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Abstract—Collaborations are an important factor for scientific
success, as the joint work leads to results individual scientists
cannot easily reach. Recommending collaborations automatically
can alleviate the time consuming and tedious search for potential
collaborators. Usually, such recommendation systems rely on
graph structures modeling co-authorship of papers and content-
based relations such as similar paper keywords. Models are
then trained to estimate the probability of links between certain
authors in these graphs.

In this paper, we argue that the order of papers is crucial for
reliably predicting future collaborations, which is not considered
by graph-based recommendation systems. We thus propose to
reformulate the task of collaboration recommendation as a
sequential recommendation task. Here, we aim to predict the next
co-author in a chronologically sorted sequence of an author’s
collaborators. We introduce CoBERT, a BERT4Rec inspired
model, that predicts the sequence’s next co-author and thus a
potential collaborator. Since the order of co-authors of a single
paper is not that important compared to the overall paper order,
we leverage positional embeddings encoding paper positions
instead of co-author positions in the sequence. Additionally, we
inject content features about every paper and their co-authors.
We evaluate CoBERT on two datasets consisting of papers from
the field of Artificial Intelligence and the journal PlosOne. We
show that CoBERT can outperform graph-based methods and
BERT4Rec when predicting the co-authors of the next paper.
We make our code and data available.

Index Terms—sequential recommendation, bibliometric re-
search, co-author prediction

I. INTRODUCTION

Bibliometric research has shown that collaboration between
scientific researchers is a major factor for the success of
research projects, since collaborators with different expertise
can contribute ideas [1]. Due to the large pool of possible
collaborators in many scientific fields, identifying potential
collaborators for new research projects becomes very difficult.
Different and partially hidden factors can play a vital role for
successful cooperation. Thus, scientific collaboration recom-
mendation systems analyze large corpora of publications to
identify potential collaboration partners depending on previous
collaborations or thematic fit.

Bibliometric research determined different facets of reasons,
why researcher collaborate, for example similar professional
knowledge (cognitive proximity), previous acquaintances (so-
cial proximity) or geographic closeness (geographic proxim-
ity) [1]. These proximities can change over time, as researchers
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Fig. 1: Mean cosine similarity (and standard error) between
authors’ latest and preceding papers (embedded using Sen-
tenceBERT [4]). The older the paper, the lower the similarity.
Thus, CoBERT takes the order of papers into account.

adapt their research topics, get to know new possible collab-
orators, or change their current affiliation.

Current co-author recommendation models rely on col-
laboration graphs, which model collaboration behavior of
researchers using co-authorships [2], [3]. In these graphs, each
node represents an author and edges connect nodes if the
respective authors have collaborated on a publication. Features
extracted from these graphs as well as content based features
are then used to predict missing links, i.e. edges that a model
would classify as being present in the graph but are not.
Missing links are interpreted as potential collaboration partners
and thus recommended to the respective authors. Given the
proximities introduced by Boschma [1], existing links in the
graph approximate social proximity and content based features
aim to represent cognitive proximity. Nevertheless, graphs do
not incorporate the temporal aspects of the research journey
of an author. We argue that taking the chronological order
of collaborations into account is important when predicting
future collaborators, as it reveals changing proximities that
have an impact on collaboration decisions. We showcase this
by visualizing the mean cosine similarities between authors’
latest and preceding papers in Figure 1 (using the AI dataset
with n = 5, c.f. Section IV-A). More recent papers have
higher similarity, thus should be better indicators for cognitive
proximity than older papers.

Based on this observation, we propose to reformulate the
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scientific collaboration prediction task as a sequential recom-
mendation Wang, Hu, Wang, et al. and introduce CoBERT,
a sequential recommendation model for this exact task. An
input sequence consists of all co-authors an author has col-
laborated with in the past, sorted by the publishing date of
their co-authored paper. In this way, the research journey of
an author can be captured, since the order of papers can
show trends in collaborations more easily. Furthermore we
enrich each sequence item with content-based features such
as paper representations or features describing the co-authors’
research interests. To the best of our knowledge, we are the
first to adapt a sequential recommendation model to the task
of scientific collaboration prediction. We then propose three
modifications that substantially help the model to better predict
collaborations:

1) We adapt the positional encoding for each item to our
setting. Since multiple co-authors can appear on the same
paper, we introduce a positional encoding per paper and
add the same encoding to each co-author of the respective
paper. This makes the order of co-authors per paper
irrelevant to the model.

2) We add content-based features of each paper to the
sequence. For this, we compute semantic paper content
embeddings for the abstract and keywords of each paper
using Sentence-BERT [4] and add them to the corre-
sponding sequence items [6].

3) Instead of learning co-author embeddings from scratch,
we initialize them with vectors representing the co-
author’s research interest. We compute them by aggre-
gating the paper content embeddings for all papers of
each co-author.

