules, finds users with similar interests and clusters them in order to
recommend resources. Cantador et al. [4] present a mechanism to automat-
ically filter and classify raw tags in a set of purpose-oriented categories and
find the underlying meanings (concepts) of the tags, by mapping them to
semantic entities belonging to external knowledge bases.

Zheng and Li [54] investigate the importance and usefulness of tag and time
information when predicting users’ preference and examine how to exploit
such information to build an effective resource-recommendation model. Kim
et al. [22] propose leveraging user-generated tags as preference indicators
and develop a new collaborative approach that first discovers relevant and
irrelevant topics for users, and then enriches an individual user model with
collaboration from other similar users. Zhou et al. [55] propose a tag-graph
based community detection method to model the users’ personal interests,
which are further represented by discrete topic distributions.

Guy et al. [13] propose a new personalized resource recommendation
method within an enterprise social media application suite that includes
blogs, bookmarks, communities, wikis, and shared files. Hu et al. [18] propose
to use distributional divergence to measure the similarity between users and
examine two variations of such divergence (similarity) measures. Finally, in
a recent survey paper, Gupta et al. [12] summarize different techniques em-
ployed to study various aspects of tagging, including recommendation meth-
ods.

An emerging research direction is the extraction and exploitation of se-
mantics from social tags. Cantador et al. [3] proposed a method for the
identification of semantic meanings and contexts that tags have within a
particular folksonomy, in order to exploit them to build contextualized tag-
based user and item profiles that allow item recommenders to achieve better
precision and recall on their predictions. Kim et al. [23] proposed the use
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of tags for discovering relevant and irrelevant topics for users, in order to
enrich models of individual users with collaboration from other similar users.
Xu et al. [53] proposed a Semantic Enhancement Recommendation strategy
(SemRec), based on both structural information and semantic information
through a unified fusion model, in order to take into account important im-
plicit semantic relationships hidden in tagging data. Finally, Li et al. [29]
follow an approach that is motivated by the need to emulate human tagging
behavior when recommending tags. In their approach they consider resources
that are documents and take into account the semantics of the documents
by discovering concepts contained in them. They represent each document
using some few (most) relevant concepts derived from the concept space of
Wikipedia. The recommendation of tags is based on the tag-concept model
derived from the annotated resources of each tag.
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Chapter 5

Offline Evaluation

In this chapter we present the most usual experimental protocols and metrics
employed for offline evaluation of tag recommender systems. By offline we
mean that the algorithms are evaluated on a snapshot of some real-world STS
dataset, which, in turn, is typically split into training and test datasets. This
corresponds to the most typical evaluation scenario found in the literature
since researchers do not need to have a STS up and running for assessing
the performance of his/her algorithms. We also summarize the main tag
recommendation algorithms presented in this book, pointing out pros and
cons in terms of the metrics and protocols introduced in this chapter.

5.1 Evaluation Metrics

In this section we present the typical metrics for evaluating the performance
of tag recommendation algorithms. Notice that for an evaluation of tag-aware
recommender systems one would employ the same evaluation protocols and
metrics of traditional recommender systems, and therefore we do not present
these here. For good surveys on evaluation of traditional recommender sys-
tems we refer to [2, 12].

5.1.1 Precision and Recall

Independent of the choice of ‘gold standard’ that represents the perfect tags
a recommender should suggest for a certain post, there exist two very com-
mon measures that measure what proportion of the recommended tags was
correct and what proportion of the correct tags could be recommended. These
two measures – precision and recall, respectively – are standard in such sce-
narios [2]. For each post (u, r, Tu,r) from the test data, one compares the set
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T̂u,r of recommended tags with the set Tu,r of true tags. Then, precision and
recall of a recommendation are defined as follows:

recall(Tu,r, T̂u,r) =
|Tu,r ∩ T̂u,r|

|Tu,r| , precision(Tu,r, T̂u,r) =
|Tu,r ∩ T̂u,r|

|T̂u,r|
.

The ‘true tags’ are typically the tags the user assigned to the post, but could
also be manually chosen tags, e. g., by an expert. For an empty recommen-
dation T̂u,r = ∅, one typically sets precision(Tu,r, ∅) = 0.

Since for a fixed number of recommended tags precision and recall are
dependent, one often restrains the evaluation to one of the measures, for
example recall@5, i. e., the recall for five recommended tags. This accom-
modates the fact that social tagging systems often recommend a limited
and in particular fixed number of tags. Another option is the use of the
F1 measure (f1m), the harmonic mean of precision and recall: f1m =
2(precision · recall)/(precision+ recall).

5.1.2 Further Measures

In contrast to the kind of ‘gold standard evaluation’ presented in the previous
section stands the manual judgement of recommendations. It has the benefit
of detecting and honoring correct or good recommended tags that were not
chosen by the user or some expert to tag the resource. However, manual
judgement is relatively expensive and time consuming and often only possible
for a small number of recommendations.

For real world recommender systems other factors besides the quality of
the recommendation are crucial, e. g., recommendation latency and algorithm
complexity. The recommender system must be able to produce good recom-
mendations in an acceptable amount of time, given the restricted memory and
processing resources. Such issues can be addressed by an online evaluation,
as shown in Section 7.3.

5.2 Evaluation Protocols

5.2.1 LeavePostOut Methodology

A variant of the leave-one-out hold-out estimation [2] called LeavePostOut is
quite popular when evaluating tag recommendations against an offline gold
standard dataset. To this end, one randomly picks, for each user u, a resource
from ru, which the user had posted before. The task of the recommender is
then to predict the tags the user assigned to ru, based on the gold stan-
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dard dataset without the post (u, ru, Tu,ru). This process is then repeated,
each time with a randomly chosen resource per user, to further minimize the
variance. Recall and precision values are then averaged over all the runs.

5.2.2 Time-based Splits

Another option to hold out posts from the gold standard for testing the rec-
ommendation quality is to split the dataset by time. To this end, one choses
a point in time that lies within the timespan of the dataset and then uses
all posts before that point as training data and all posts after that point as
test data. This more closely resembles the situation of a recommender in a
real social tagging system, where it ‘knows’ only the previous posts at rec-
ommendation time. A variant of this method that almost exactly reproduces
this behaviour is to start the evaluation of the recommender on the test data
with the first post after the split point and then let the recommender use this
post to improve its model. Then one evaluates the next post and so on. The
case study in Section 7.3 as well as the online task of the Discovery Challenge
both used this kind of evaluation since they measure the performance of the
recommenders within a real social tagging system.