We extensively evaluate CoBERT in different scenarios,
finding that CoBERT can substantially improve collaboration
prediction quality compared to weak and strong baselines,
including graph based methods. An ablation study shows that
the model benefits from our proposed modifications.

For our experiments, we utilize two datasets: A medium-
sized dataset consisting of papers from Artificial Intelligence
(AI) conferences and a large-scale dataset containing all
papers published in the PlosOne journal. To examine the
influence of small input lengths on our model, we create two
versions of each dataset by filtering authors with a small
number of co-authors. This yields two datasets, one with
more but shorter sequences, and hence giving less context per
author, and a second one with fewer but longer sequences and
therefore more context information.

We explore two tasks, defining different ways to recommend
co-authors: New Collaborator Prediction identifies fitting co-
authors for the next paper given an author’s previous papers
and their corresponding co-authors, while only recommending
co-authors the author has not yet collaborated with. This
resembles the usual task in collaboration recommendation
settings, i.e. predicting missing links in the collaboration graph
is equivalent to connecting authors that have not appeared on
a paper together [7], [8]. This also is a realistic use case for a

collaboration recommendation system, e.g. when researchers
want to find potential new collaborators for a new project. In
reality, however, authors usually repeatably collaborate with
the same co-authors [9]. Thus, we introduce the Any Col-
laborator Prediction task, in which the model has to predict
the next co-author, regardless of previous collaborations. In
this task, the prediction can contain co-authors that already
appeared in the input sequence. Predicting new collaborators is
the more difficult task since the model cannot just predict a co-
author from the input but has to extrapolate to unseen potential
co-authors based on similar authors or meta-information.

Our contributions are as follows:
1) We propose to interpret the collaboration prediction task

as a sequential recommendation task and propose our
model CoBERT to solve this task.

2) We do extensive experimentation to evaluate CoBERT
and investigate the effects of each of the proposed mod-
ifications.

3) We make our code and data available.1

The remainder of this work is structured as follows. First,
Section II covers related work. Section III introduces and
describes the methodology of CoBERT. In Section IV, we
explain the experimental setup and results as well as provide
an ablation study for CoBERT’s components. We finish with
a conclusion in Section V.

II. RELATED WORK

Most approaches for the task of co-author recommendation
build a collaboration graph from the training data, where each
author is a node and two nodes are connected by an edge for
each paper the authors have collaborated on. Recommending
new collaborators for an author then resembles a link predic-
tion task, i.e. estimating the probability that two nodes are con-
nected in the collaboration graph [2], [3]. This prediction usu-
ally relies on graph features [7], [8] or on latent representations
extracted from the graph structure [2], [10]. For larger graphs it
becomes computationally expensive to calculate node features,
for example personalized page-rank [7]. On the other hand,
latent node and graph representations can be generated using
the skip-gram approach on biased random walks Node2Vec [2]
and are easier to compute even for large graph structures.
Additionally, recent work enhances these graph representations
with meta-information, for example by incorporating textual
features [11], [12]. Finally, some approaches do not use deep
learning to solve this task. Daud, Ahmad, Malik, et al. [13] are
exploring approaches as Markov models, regression trees, or
Bayesian networks as models to tackle co-author prediction.

We interpret co-author recommendation as a sequential
recommendation task where the goal is to predict the next
item in a sequence. In sequential recommendation, such
sequences usually consist of click streams or rating histo-
ries [14], [15]. To model sequences, different architectures
such as RNNs [16], CNNs [17], recurrent CNNs [18], or
self-attention networks [19] have been explored. Sun, Liu,

1Will be made available upon acceptance.
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Wu, et al. have proposed BERT4Rec, an adaption of the
bidirectional transformer model BERT [20] to the sequential
recommendation task [14]. While per default, sequential rec-
ommendation models only make predictions solely based on
the sequence itself, giving them access to content based infor-
mation can be beneficial. Thus, multiple works have explored
ways to encode additional information, e.g. text using 3D
convolutions [21] or multi-modal data using multiple RNNs
encoders [22]. Recently, BERT4Rec was extended to encode
content information by adding item keyword embeddings to
the input embeddings [6].

III. COBERT

This section describes CoBERT, our proposed model for
scientific collaboration prediction. Since one of our main
contribution is to redefine the task of co-author prediction
as a sequential task, we resort to sequential recommendation
models. For this, we adapt BERT4Rec, a transformer based
BERT model introduced for sequence-based recommendation.
As input we interpret the collaborators of an author as a
sequence, sorted by the respective paper’s time of publication.
We argue that by modeling the collaboration and paper history,
the model can consider shifts in content and co-authors over
time and thus recommend future collaborations according to
observed trends. To model such information, we alter the input
embeddings to the model by additionally using the content of
each paper (abstract and keywords) and their co-authors. In
the following, we introduce the notation, then briefly describe
the sequential model BERT4Rec, and explain how to apply
it to the co-author prediction task. The, we introduce each
proposed modification that makes up CoBERT. A schematic
overview of the final CoBERT model is depicted in Figure 2.