5.3 Comparison of Tag Recommenders

Many of the most important tag recommendation methods proposed so far
were evaluated through the metrics and protocols presented in this chap-
ter, which enables to compare them under a common basis, although not
always the same dataset or train/test dataset splits are used across the origi-
nal papers. In this section we summarize the tag recommendation algorithms
presented so far pointing out pros and cons in terms of the evaluation pro-
tocols and metrics presented in this chapter. Note that we just consider the
algorithms without attributes.

We saw in Section 3.3 that in order to apply standard neighborhood-
based CF algorithms to folksonomies, some data transformation must be
performed. Although these methods usually attain better recommendations
than the baselines (cf. Section 3) [7], such transformations lead to information
loss, i. e., one mode is always discarded, which can lower the recommenda-
tion quality. Another well known problem with CF-based methods is that
large projection matrices must be kept in memory, which can make these
algorithms unfeasible for large scale datasets. Furthermore, for each differ-
ent mode to be recommended, the algorithm must be eventually changed,
demanding an additional effort for offering multi-mode recommendations.
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FolkRank also breaks the ternary relations of the folksonomy into bi-
nary relations in order to apply the PageRank algorithm (cf. Section 4.2.1).
FolkRank proved to give significantly better tag recommendations than the
baselines and CF in three different STS datasets [3, 4]. This method also en-
ables easy switch of the recommendation mode, i. e., for recommending users
(or resources) one can give preference to a certain user (or resource) and
restrict the results to the set of top-n user (or resource) nodes. Moreover, as
well as CF-based algorithms, FolkRank is robust against online updates since
it does not need to be trained every time a new user, resource or tag enters
the system. However, FolkRank is computationally expensive, making it more
suitable for systems where real-time recommendation is not a requirement.

Similarly to CF and FolkRank the WeightedAverage algorithm (cf. Equa-
tion 4.27) operates on binary relations between entities of the folksonomy.
Since CF is a special case of this algorithm (cf. Sec. 4.2.2), it suffers from the
same scalability issues as CF, i. e., it can be unfeasible to keep a relational
graph in memory for large scale STS datasets. But apart from this restriction
and once the graph is available, recommendations are fast to compute. More-
over, this algorithm proved to be competitive to the state-of-the-art achieving
the second place in the offline tag recommendation task of the ECML PKDD
Discovery Challenge 2009 [1].1

Tensor factorization methods work directly on the ternary relations of
folksonomies, thus using the full information available. Although the learning
phase can be costly, it can be performed offline. After the model is learned, the
recommendations are fast to compute, making these algorithms suitable for
real-time recommendations. HOSVD was one of the first tensor factorization
approaches for tag recommendation. RTF (cf. Section 4.1.3) appeared next
as a more specialized alternative to HOSVD, where the parameter learning
is cast as a personalized tag ranking problem. Although having the same
overall cost as HOSVD for the model training phase, RTF proved to have
superior predictive power than HOSVD and the other aforementioned tag
recommendation algorithms [9]. PITF was built on top of RTF, improving
its training runtime while keeping similar predictive power. PITF turned out
to be the winning approach of the offline tag recommendation task of the
ECML PKDD Discovery Challenge 2009.

Factorization Machines (cf. Sec. 4.1.2.4) appear as a generalization of the
most specialized state-of-the-art methods, such as RTF and PITF. They are
generic in the sense that they can be applied to different recommendation
tasks (e. g., resource and user) without requiring significant changes in the
learning algorithm. Moreover, they feature competitive predictive power to
PITF while keeping modest computational costs.

Figure 5.1 shows a comparison between some of the aforementioned al-
gorithms in snapshots of BibSonomy and Last.fm [11]. Table 5.1 shows the

1 Actually the submission to the challenge consisted of an ensemble between two sim-
ilar methods [6]: WeightedAverage and Probabilistic Weighted Average, an iterative
relational classifier introduced in [8].
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official results for the top-3 methods of the offline tag recommendation task
of the ECML PKDD Discovery Challenge 2009.
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Fig. 5.1 The tensor factorization models (RTF-TD, BPR-CD, BPR-PITF) com-
pared against FolkRank, PageRank and HOSVD on snapshots of Last.fm and Bib-
Sonomy [11]. The legend also indicates the number of latent factors used for RTF
and PITF in each dataset.

Table 5.1 Official results of the ECML PKDD Discovery Challenge 2009.

Rank Method Top-5 F1

1 PITF [10] 0.35594
2 Relational Ensemble [6] 0.33185
3 Content-based [5] 0.32461
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Implementing Recommender
Systems for Social Tagging



Chapter 6

Real World Social Tagging Recommender
Systems

As an exemplary implementation of a recommender system for social tag-
ging systems we present in this chapter the tag recommendation framework
of BibSonomy. It allows to test, evaluate and compare different tag recom-
mendation algorithms in an online setting, where the users of BibSonomy
actually see the recommendations during the posting process. The chapter is
based on work published in [10, 11].

6.1 Introduction

The social tagging system BibSonomy1 allows users to share bookmarks and
publication references. It is developed and run by the Knowledge and Data
Engineering Group Kassel where three of the authors of this book work(ed).
BibSonomy was chosen as example to present a real world social tagging
recommender system since it uses a well documented tag recommendation
framework that was also used for evaluating tag recommendation approaches
during the ECML PKDD Discovery Challenge 2009.

The design of the framework was motivated by the authors’ research on
tag recommendation algorithms and experiences from organizing the ECML
PKDD Discovery Challenge 2008:

• The arguments to provide the user with tag recommendations discussed
in Section 1.5 support the need for good recommendations in BibSon-
omy. Therefore, we needed a foundation to implement and run appropriate
methods in the online system.

• The experience we gained by organizing the ECML PKDD Discovery
Challenge 2008 showed that evaluation and comparison of different rec-
ommender systems in an offline setting can suffer from artifacts present in

1 http://www.bibsonomy.org/

83L.B. Marinho et al., Recommender Systems for Social Tagging Systems, SpringerBriefs in
78-1-4614-1894-8_ , he Author(s) 2012 Electrical and Computer Engineering, DOI 10.1007/9 © T6
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84 6 Real World Social Tagging Recommender Systems

the data like masses of imported or automatically annotated posts. Fur-
thermore, a realistic setting should force the recommenders to adhere to
timeouts and other constraints which are difficult to control in an offline
setting. Therefore, we needed a framework which allowed us the evalua-
tion of online tag recommendations as one task of the Discovery Challenge
2009 we also organized (more on this in Section 7.3).

• We want to offer the tag recommendation research community a realistic
testbed for their methods.

• Existing frameworks (cf. Section 6.6) mostly do not fit the tag recommen-
dation scenario (Section 1.5.3) we have to handle (e. g., they do not suggest
re-occurring items).