A. Notation

Let A = {a1, a2, . . . , a|A|} be a set of authors, P =
{p1, p2, . . . , p|P|} a set of scientific papers. Further, Cp is the
list of authors of paper p and Ka is a list of papers author a
has collaborated on, sorted by their publication date. Then, the
list Sa = (ai | ai ∈ Cp \ a ∀p ∈ Ka) contains all co-authors
of an author a, sorted by the respective paper’s publication
date. Note that this sequence can contain the same co-author
repeatedly. Given such a sequence Sa, the task is to predict
the probability of the next author in the sequence:

P (Sa;|Sa|+1|Sa;1, . . . ,Sa;|Sa|) . (1)

B. BERT4Rec

To process the sequential data, we adapt the sequential
recommendation model BERT4Rec, which predicts the next
item in a sequence using a bidirectional self-attention architec-
ture [14]. In the following, we explain the general architecture
of this model such that it fits the collaboration prediction task.
BERT4Rec’s basic components are the input, the embedding,
the transformer, and projection layers. Since we do not change
the transformer layers T = {t1, . . . , tL} and projection layers
proj, we refer to [14] for details about these components.

In our setting, the co-author sequence Sa for an author a
is the input to the model. Each co-author in this sequence is
represented as an embedding vector ai for sequence position i.
Each embedding is summed with the corresponding positional
embedding pi encoding the sequence position i to allow the
transformer to take the order of inputs into account [20]. This
gives input representations h0 = c+p, which are fed through
the transformer layers t ∈ T . As in the BERT4Rec training
procedure, we replace randomly selected sequence items with
the mask token [mask] during training (see Section III-G).
The network is trained to predict the masked item from the
final transformer hidden state tL at the masked item’s position
using a projection layer proj and the categorical cross entropy
loss function. In this way, the network learns to represent
items using other items in the sequence, picking up trends
and patterns from the training data. At inference time, a mask
token is appended to the full sequence, letting the model
predict the probability for the next item in the sequence
P (Sa;|Sa|+1|Sa;1, . . . ,Sa;|Sa|). All possible items are ranked
by the magnitude of their projection layer output.

C. Modification 1: Positional Embedding per Paper (PPE)

The input sequence for an author Sa consists of co-authors
they have worked with sorted by the time the corresponding
paper was published. BERT4Rec poses the problem that each
item is provided with a positional embedding that encodes
the absolute position of the item in the sequence. Since the
exact order of co-authors is not as relevant as the order of
the respective publication Ka for an author, we assign the
same positional embedding to all co-authors of a paper in
the sequence. For example, if there are three co-authors for
the first paper and two authors for the second paper in the
author’s sequence, the positional encoding for the first three
items in the sequence is the same, encoding position one,
and the positional encoding for the forth and fifth sequence
item encodes position two. This gives the model a notion
of order of the papers but does not enforce an order of co-
authors. Since transformers are insensitive to item positions
without a positional encoding [20], the model will not take
the order of co-authors for one paper into account but only the
paper order. To better work with the sequence item indices,
we define a function f that maps a sequence position i
to the corresponding paper position regarding this sequence.
In the example above, f(1) = f(2) = f(3) = 1 and
f(4) = f(5) = 2.

D. Modification 2: Paper Content Embedding (PCE)

Besides order, we argue that cognitive proximity [1] is an
important factor in estimating future co-authors. Cognitive
proximity represents the similarity of authors with respect to
their prior professional knowledge. We represent this knowl-
edge by leveraging content information of papers and thus
get a thematic classification for each author. Co-authors are
then selected according to topics, and authors from papers
with different topics are less likely to be a suitable match
for the next paper. We propose to take information about
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Fig. 2: Overview of CoBERT. The input to the model is a sequence of paper with the respective co-authors, with which the
current author has collaborated with, sorted by publication date. For each item, we additionally leverage a representation of
abstract and keywords of the corresponding paper. We then compute a positional encoding per paper pi as well as embeddings
to describe the content of the paper ci. Finally we represent the co-author’s previous works ai by average pooling all paper
embeddings p of paper written by the current author. These embeddings are then summed and used as input to transformer
layers. Appending mask tokens to the sequence allows the model to predict the next co-author in the sequence, using the
output representation from the transformer and a fully-connected projection layer (Proj).

papers into account by enriching the sequence inputs with
embeddings created from the corresponding papers the co-
authors are part of. For this, we leverage SentenceBERT [4],
which is designed to embed documents of short length2. We
concatenate the keywords and abstracts of each paper and
feed it through SentenceBERT to obtain representations, which
we call Paper Content Embeddings (PCE). Similarly to the
positional embedding, this representation cp is repeated for
each co-author of the encoded paper p. The function g maps
the sequence position i to the corresponding paper.

E. Modification 3: Co-Author Content Embedding (ACE)

Up until now, each sequence item encodes a co-author as
a one-hot encoded vector, which then gets represented by
a lower dimensional dense vector in the embedding layer.

2We use https://huggingface.co/sentence-transformers without fine tuning.

We propose to use a smarter initialization for the co-author
embedding by computing the mean PCE over all papers of a
co-author: aa =

∑
p∈Ka| cp

|Ka| . In this way, co-authors are already
represented by their research contents, bringing authors with
similar research interests closer together in embedding space.
A function h maps the sequence item position i to the corre-
sponding co-author, so multiple occurrences of the same co-
author are mapped to the same co-author content embedding.

F. Combining All Embeddings

Inspired by Fischer, Zoller, Dallmann, et al. [6] who add
keyword embeddings to sequence items in BERT4Rec, we
obtain the initial representation that is fed into the transformer
layers by summing all separate embeddings:

h0
i = pf(i)︸︷︷︸

Positional Encoding
per Paper

+ cg(i)︸︷︷︸
Paper Content

Embedding

+ ah(i)︸︷︷︸
Co-Author Content

Embedding

. (2)
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Here, all embeddings are weighted equally. We have experi-
mented with variable weights per summand that are optimized
jointly with the neural network parameters, but this has led to
low performance. Details to this and other failed approaches
can be found in Appendix B.

Overall, the changes proposed above define our model
CoBERT (c.f. Figure 2).

G. Training

The training of CoBERT mostly follows the training pro-
cedure of BERT4Rec [14]. In general, the used cloze task
masks items in the sequence with a [mask] token. In 5%
of all cases, only the last item is masked. This scenario
approximates the actual task of predicting the next co-authors.
In the remaining cases, each item is selected for the masking
process with a probability of 20%, while a maximum selection
size of half the sequence length should not be exceeded. The
masking process inserts the [mask] token for the item with
an 80% chance. For 10%, this co-author is replaced with a
randomly chosen co-author. Else, no change is made to the
item. This altered sequence is then fed into the model, which
has to learn to predict the masked items from their context.
For this, we use the hidden representations of the transformer
layers at the positions of all altered tokens and use a projection
layer to predict the correct co-author with a softmax activation
function. In this way, the network has to (1) fill in the blanks
if an item is masked, (2) learn to correct mistakes if the item is
replaced with another item, and (3) be aware of correct items.

During inference, a [mask] token is appended to the whole
sequence. The model then output a probability distribution
over all possible co-authors for this token. Co-authors are then
ranked using their corresponding probability.

IV. EXPERIMENTS

In this section we describe the experiments used to evaluate
CoBERT as well as their results. We run experiments on
two datasets with two different minimal sequence lengths and
define two tasks to better investigate the effects of different
influences on the performance of CoBERT and other baselines.
We use PyTorch [23] for our experiments.

A. Datasets

We use two datasets with publications from Artificial Intelli-
gence (AI) research and the interdisciplinary journal PlosOne.
AI Dataset: For this, we utilize a published dataset3 consisting
of meta-data from publications published at AI conferences
as categorized by Kersting, Peters, and Rothkopf [24]. Each
paper contains information like co-authors, conference, year,
keywords, and abstracts. We can thus model and predict the
paper sequences for authors from these conferences.
PlosOne: We build a second dataset that consists of infor-
mation about papers published in the journal PlosOne. We
extract all information from Semantic Scholar Open Research
Corpus4 [25], i.e. co-authors, year, abstract and keywords.

3https://zenodo.org/record/3693604#.YIfQDi0RphE
4Dump from 2019-01-31, since it is the last dump containing keywords.

While the AI dataset contains papers with a thematic focus
on Artificial Intelligence, PlosOne is an interdisciplinary jour-
nal, thus containing papers from a large variety of research
areas. This could make recommending collaborations easier
for PlosOne, since researchers usually collaborate in their own
sub-domain without much overlap to other research areas. On
the other hand, this dataset has much more authors than the
AI dataset, making the prediction of co-authors more difficult.

1) Pre-Processing: From both datasets, we can generate
co-author sequences for an author in order to predict the next
item in the sequence using CoBERT. To give the model some
context, we remove authors with co-author sequences shorter
than n. We set n to 5 or 10 to investigate the effects of giving
the model more or less context for each instance. After this
step, we obtain two datasets with the properties displayed in
Table I. While with n = 5, the datasets consist of more papers
and authors overall, which can be useful during training, the
average number of co-authors per author is smaller and thus
the model input sequence is shorter. Due to the shorter context
per author, we thus consider the dataset with n = 5 to be a
more difficult dataset.