The framework is responsible for delivering tag recommendations to the
user in two situations: when he edits a bookmark or publication post. Since
the part of the user interface showing recommendations is very similar for
both the bookmark posting and the publication posting page, we show in
Figure 6.1 the relevant part of the ‘postBookmark’ page only.2

Fig. 6.1 BibSonomy’s recommendation interface on the bookmark posting page.
The box labeled ‘tags’ contains a text input field where the user can enter the (space
separated) tags, tags suggested for autocompletion, the tags from the recommender
(bold), and the tags from the post the user just copies.

Below the fields for entering URL, title, and a description (which are typ-
ically automatically filled), the box labeled ‘tags’ keeps together the tagging
information. There, the user can manually enter the tags to describe the re-
source. During typing she is assisted by a JavaScript autocompletion which

2 Logged in users can access this page at http://www.bibsonomy.org/postBookmark.

http://www.bibsonomy.org/postBookmark
http://www.bibsonomy.org/postBookmark
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selects tags among the recommended tags and all of her previously used
tags whose prefix matches the already entered letters. The suggested tags
are shown directly below the tag input box (in the screenshot recommender ,
recognition, and recht). Further down there are in bold letters up to five
recommended tags ordered by their score from left to right. Thus, the rec-
ommender in action regarded conference to be the most appropriate tag for
this resource and user. To the very right of the recommendation is a small
icon depicting the reload button. It allows the user to request a new tag
recommendation if she is unsatisfied with the one shown or wants to request
further tags. We investigate the usage of this button in Section 7.2.2.

Besides triggering autocompletion with the tabulator key during typing,
users can also click on tags with their mouse. They are then added to the input
box. When the user copies a resource from another user’s post, the tags the
other user used to annotate the resource are shown below the recommended
tags (‘tags of copied item’). They are also regarded for autocompletion.

Aside from describing the framework we also try to answer such questions
like “What is the performance of a recommender?”, “Are there users with
a tendency to a certain recommender?”, or “Which click behaviour do users
show?”.

In this chapter we use the formalization of the tag recommendation task as
introduced in Section 2.6 with a simplified notation for the scoring function
ŝ, omitting the two variables u and r.3 The number of recommended tags is
fixed to five throughout our analysis, although a recommender is allowed to
return less than five tags.

This chapter is structured as follows: First, we present challenges and re-
quirements to the framework in Section 6.2. Then, in Section 6.3, we briefly
introduce the social tagging system BibSonomy. The description of the frame-
work’s architecture in Section 6.4 is followed by a presentation of available
recommender implementations in Section 6.5. We conclude the chapter with
a review of related work in the field in Section 6.6.

6.2 Challenges and Requirements

Challenges. For a recommender system to be successful in a real world
application, it must approach several challenges. First, the provided recom-
mendations must match the situation, i. e., tags should describe the annotated
resource, products should awake the interest of the user, suggested resources
should be interesting and relevant. Second, they must be delivered timely
without delay and they must be easy to access (i. e., by allowing the user
to click on them or to use tab-completion when entering tags). Third, the

3 Although, of course, ŝ also depends on u and r, we will omit those two variables to
simplify notation. Since ŝ always appears together with the set of recommended tags
T̂u,r, it should be clear from context, which ŝ is meant.
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system must ensure that recommendations do not impede the normal usage
of the system.

Technological and Infrastructure Requirements. Implementing a rec-
ommendation service for a STS requires to tackle several problems, some of
them we describe here.

First, having enough data available for recommendation algorithms to pro-
duce helpful recommendations is an important requirement one must address
already in the design phase. The recommender needs access to the system’s
database and information about what the user is currently doing (which could
be accomplished, e. g., by (re)-loading recommendations using techniques like
AJAX). Further data – like the full text of documents – could be supplied
to tackle the cold-start problem (e. g., for content-based recommenders). The
system must be able to handle large amounts of data, to quickly select rele-
vant subsets and provide methods for preprocessing.

The available hardware and expected amount of data limits the choice
of recommendation algorithms which can be used. Although some methods
allow (partial) precomputation of recommendations, this needs extra mem-
ory and might not yield the same good results as online computation, since
recently added posts are missing in the model. Both hardware and network
infrastructure must ensure short response times to deliver the recommen-
dations to the user without too much delay. Together with a simple and
non-intrusive user interface this ensures usability.

Further aspects which should be taken into account include implementa-
tion of logging of user events (e. g., clicking, key presses, etc.) to allow for
efficient evaluation of the used recommendation methods in an online setting.
Together with an online evaluation this also allows to tune the result selec-
tion strategies to dynamically choose the (currently) best recommendation
algorithm for the user at hand.

6.3 The BibSonomy Social Tagging System

BibSonomy [1] started as a students project at the Knowledge and Data
Engineering Group of the University of Kassel4 in spring 2005. The goal was
to implement a system for organizing BibTEX [16] entries in a way similar to
bookmarks in Delicious – which was at that time becoming more and more
popular. BibTEX is a popular literature management system for LATEX [13],
which many researchers use for writing scientific papers. After integrating
bookmarks as a second type of resource into the system and upon the progress
made, BibSonomy was opened for public access at the end of 2005 – first
announced to collegues only, later in 2006 to the public.

4 http://www.kde.cs.uni-kassel.de/

http://www.kde.cs.uni-kassel.de/
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A detailed view of one bookmark post in BibSonomy can be seen in Fig-
ure 6.2. The first line shows in bold the title of the bookmark which has
the URL of the bookmark as underlying hyperlink. The second line shows
an optional description the user can assign to every post. The last two lines
belong together and show detailed information: first, all the tags the user has
assigned to this post (web, service, tutorial, guidelines and api), second, the
user name of that user (hotho) followed by a note, how many users tagged
that specific resource. These parts have underlying hyperlinks, leading to the
corresponding tag pages of the user, the users page and a page showing all
four posts (i. e., the one of user hotho and those of the three other people) of
this resource. The structure of a publication post is very similar, as seen in
Figure 6.3.

Fig. 6.2 detail showing a single
bookmark post

Fig. 6.3 detail showing a single pub-
lication post

Since then, BibSonomy has rapidly grown and nowadays serves several
thousand users – making it one of the top three social publication manage-
ment systems.

6.4 Architecture

In this section we describe the architecture of BibSonomy’s tag recommen-
dation framework. BibSonomy itself is a web application based on the Java
Servlet Technology5 and a MySQL database.6 An overview on its architecture
and design can be found in [1] and [9].

6.4.1 Overview

Figure 6.4 gives an overview on the components of BibSonomy involved in
a recommendation process. The web application receives the user’s HTTP

5 http://java.sun.com/products/servlets
6 http://www.mysql.com/

http://www.mysql.com/
http://java.sun.com/products/servlets
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Fig. 6.4 The involvement of BibSonomy’s components in a schematic recommenda-
tion process.

request and queries the multiplexer (cf. Section 6.5.2) for a recommendation
– which provides post information like URL, title, user name, etc. Besides,
click events are logged in a database (see Section 6.4.3). The multiplexer then
requests the active recommenders to produce recommendations and selects
one of the results. The suggested tags and the post are then logged in a
database and the selected recommendation is returned to the user.

6.4.2 Recommender Interface

One central element of the framework is the recommender interface. It spec-
ifies which data is passed from a recommendation request to one of the im-
plemented recommenders and how they shall return their result. Figure 6.5
shows the UML class diagram of the TagRecommender interface one must
implement to deliver recommendations to BibSonomy. We decided to keep

<<interface>>
TagRecommender

+ getRecommendedTags(post : Post<? extends Resource>) :
SortedSet<RecommendedTag>

+ addRecommendedTags(
recommendedTags : Collection<RecommendedTag>,
post : Post<? extends Resource>)

+ setFeedback(post : Post<? extends Resource>)
+ getInfo() : String

Fig. 6.5 The UML class diagram of the tag recommender interface.
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the interface as simple as possible by requiring only four methods, building on
BibSonomy’s existing data model (Post, Tag, etc.) and adding as few classes
as possible (RecommendedTag, RecommendedTagComparator).

The getRecommendedTags method returns – given a post – a sorted set
of tags; addRecommendedTags adds to a given (not necessarily empty) col-
lection of tags further tags. Since – given a post and an empty collection
– addRecommendedTags should return the same result as getRecommended-
Tags, the latter can be implemented by delegation to the former. Nonetheless,
we decided to require both methods to cover the simple ‘give me some tags’
case as well as more sophisticated usage scenarios (think of ‘intelligent’ col-
lection implementations which could be handed to addRecommendedTags, or
a recommender which improves given recommendations).

The post given to both methods contains data like URL, title, description,
date, user name, etc. that will later be stored in the database and that the rec-
ommender can use to produce good recommendations. It might also contain
tags, i. e., when the user edits an existing post or when he has already en-
tered some tags and requests new recommendations. Implementations could
use those tags to suggest different tags or to improve their recommendation.

With the setFeedback method, the final post (including the tags) as the
user stored it in the database is given to the recommender such that it can
measure and potentially improve its performance. Additionally, the postID
introduced in Section 6.4.3 is contained in the post (as well as in the posts
given to the first two methods) such that the recommender can connect the
post with the recommended tags it provided.

Finally, the getInfo method allows the programmer to provide some in-
formation describing the recommender. This can be used to better identify
recommenders or can be shown to the user.

Two further classes augment the interface: The RecommendedTag class
basically extends the Tag class of the BibSonomy data model (cf. [9]) by
adding floating point score and confidence attributes. A corresponding Rec-
ommendedTagComparator can be used to compare tags, e. g., for sorted sets.
It first checks textual equality of tags (ignoring case) and then sorts them by
score and confidence. Consequently, tags with equal names are regarded as
equal.

Our implementation is based on Java. All described classes are contained
in the module bibsonomy-model, which is available online as a Java archive in
a Maven2 repository.7 However, implementations are not restricted to Java
– using the remote recommender (see Section 6.5.1.3) one can implement
a recommender in any language which is then integrated using XML over
HTTP requests.

7 http://dev.bibsonomy.org/maven2/org/bibsonomy/bibsonomy-model/

http://dev.bibsonomy.org/maven2/org/bibsonomy/bibsonomy-model/
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6.4.3 Logging

For further evaluating the performance of the available tag recommenders, we
store in a database for each recommendation process the corresponding book-
mark or publication post as well as each recommender’s recommendation,
identified by a unique recommendationID. Furthermore, the applied selection
strategy together with the selected recommenders and tags are stored.

Several recommendation requests may refer to a single posting process
(i. e., when the user pressed the ‘reload’ button or forgot to enter a required
field). For identifying these correspondences, a random identifier (postID)
is generated whenever a post or editing process is started and retains valid
until the corresponding post is finally stored in the database. This postID
is mapped to each corresponding recommendationID. At storage time, the
postID together with the corresponding user name, time stamp and the intra
hash identifying the resource is stored. This connects each post of each user
with all referring recommendations and vice versa.

Additionally, the user interaction is tracked by logging mouse click events
using JavaScript. Each click on one of BibSonomy’s web pages is logged using
AJAX into a separate logging table. Information like the shown page, the
DOM path of the clicked element, the underlying text, etc. is stored.8

6.5 Recommender Implementations

In this section we give an overview on some basic recommender implemen-
tations we realized within the framework. They serve as building blocks for
more complex recommenders, e. g., the ones we present in Section 6.5.3.

6.5.1 Meta Recommender

Meta or hybrid recommenders [2] do not generate recommendations on their
own but instead call other recommenders and modify or merge their re-
sults. Since they also implement the TagRecommender interface, they can
be used like any other recommender. More formally, given n recommenda-
tions T̂ 1

u,r, . . . , T̂
n
u,r and corresponding scoring functions ŝ1, . . . , ŝn, a meta

recommender produces a merged recommendation T̂u,r with scoring function
ŝ. The underlying design pattern known from software architecture is that of
a Composite [5].

8 Note that users can disable logging on the settings page, thus not all posting pro-
cesses yield clicklog events.
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As we will see in Section 6.5.3, meta recommenders allow the building of
complex recommenders from simpler ones and thus simplify implementation
and testing of algorithms and even stimulate development of new methods.
Furthermore, they allow for flexible configuration, since their underlying rec-
ommenders can be exchanged at runtime. This section introduces the meta
recommenders that are currently used in the framework.

6.5.1.1 First Weighted By Second

As an example of a cascade hybrid, the idea behind this recommender is to re-
order the tags of one recommendation using scores from another recommen-
dation. More precisely, given recommendations T̂ 1

u,r and T̂ 2
u,r and correspond-

ing scoring functions ŝ1 and ŝ2, this recommender returns a recommendation
T̂u,r with scoring function ŝ, which contains all tags from T̂ 1

u,r which appear

in T̂ 2
u,r (with ŝ(t) := ŝ2(t)) plus all the remaining tags from T̂ 1

u,r (with lower

ŝ but respecting the order induced by ŝ1). If T̂ 1
u,r does not contain enough

recommendations, T̂u,r is filled by the not yet used tags from T̂ 2
u,r – again

with ŝ being lower than for the already contained tags and respecting the
order induced by ŝ2.