2) Data Split: We split each co-author sequence into train-
ing, validation, and test sequences. Since we are the first
to model co-author recommendation as sequential task, we
introduce a new data splitting procedure. It is different for the
two tasks, however, both rely on the chronologically sorted
co-author sequence.
Any Collaborator Prediction: We put all co-authors of the
latest paper into the test set and one co-author from the
second latest paper into the validation set. When evaluating,
the ranking of these co-authors is then measured.
New Collaborator Prediction: We select one co-author that
only occurs once in the sequence to select only novel and
no repeating collaborations. For identifying this co-author,
we begin at the end of the sequence, such that the latest
collaborations are preferably selected. We delete this co-
author from the sequence and repeat the process to find a co-
author for the validation set. By selecting test co-authors that
only have collaborated once with the sequence’s author, this
prevents much shorter training sequences. On the other hand,
this makes the task more difficult to solve, since one-time
collaborations in the past may be due to arbitrary influences
and not similar research interests. While it is possible that
some author sequences do not have single occurrences of
co-authors, we find that approximately 90% to 95% of all
sequences do. We thus only use these sequences for validation
and testing. In order to predict only new collaborators, we
remove past collaborators from CoBERT’s predicted ranking.

B. Baselines

We compare CoBERT to different baselines. First, a ma-
jority baseline ranks authors based the length of Ka, i.e.
their number of occurrences in the training set. This baseline
predicts this ranking for each author, which is used to calculate
our metrics. Additionally, we implement a stronger majority
baseline (called Majority (author)) that ranks co-authors for
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TABLE I: Dataset characteristics. n represents the minimal
sequence length in order to be considered in the dataset.

AI PlosOne

n = 5 n = 10 n = 5 n = 10

authors/sequences 65,541 35,113 205,544 132,003
papers 175,237 138,344 135,896 95,646
avg. co-authors 48.89 69.04 47.77 59.60
avg. unique co-authors 8.61 12.32 3.59 4.03

avg. sequence length 24.45 34.52 23.88 29.80
sequence length > 5 94.06% 100.00% 97.47% 100.00%
sequence length > 10 57.89% 91.56% 72.09% 93.40%
sequence length > 15 39.88% 63.75% 48.85% 65.06%

each author individually. Given a sequence Sa of an author,
we calculate a ranking based on the occurrence within this
sequence. This baseline does only predict co-authors, with
whom the author already collaborated, which does not allow
extrapolation to new authors. Hence this baseline is inappli-
cable for the new collaborator prediction task.

Second, we compare CoBERT, that is built on the idea
of sequential recommendation, to a more common approach
utilizing collaboration graphs [2], [3]. The graph is built
from the training data: Nodes represent authors and edges
represent paper collaborations between authors. State-of-the-
art co-author prediction models leverage graph features [7],
[8], such as a personalized page rank. For our datasets,
the collaboration graph is too large to efficiently compute
such graph features. For example, personalized page rank
has a computational time of O(n(n + m)), where n is the
number of nodes and m is the number of edges. We thus use
efficiently computable node embeddings that are computed
from the graph using the Deepwalk approach [26]. Node
embeddings capture the author’s graph neighborhood and thus
collaborations. In order to predict links between two authors,
we element-wise add their node embeddings (following Grover
and Leskovec [2]) and use the resulting representation as input
to a multi-layer perceptron classifier with one hidden layer
(size 100). As output, the network gives a probability given
the pair of authors, which is used to generate a ranking over all
possible co-authors. This ranking is returned as the prediction.

Finally, to show that with CoBERT we propose sensi-
ble changes to the BERT4Rec architecture, we also use
BERT4Rec as a baseline in our experiments. BERT4Rec uses
a positional encoding per co-author and does not add content
based features about the paper and co-author to the input
sequence. The training procedure stays the same as with
CoBERT, in order to compare both approaches in a fair setting.

C. Hyperparameters

For BERT4Rec and CoBERT, we adopt the default
BERT4Rec hyperparameters: The network consists of two
transformer layers with eight heads each and a hidden size
of 768. We use Adam [27] with a learning rate of 0.001 and
apply early stopping [28] with a patience of five epochs. We
choose a batch size of 16.

D. Evaluation Metrics

We evaluate the resulting models using the metrics Hi-
trate (Hit@{1,5,10}) and Normalized Discounted Cummula-
tive Gain (NDGC@{5,10}). As commonly used in recom-
mendation settings and following BERT4Rec, we use negative
sampling in our evaluation with n = 100 in order to handle
the large co-author space [14].