6.5.1.2 Weighted Merging

This weighted hybrid recommender enables merging of recommendations
from different sources and weighting of their scores. Given n recommenda-
tions T̂ 1

u,r, . . . , T̂
n
u,r, corresponding scoring functions ŝ1, . . . , ŝn, and (typically

fixed) weights ρ1, . . . , ρn (with
∑n

i=1 ρ
i = 1), the weighted merging recom-

mender returns a recommendation T̂u,r :=
⋃n

i=1 T̂
i
u,r and a scoring function

ŝ(t) :=
∑n

i=1 ρ
iŝi(t) (with ŝi(t) := 0 for t �∈ T̂ i

u,r).

6.5.1.3 Remote Recommender

The remote recommender retrieves recommendations from an arbitrary ex-
ternal service using HTTP requests in REST-based [4] interaction. Therefore,
it uses the XML schema of the BibSonomy REST API.9 This recommender
has three advantages: it allows us to distribute the recommendation work
over several machines, it opens the framework to include recommenders from
auxilliary partners, and it enables programming language independent inter-
action with the framework.

9 http://www.bibsonomy.org/help/doc/xmlschema.html

http://www.bibsonomy.org/help/doc/xmlschema.html
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To simplify implementation and integration of external recommenders,
we provide an example web application needing almost no configuration to
include a custom Java recommender.10

6.5.2 Multiplexing Tag Recommender

Our framework’s technical core component is the so called multiplexing tag
recommender (see Figure 6.4). Implementing BibSonomy’s tag recommender
interface, it provides the web application with tag recommendations by query-
ing one of the configured recommenders. Furthermore, the multiplexer logs
all recommendation requests and each recommender’s corresponding result
in a database (see Section 6.4.3). For this purpose, every tag recommender is
registered during startup and assigned to a unique identifier.

Whenever the getRecommendedTags method of the multiplexer is invoked,
the corresponding recommendation request is delegated to each available rec-
ommender, spawning a separate thread for each recommender. After a time-
out period of 100 ms, one of the collected recommendations is selected, ap-
plying a preconfigured selection strategy. For our evaluation procedure we im-
plemented a ‘sampling without replacement ’ strategy which randomly chooses
exactly one recommender and returns all of its recommended tags. If the user
requests recommendations more than once during the same posting process
(e. g., by using the ‘reload’ button), the strategy selects recommendations
from a recommender the user has not yet seen during this process.

6.5.3 Example Recommender Implementations

Using the proposed framework, we implemented several recommendation
methods. Two of them were active in BibSonomy during the evaluation pe-
riod in Section 7.2. Both build upon the meta recommenders described in
Section 6.5.1 and simpler recommenders which we describe only briefly be-
cause they are fairly self-explanatory. The short names in parentheses are for
later reference.

6.5.3.1 Most Popular ρ-Mix (MPρ-mix)

Motivated by the good results of mixing tags which often have been attached
to the resource with tags the user has often used (cf. Section 3.1.1), we
implemented a variant of the most popular ρ-mix recommender described

10 http://dev.bibsonomy.org/maven2/org/bibsonomy/bibsonomy-recommender-servlet

http://dev.bibsonomy.org/maven2/org/bibsonomy/bibsonomy-recommender-servlet
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in [12]. Another factor was its efficient computability which can be supported
by appropriate tables and indexes in the database. We set the parameter
ρ of this recommender to ρ = 0.6 for the evaluation in Section 7.2. The
recommender has been implemented as a combination of three recommenders:

1. the most popular tags by resource (see Eq. 3.2) recommender which returns
the k tags T̂ 1

u,r which have been attached to the resource most often (with

ŝ1(t) := |Y ∩U×{t}×{r}|
|Y ∩U×T×{r}| , i. e., the relative tag frequency),

2. the most popular tags by user recommender which returns the k tags T̂ 2
u,r

the user has used most often (with ŝ2(t) := |Y ∩{u}×{t}×R|
|Y ∩{u}×T×R| , i. e., the relative

tag frequency), and
3. the weighted merging meta recommender described in Section 6.5.1.2 which

merges the tags of the two former recommenders, with weights ρ1 = ρ =
0.6 and ρ2 = 1− ρ = 0.4.

6.5.3.2 Title Tags Weighted by User Tags (TbyU)

Inspired by the first recommender implemented in BibSonomy [8] and by
similar ideas in [14], we implemented a recommender which scores tags ex-
tracted from the resource’s title using the frequency of the tags used by the
user. Technically, this is again a combination of three recommenders:

1. a simple content based recommender, which extracts k tags T̂ 1
u,r from the

title of a resource, cleans them and checks against a multilingual stopword
list,

2. the most popular tags by user recommender as described in the previous
section – here returning all tags T̂ 2

u,r the user has used (by setting k = ∞),
and

3. the first weighted by second meta recommender described in Section 6.5.1.1
which weights the tags from the content based recommender by the fre-
quency of their usage by the user as given by the second recommender.

6.5.3.3 Other

Besides the simple recommenders introduced along the MPρ-mix and TbyU
recommender, we have implemented recommenders for testing purposes (a
fixed tags recommender and a random tags recommender), a recommender
which proposes tags from a web page’s HTML meta information keywords,
as well as a recommender using the FolkRank algorithm.

More complex recommenders can be thought of, e. g., a nested first
weighted by second recommender, whose first recommender is a weighted
merging meta recommender merging the suggestions from a content based
recommender and a most popular tags by resource recommender and then
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scoring the tags by the scores from the most popular tags by user recom-
mender.

6.6 Further Reading

Although having a different recommendation target (resources rather than
tags), the REFEREE framework described by Cosley et al. [3] is most closely
related to our work. It provided recommendations for the CiteSeer (formerly
ResearchIndex) digital library. REFEREE recommends scientific articles to
users of ResearchIndex while they search and browse. An open architecture
allows researchers to integrate their methods into REFEREE. Besides the
different recommendation target, the focus of the paper is more on the eval-
uation of several different strategies than on the details of the framework.

A powerful, open, and well documented framework for recommendations
is MyMediaLite [6]. It addresses the rating prediction and item prediction
scenario in collaborative filtering and has a focus on explicit user ratings and
non re-occurring items, e. g., like in a movie recommendation scenario where
one does not recommend movies the user has already seen. This is in contrast
to tag recommendations, where re-occurring tags are a crucial requirement
of the system.

Another recommendation framework is TasteKeeper [7] from Sun Mi-
crosystems’ AURA project.11 Despite not having been described in the liter-
ature, it has a strong focus on collaborative filtering algorithms. Finally, the
machine learning library Apache Mahout [15] also contains implementations
of collaborative filtering and user/item based recommenders that can be run
in parallel in a distributed setup.
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9. Robert Jäschke. Formal Concept Analysis and Tag Recommendations
in Collaborative Tagging Systems, volume 332 of Dissertationen zur
Künstlichen Intelligenz. Akademische Verlagsgesellschaft AKA, Heidel-
berg, Germany, January 2011.
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Chapter 7

Online Evaluation

The multiplexing tag recommender of BibSonomy allows for comparisons of
different tag recommenders in a realistic real-life setting. We show in this
chapter, which kind of evaluation the framework allows and how recom-
menders perform in practice. We begin with an introduction of the eval-
uation setting (Section 7.1) and then present in Section 7.2 a case study
involving two simple recommendation methods. Finally, in Section 7.3, the
online recommendation task of the ECML PKDD Discovery Challenge 2009
is presented which was performed and evaluated using the framework.

7.1 Evaluation Setting

7.1.1 Metrics and Protocols

We used precision, recall, and the F1 measure for evaluation (cf. Section 5.1.1)
and determined the winner of the Discovery Challenge by the best F1 measure
when regarding the first five tags of the recommendation T̂u,r. The change of
precision and recall for an increasing number of recommended items can be
seen in plots like the one shown in Figure 7.1. It shows the typical behaviour
of recommender systems: the more items are recommended, the better the
recall but the worse the precision becomes.

7.1.2 Preprocessing and Cleansing

Before comparing the recommended tags T̂u,r with the tags Tu,r, the user r
chose to tag the resource r with, we clean the tags in both sets according to
the Java method cleanTag shown in Algorithm 7.1. This means, we ignore

97L.B. Marinho et al., Recommender Systems for Social Tagging Systems, SpringerBriefs in
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the case of tags and remove all characters which are neither numbers nor
letters.1 Since we assume all characters to be UTF-8 encoded, the method
will not remove umlauts and other non-latin characters. We also employ Uni-
code normalization to normal form KC2 using java.text.Normalizer . Finally,
we ignore tags which are ‘empty’ after normalization (i. e., they neither con-
tained a letter nor number) or which are equal to the strings imported , public,
systemimported , nn, systemunfiled . Thus, in the following we always regard
cleaned tags.

Algorithm 7.1 The Java method used to clean tags.

1 public St r ing cleanTag ( St r ing tag ) {
2 return Normal izer . normal ize ( tag , Normal izer . Form .NFKC) .
3 r e p l a c e A l l ( ” [ˆ0−9\\p{L}]+” , ”” ) .
4 toLowerCase ( ) ;
5 }

7.2 Case Study

In this section we show by means of the two simple recommenders introduced
in Section 6.5.3 which kind of evaluation the tag recommendation framework
of BibSonomy supports and how those two recommenders perform in practice.
The analysis is based on data from posting processes between May 15th
and June 26th 2009. Only public posts from users not flagged as spammer
were taken into account.3 Since tag recommendations are provided in the
web application only when one resource is posted, posts originating from
imports (e. g., Firefox bookmarks, or BibTEX files) or BibSonomy’s API are
not contained in the analysis.

7.2.1 General Results

We start with some general numbers: In the analyzed period, 5,840 posting
processes (3,474 for publications, 2,366 for bookmarks) have been provided
with tag recommendations. The MPρ-mix recommender served recommen-

1 See also the documentation of java.util.regex.Pattern at http://download.oracle.
com/javase/6/docs/api/java/util/regex/Pattern.html.
2 http://www.unicode.org/unicode/reports/tr15/tr15-23.html
3 Users can be flagged as spammers manually or by BibSonomy’s spam detection
framework [4].

http://www.unicode.org/unicode/reports/tr15/tr15-23.html
http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
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dations for 2,935 postings, the TbyU recommender for 3,006. Their precision
and recall is depicted in Figure 7.1. On the plotted curve, from left to right the
number of evaluated tags increases from one to five. I. e., we first regard only
the tag t with the highest value ŝ(t), then the two tags with highest ŝ, and
so on. Thus, the more recommended tags are regarded, recall increases while
precision decreases. In general, both precision and recall are rather low with
the MPρ-mix recommender performing better than the TbyU recommender.
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Fig. 7.1 Recall and precision of the two deployed recommenders. The number of
recommended tags increases from one on the left to five on the right as described in
Section 5.1.1.

7.2.2 Influence of the ‘reload’ Button

Since users can request to reload recommendations when posting a resource,
we here investigate the influence of the ‘reload’ button. Is the first recom-
mendation sufficient or do users request another recommendation? Are rec-
ommendations which got replaced by the user pressing the ‘reload’ button
worse than those shown last? Has one recommender more often been reloaded
than the other?

In 767 (274 bookmark, 493 BibTEX) of the 5,840 posting processes the
users requested to reload the recommendation. Thus, in around 13% of all
posting processes users requested another recommendation.

Recommendations from several recommenders can be displayed during one
posting process. There is the recommendation which appears directly after
loading the posting page (first), there are recommendations which appear af-
ter the user has pressed the ‘reload’ button, and there is the recommendation
shown before the user finally saves the post (last). Thus, given a recommender
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r, we can define the set Fr to contain those posts, where the recommender
r showed the first tags, and Lr as the set of posts where the recommender r
showed the last tags (i. e., before the post is finally stored). For each recom-
mender r, we can then look at the sets Fr \ Lr, Lr \ Fr, and Fr ∩ Lr. Posts
where the user did not press the reload button are contained in both Fr and
Lr and thus in Fr ∩ Lr. Table 7.1 shows the result of our analysis.

Table 7.1 The influence of the ‘reload’ button.

measure #posts f1m@5
recommender r MPρ-mix TbyU MPρ-mix TbyU

Fr \ Lr 337 319 0.258 0.270
Lr \ Fr 331 363 0.380 0.364
Fr ∩ Lr 2,271 2,339 0.277 0.224

For both of the two deployed recommenders and for all three sets, the
table shows the number of posts in the corresponding set, and the average f1-
measure at the fifth tag.4 As one can see, the number of posts where the reload
button has not been pressed (Fr ∩ Lr) is quite large for both recommenders
(around 2, 300). There is also only little difference in the number of posts for
the recommenders over the different sets, besides the higher number of posts
for the TbyU recommender in the Lr\Fr set. It contains those posts, where the
user requested to reload the recommendation and where the recommender at
hand delivered the last recommendation. Thus, the TbyU recommender more
often provided the last recommendation than the MPρ-mix recommender.