E. Results

We train each approach five times and report mean metrics
in Tables II and III. While the AI dataset is smaller but
more focused, the PlosOne dataset is larger but thematically
more variable. For each dataset, we have defined two minimal
sequence lengths, resulting in potentially shorter but more
co-author sequences (n = 5) as well as longer but fewer
sequences (n = 10). Additionally, we evaluate all methods
on two tasks: Predicting any co-author regardless of past
collaborations (Any Collab.) and predicting new co-authors
that have not appeared in the input sequence (New Collab.).
Overall, our proposed model CoBERT outperforms all base-
lines most of the times. Only for the PlosOne dataset with
n = 5 and predicting any collaborator, the majority baseline
per author performs better on Hit@10. This shows for this
dataset, authors usually collaborate with the same co-authors in
the future. However, a lower NDCG@10 shows that CoBERT
ranks the correct co-authors higher than the majority per
author baseline. We report our findings for all of the different
variations in dataset and tasks in the following.

1) Dataset: Given the results, the performance of all mod-
els drops for the PlosOne dataset. This indicates that the
PlosOne dataset is more challenging. We hypothesize that this
is due to the larger pool of possible co-authors (cf. Table I).
In addition, there are more authors per paper in the PlosOne
dataset. When removing the co-authors of the last paper for
the test data, the input sequence becomes significantly shorter,
making the task more difficult.

2) Sequence Length: Training and evaluating CoBERT on
longer sequences tends to result in higher performance, even
though there are fewer sequences available (cf. Table I). This
might be due to the fact that it is easier for the model — as it is
for humans — to identify useful patterns in longer sequences.

3) Task: As expected, the prediction of a co-author that
does not appear in the input sequence (New Collab.) is a more
difficult task than allowing the prediction of past collaborators
(Any Collab.). While the models are still able to extrapolate
to new co-authors, the performance drops substantially on all
metrics for the AI dataset. On the PlosOne dataset, smaller
performance drops can be observed. Since PlosOne is an
interdisciplinary journal, it might be easier for CoBERT to
identify novel co-authors by recommending co-authors from
thematically fitting subgroups.

F. Ablation Study

Our results show that CoBERT achieves better performance
than the methods we compared it to. We now want to examine
the influence of each of our proposed modifications to the
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TABLE II: Results on the AI dataset. Given are the evaluation metrics’ means over five runs. All values are in percent. Best
values are written in bold. The majority baseline per author cannot be evaluated for the New Collaborator Prediction task,
since it does not predict any new collaborators.

n = 5 n = 10

Task Model Hit@1 Hit@5 Hit@10 NDCG@5 NDCG@10 Hit@1 Hit@5 Hit@10 NDCG@5 NDCG@10

Any Collab.

Majority 0.07 0.27 0.50 0.17 0.24 0.10 0.37 0.69 0.23 0.33
Majority (author) 11.4 38.3 60.7 24.7 31.9 10.2 30.6 50.1 20.4 26.7
Graph 4.5 15.4 22.7 10.1 12.4 5.2 17.7 25.5 11.6 14.1
BERT4Rec 39.3 57.6 65.4 49.0 51.5 22.5 50.0 65.0 36.7 41.6
CoBERT 71.7 81.4 84.8 76.9 78.0 78.1 88.0 91.1 83.5 84.5

New Collab.

Majority 0.05 0.17 0.29 0.11 0.15 0.07 0.21 0.38 0.14 0.20
Majority (author) — — — — — — — — — —
Graph 8.7 16.1 22.1 12.5 14.4 11.4 17.7 22.8 14.6 16.2
BERT4Rec 16.4 35.1 45.1 26.2 29.4 27.3 47.8 59.9 37.9 41.8
CoBERT 58.4 68.9 72.9 64.1 65.4 69.1 79.5 83.1 74.8 75.9

TABLE III: Results on the PlosOne dataset. Given are the evaluation metrics’ means over five runs. All values are in percent.
Best values are written in bold. The majority baseline per author cannot be evaluated for the New Collaborator Prediction task,
since it does not predict any new collaborators.

n = 5 n = 10

Task Model Hit@1 Hit@5 Hit@10 NDCG@5 NDCG@10 Hit@1 Hit@5 Hit@10 NDCG@5 NDCG@10

Any Collab.

Majority 0.02 0.10 0.20 0.06 0.09 0.02 0.13 0.26 0.08 0.12
Majority (author) 5.4 23.3 47.2 14.0 21.7 5.0 21.2 41.7 12.9 19.5
Graph 10.8 34.1 43.0 22.9 25.8 7.7 28.9 39.7 18.4 21.9
BERT4Rec 9.9 26.3 37.1 18.3 21.8 34.8 56.9 66.2 46.5 49.5
CoBERT 30.5 39.3 43.7 35.1 36.6 48.2 58.8 63.2 53.9 55.3

New Collab.