The most noticeable observation is the good performance of both recom-
menders for the posts where a reload occurred and the recommender showed
the last recommendations (Lr\Fr). There, both precision and recall are much
higher than for the other two sets. This suggests that the first suggestion was
rather bad and caused the user to request another recommendation which
indeed better fitted his needs. The worse values for the Fr \ Lr set also sup-
port this thesis. A noteworthy difference between the two recommenders is
the performance of the TbyU recommender for the Fr \Lr set which is better
than its overall performance (i. e., on the Fr ∩Lr set). This could be an indi-
cator that those users which actively used the recommender (by pressing the
‘reload’ button) took better notice of this recommender’s tag suggestions.

The usage of the ‘reload’ button seems to be a good indicator for the
interest of the user in the recommendations. However, the data we gathered
during the one month evaluation period is still rather sparse, thus no final
conclusions can be drawn.

4 We omit precision and recall, since whenever the f1m for one set was better/worse
than for another set, precision and recall were better/worse, too.
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7.2.3 Logged ‘click’ Events

Next we evaluate the data from the log which records when a user clicked
on a recommended tag (cf. Section 6.4.3). Clicks are rather sparse: in only
1,061 (485 bookmarks, 576 publications) of the 5,840 posting processes, users
clicked on a recommendation.

First, we want to answer the questions “How is clicking distributed over
users?” and “Are there users which always/never click?”. Figure 7.2 shows the
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fraction of posts where recomended tags were clicked. Each circle represents a user.
As shown in the scale at the upper right corner, the size of each circle depicts the
logarithm of the user’s number of posts regarded for the analysis.

users sorted by the fraction of posting processes at which they have clicked on
a recommended tag. The size of each circle depicts the logarithm of the user’s
number of posting processes incorporated into the analysis. Closer to the left
are users which in almost all posting processes clicked on a recommendation;
users closer to the right never clicked a recommended tag during posting.
Only around 150 users clicked on a tag and half of the remaining users are
represented by only one post. This could mean that only after some time
users discover and use the recommendations. However, there are also some
active users which almost never clicked on a recommendation.

In Figure 7.3 we see for each number of recommended tags (from one to
five), the fraction of matches which stem from a click on the tag (instead
of manual typing). For the TbyU recommender, around 35% of the matches
come from the user clicking on a tag. Thus, although users infrequently click
on tags, a large fraction of the correctly recommended tags of that recom-
mender has been clicked instead of typed. Why there is a difference of around
15% between the two recommenders with a higher click fraction for the TbyU
recommender (in contrast to its worse precision and recall) is not clear. One
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Fig. 7.3 The fraction of matching tags which have been clicked.

explanation could be the different sources of tags the two recommenders use:
while the MPρ-mix recommender delivers popular tags the user might have
used before and thus can easily type, the TbyU recommender also suggests
new and probably complicated tags extracted from the title which are easier
to click than to type.

7.2.4 Average F1-Measure per User

Which properties of a posting process could help a multiplexer strategy to
smartly choose a certain recommender instead of randomly selecting one?
We here focus on the user only – other characteristics could be likewise in-
teresting (e. g., resource type or the recommended tags). Figure 7.4 shows
the average f1m of the MPρ-mix recommender versus the average f1m of the
TbyU recommender for each of the 380 users5 in the data. In the plot, each
user is represented by a circle whose size depicts the logarithm of the user’s
number of posts.

The most interesting users are reflected by the circles farthest from the
diagonal, i. e., those users who have a high f1m for one but a low f1m for
the other recommender. As one can see, such users exist even at higher post
counts. Once such a user is identified, one could primarily select recommen-
dations from the user’s preferred recommender, e. g., by increasing the prob-
ability for randomly selecting the recommender.

5 Only users which got recommendations from both recommenders were taken into
account.
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7.3 The ECML PKDD Discovery Challenge 2009

Continuing the analysis presented in the previous section, we now focus on
a larger setting: The framework was the cornerstone of the ECML PKDD6

Discovery Challenge 2009 [3]7 where one task required the participants to
deliver online recommendations to BibSonomy. This was a larger stress test
for external recommenders and the framework itself. In this section we give
a brief overview on the setting, the methods some recommenders used and
the resulting recommendation performances.

6 The European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery and Data Mining is according to its website (http://www.
ecmlpkdd.org/content/past-conferences) the “largest European conference in these
areas”.
7 http://www.kde.cs.uni-kassel.de/ws/dc09/

http://www.kde.cs.uni-kassel.de/ws/dc09/
http://www.ecmlpkdd.org/content/past-conferences
http://www.ecmlpkdd.org/content/past-conferences
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7.3.1 Setting

The participants implemented recommenders which were integrated into the
framework using instances of the remote recommender. Overall, ten partici-
pants from seven countries deployed 13 recommenders – seven of them (from
four participants) were running on machines in BibSonomy’s network, the re-
maining six were distributed all over the world (amongst other countries, in
Canada and South Korea). All recommenders had to adhere to a timeout of
1000ms between the sending of the recommendation request and the arrival
of the result. If they failed to deliver their recommendation in time, we set
precision and recall for the corresponding post to zero and showed the user
another recommendation.

The recommendations were evaluated over the period from July 29th to
September 2nd 2009. During that time, more than 28,000 posting processes
had to be handled, where each recommender was randomly selected to deliver
recommendations for at least 2,000 processes. For evaluation we regarded only
public, non-spam posts and therefore the results in the next section are based
on approximately 380 relevant posting processes per recommender (for the
exact counts, see Table 7.2).

Table 7.2 The number of posts regarded for evaluation.

recommender-id 3 5 6 7 12 13 14 16
#posts 347 391 361 415 385 380 370 398

Although 13 recommenders participated in the online task, only eight of
them managed to deliver results in at least 50% of all requested posting
processes. The remaining five recommenders answered only in less than 5%
of all cases and are thus ignored in Table 7.2 and in the figures and discussion
following in Section 7.3.3.

7.3.2 Methods

Details on the tag recommendation methods evaluated during the challenge
can be found in the proceedings [3]. Here we only briefly introduce the three
best recommenders of the online task.

The winning recommender 6 [5] uses a method based on the combination of
tags from the resource’s title, tags assigned to the resource by other users and
tags in the user’s profile. The system is composed of six recommenders and
the basic idea is to augment the tags from the title by related tags extracted
from two tag-tag–co-occurrence graphs and from the user’s profile and then
rescore and merge them.
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Recommender 3 [6] performs so called “Feature Driven Tagging” by ex-
tracting and weighting features like words, ids, hashes, phrases from the re-
sources. Each feature then generates a list of tags. The weight of the features
is estimated using TF×IDF and TF×ITF (term frequency × inverted doc-
ument frequency and term frequency × inverted tag frequency – see [1]);
the tags of the features are determined using co-occurrence counts, mutual
information, and χ2 statistics.