Majority 0.01 0.02 0.03 0.02 0.02 0.00 0.04 0.05 0.02 0.02
Majority (author) — — — — — — — — — —
Graph 6.9 13.5 19.5 10.3 12.2 7.7 13.4 19.1 10.6 12.4
BERT4Rec 8.8 24.6 35.9 16.8 20.4 23.3 44.6 55.8 34.4 38.0
CoBERT 28.3 38.0 42.8 33.4 35.0 46.4 58.2 63.1 52.7 54.3

TABLE IV: Ablation study based on the AI dataset with n = 5
in the predicting any collaborator task.

Hit@k NCDG@k

Model k = 1 k = 5 k = 10 k = 5 k = 10

CoBERT 71.68 81.36 84.81 76.92 78.03
w/o ACE 70.87 81.23 84.76 76.48 77.63
w/o PCE 61.70 76.59 82.00 69.71 71.46
w/o ACE / PCE 67.45 79.21 83.53 73.79 75.19
w/o ACE / PCE / PPE

(= BERT4Rec) 39.25 57.55 65.40 48.97 51.51

BERT4Rec model that make up CoBERT. Namely, these
are the positional encoding per paper (PPE), the paper con-
tent embedding (PCE), and the co-author content embedding
(ACE). We thus train CoBERT models without adding the
corresponding embeddings in the embedding layer or, in case
of ACE, learning an embedding per author from scratch.
Results are shown in Tables IV and V for the task of predicting
any and new collaborators, respectively, with n = 5 on the AI
dataset. Again, the mean results over five runs are given. The
results for the other task, minimal sequence length, and dataset
show similar trends and can be found in Appendix A.

The ablation study shows that our proposed modifications
mostly result in better model performance. Removing the

paper content embedding (w/o PCE) induces a substantial drop
in performance, showing that content based features are im-
portant for the model. On the other hand, the prediction quality
varies greatly when removing the co-author content embedding
(w/o ACE). While sometimes, the performance drops, the
model sometimes also improves. We suspect that the model
already learns some form of co-author content representation
implicitly since it sees paper content embeddings per co-author
during training. Thus an explicit co-author content embedding
is not necessarily important. Overall, the performance gain
in most of our experiments was larger than the usually less
pronounced reduction.

Removing all three proposed modifications (w/o ACE / PCE
/ PPE) makes CoBERT equivalent to the BERT4Rec model,
which scores low results. BERT4Rec performs much better
when adding PPE (w/o ACE / PCE). For BERT4Rec, each
co-author gets an unique positional encoding, thus making
the order of co-authors for one paper arbitrary. Using PPE,
we assume that the order of co-authors for one paper is not
important. Thus, the model can learn to find patterns in the
sequence regarding the paper order.

V. CONCLUSION

In this paper, we have proposed CoBERT, a BERT based
model to recommend scientific collaborations, by interpreting
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TABLE V: Ablation study based on the AI dataset with n = 5
in the predicting new collaborator task.

Hit@k NCDG@k

Model k = 1 k = 5 k = 10 k = 5 k = 10

CoBERT 58.42 68.93 72.94 64.09 65.39
w/o ACE 64.44 74.97 78.60 70.18 71.35
w/o PCE 38.66 53.70 60.09 46.68 48.75
w/o ACE / PCE 47.58 60.45 65.69 54.47 56.17
w/o ACE / PCE / PPE

(= BERT4Rec) 16.45 35.13 45.06 26.17 29.37

the setting as a sequential recommendation task. For this, we
introduced multiple changes to the sequential recommendation
model BERT4Rec that improve the performance of the model
on the task of predicting the next co-author in an author’s co-
author sequence. The performance gain was steady regarding
common baselines and over multiple datasets and tasks.

Common scientific collaboration recommendation models
rely on collaboration graphs, which need to be kept in memory
to efficiently compute embeddings. Since CoBERT does not
rely on graphs, all components, i.e. the co-author content and
paper content embeddings, can be computed and processed
independently. Thus, CoBERT can potentially be applied to
larger datasets than graph based methods. In the future, we
want to verify this by applying CoBERT to settings with multi
millions of papers and authors, e.g. by using the full Semantic
Scholar dataset.

In our ablation study, we found that adding co-author
content leads to unsteady model performance. Future work
might want to investigate this further and search for better
initialization for this embedding.

Finally, since we insert features regarding the paper con-
tents, we are also able to make thematically fitting co-author
predictions. Instead of masking the co-author content em-
bedding and paper content embeddings for the collaboration
recommendation task, we could only mask the co-author
content embedding and use a proposal abstract as the paper
embedding. In this way, the model would take paper content
into account when recommending co-authors. We will explore
this and other potential use cases for CoBERT in the future.
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APPENDIX

Here, we show additional results for our experiments, in-
cluding model adaptions that unfortunately did not lead to any
improvement.