For recommender 5, Cao et al. [2] divide the posts in four categories,
depending on the case if the user or resource of the post is known or not.
Then, for each category they learn a model to rank the tags using a ranking
SVM. To augment the available tags for posts (besides the full text and the
tags of the resource), the authors use post-content similarity and k-Nearest-
Neighbors.

7.3.3 Results

Overall Performance. First, we have a look at precision and recall of
each recommender in the evaluation mode relevant for the challenge (Fig-
ure 7.5(a)). For a posting process in which the recommender could not de-
liver a recommendation in time, precision and recall were set to zero. In this
setting, recommender 6 [5] is the clear winner with an f1m of 0.205 for five
tags. The performance of the remaining methods varies between an f1m of
0.030 and 0.171 for five tags – all those recommenders have a recall of less
than 0.2.

Influence of the Recommendation Latency. If we disregard the time-
out limit of 1000ms and also evaluate the suggestions which came later (cf.
Figure 7.5(b)), we get a different picture. Of course, all recommenders im-
prove – but in particular recommender 14 gains both precision and recall.
This can be explained by the latency plot shown in Figure 7.6. It shows for
each recommender the latency of the delivered recommendations for the se-
lected posting processes, ordered in ascending order by latency. The curves
do not reach 100% because in some cases the recommenders did not deliver
a result at all. One can see that recommender 14 returned a suggestion in
almost as many posts as the winning recommender 6. However, only 20% of
the posts were delivered in time – in contrast to almost 80% of the posts for
recommender 6. Consequently, timeouts are a serious issue in this setting –
with a timeout of 2000ms, the competition for the best performance would
have been much closer. Nevertheless, a timeout of 2000ms would be too long
for recommendations which shall be shown after loading the page. One should
also note that in principle network latency was not an issue since the winning
recommender was located in Canada.
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Fig. 7.5 Recall and precision of the deployed recommenders.

Comparison with Offline Results. Before the participants tested their
recommenders in the online setting, most of them performed an offline eval-
uation against a dataset from BibSonomy. Interestingly, some recommenders
gained better results in the online challenge than in the offline challenge (see
Figure 7.7). Without going too much into detail, one explanation could be
the fact that in the online challenge the user actually saw the recommender’s
suggestion and thus had the chance to utilize it. This suggests that users
actively used the recommendations and are indeed influenced by them.
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Fig. 7.7 Performance in the offline task (recommenders 7 and 12 did not participate).

7.4 Conclusion

In this chapter we evaluated the tag recommendation framework that we de-
veloped for BibSonomy. It allows us to not only integrate and judge recom-
mendations from various sources but also to develop clever selection strate-
gies. A strength of the framework is its ability to log all steps of the rec-
ommendation process and thereby making it traceable. E. g., the diagrams
and tables presented in this chapter are automatically generated and will be
integrated in a web application for analysing and controlling the framework
and its recommenders.

As the results in Section 7.2 show, there is no clear picture which of the
two recommendation methods performs better. There is a dependency on the
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number of regarded tags, the user at hand, and also slightly on the moment of
recommendation. This suggests that we can achieve better performance not
only by adding improved recommendation methods but also by implementing
adaptive selection strategies. In case of the user dependency, one could prefer
the better performing recommender by increasing its selection probability or
even couple the probability with the current recommendation quality.

The Discovery Challenge allowed us to evaluate the framework in a larger
setting. It passed that stress test and gave us important insights into the han-
dling of timeouts and distributed recommendations. An interesting finding is
the better performance of most recommenders in the online setting compared
to their offline performance. Future tag recommendation challenges and eval-
uations should take this into account and probably consider performing an
online instead of an offline evaluation to get more realistic results.
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Chapter 8

Conclusions

In this chapter we close the book with a summary, a discussion, and future
research directions.

8.1 Summary

The advent of social tagging systems changed the way people create and
consume content in the Web. Those systems represent a human computation
paradigm with enormous potential to address problems that computer pro-
grams cannot yet tackle on their own, since the tagging of resources is done
by human beings, who understand the content of the resources. In this way,
tags can serve as rich indexes for finding and organizing content, not only by
humans, but also by computer programs. Due to the increasing popularity
of these systems, information overload rapidly becomes a problem. Recom-
mender systems proved to be well suited for this kind of problem in the past
and are thus a potential solution for tackling the information overload in the
Web’s next generation. Summaries of the topics presented in this book are
as follows:

• The data structure of folksonomies, stressing the differences in comparison
to the ones used by traditional recommender systems.

• A formal description of recommender systems as well as their different
tasks and set-ups.

• Recommendation algorithms that:

– count frequencies of (co-)occurrences of given entities in the data,
– operate on two dimensional projection matrices,
– operate directly on the ternary relational data of folksonomies,
– exploit external sources of information.

• Evaluation metrics and protocols.
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• A case study presenting the implementation and deployment of recom-
mender systems in BibSonomy, stressing the challenges and requirements
for doing so.

8.2 Discussion and Outlook

Many STS, such as BibSonomy,1 provide snapshots of their datasets for re-
search purposes, which together with the ECML PKDD Discovery Challenge
2009 [1] has contributed to turn the problem of tag recommendation into an
active area of research.

The ternary relational data of folksonomies open new and interesting re-
search directions in recommender systems since most of the existing methods
are specialized on binary relational data. Even though we have presented
several different ways of handling ternary relations when designing recom-
menders for STS, new progress in this field will certainly continue to blossom.
A particularly appealing research direction concerns investigating multi-mode
recommendation frameworks, such as the FM presented in Section 4.1.2.4,
that support easy switching between different recommendation tasks and
number of modes.

Although we have focused on the plain recommendation problem, without
attributes or other external sources of information (sometimes called con-
textual information), there is an increasing interest on context-aware models
able to capture and exploit different contexts at the same time, such as con-
tent (e. g., text, image, and video), friendship relations, spatio-temporal and
semantic metadata. Once more, FM like models, appear as a very promising
research direction in this area.

Another important research direction is recommender systems for mobile
environments. Many Web 2.0 applications are now deployed on mobile de-
vices, such as smart phones and tablets, where the computational resources
are limited. Thus, it is essential to develop recommendation algorithms that
can operate efficiently in such limited environments.

Other topics that were not covered in this book, but are nevertheless in-
teresting research directions, concern, for example, recommendations’ novelty
and serendipity, e. g., tags that are potentially interesting but not obvious;
cold-start scenarios, such as the new user/resource problem; and cross do-
main recommendations. In all, we hope the work here presented can inspire
further explorations in these research areas.

1 http://www.kde.cs.uni-kassel.de/bibsonomy/dumps/
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