A. Remaining Results of the Ablation Study

Tables VIII to XIII show the ablation studies for the
remaining datasets and task variations. As already shown, the
benefit of using co-author content embeddings (ACE) varies
greatly.

B. Things That Didn’t Work

In addition to the final CoBERT approach, we tested two
additional variations of the sequential approach for collabora-
tion recommendation: (1) Calculating a weighted sum of the
proposed embeddings and jointly learning their weights with
the model parameters and (2) separating authors from papers
in the input sequence. Both approaches did not work well.
Results compared to CoBERT are shown in Tables VI and VII.

1) Weighted Embeddings: The input representation for the
transformer layer is generated in the embedding layer (c.f.
Figure 2). While CoBERT adds all the embeddings to obtain
one initial representation per item, we experiment with train-

able weights λi that are optimized jointly with the network
parameters:

h0
i = λPPE · pi︸ ︷︷ ︸

Positional Encoding
per Paper

+ λPCE · ci︸ ︷︷ ︸
Paper Content

Embedding

+ λACE · ai︸ ︷︷ ︸
Co-Author Content

Embedding

. (3)

We initialize all λi = 1 and call this model CoBERT-
Weighted (CoBERT-W). The performance for this approach
drops significantly compared to CoBERT. Inspecting the
trained embedding weights for the PlosOne models show that
the network mostly relies on the co-author content embedding
(ACE): λPPE and λPCE are set around zero. For the AI dataset,
the paper content embedding (PCE) is also weighted similarly
as the ACE. The positional encoding is not considered by
CoBERT-W, which might be one of the reasons why this
method does not perform well.

Possible ways to improve this approach are to exclude
weight learning for the positional encoding or normalizing the
weights using a softmax function, restricting the scaling of the
model input.

2) Sequential Approach: VisualBERT [29] has introduced
an approach, which appends two sequences separated by a
[SEP] token [29]. We adopt this approach and split the input
sequence into co-authors and papers. Here, the co-authors of
a paper in the first sequence and the respective paper in the
second sequence have the same positional embeddings. Both
sequences are separated using the [SEP] token. The model
is supposed to learn the weighting and correlation of papers
to authors inherently. We call this model CoBERT-Seq.

Due to the separation, the input sequence gets longer, which
can, in exceptional cases, result in sequences that are trimmed
to the model’s maximal number of input tokens. Also, we find
that this approach does not improve the model’s performance
compared to CoBERT. While it performs relatively well on
the AI dataset compared to the default BERT4Rec model or
CoBERT-W, it shows very low scores on the PlosOne dataset.
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TABLE VI: Results of our other CoBERT variants on the AI dataset. Given are the evaluation metrics’ means over five runs.
All values are in percent. Best values are written in bold.

n = 5 n = 10

Task Model Hit@1 Hit@10 Hit@5 NDCG@5 NDCG@10 Hit@1 Hit@5 Hit@10 NDCG@5 NDCG@10

Any Collab.
CoBERT 71.7 81.4 84.8 76.9 78.0 78.1 88.0 91.1 83.5 84.5
CoBERT-W 27.8 40.4 46.5 34.4 36.4 47.7 63.7 70.0 56.2 58.3
CoBERT-Seq 46.7 60.3 65.9 53.9 55.7 69.5 84.3 88.6 77.5 78.9

New Collab.
CoBERT 58.4 68.9 72.9 64.1 65.4 69.1 79.5 83.1 74.8 75.9
CoBERT-W 18.0 30.2 36.9 24.4 26.5 33.0 50.2 57.8 42.0 44.5
CoBERT-Seq 41.5 57.6 64.3 50.1 52.3 55.1 71.8 77.7 64.1 66.0

TABLE VII: Results of our other CoBERT variants on the PlosOne dataset. Given are the evaluation metrics’ means over five
runs. All values are in percent. Best values are written in bold.

n = 5 n = 10

Task Model Hit@1 Hit@10 Hit@5 NDCG@5 NDCG@10 Hit@1 Hit@5 Hit@10 NDCG@5 NDCG@10

Any Collab.
CoBERT 30.5 39.3 43.7 35.1 36.6 48.2 58.8 63.2 53.9 55.3
CoBERT-W 1.1 4.8 9.2 3.0 4.3 13.6 23.0 29.3 18.5 20.5
CoBERT-Seq 1.0 4.5 8.8 2.7 4.1 3.7 9.5 14.9 6.6 8.3

New Collab.
CoBERT 28.3 38.0 42.8 33.4 35.0 46.4 58.2 63.1 52.7 54.3
CoBERT-W 11.6 20.8 27.3 16.3 18.4 9.1 16.4 21.8 12.8 14.6
CoBERT-Seq 0.9 4.1 8.0 2.4 3.7 18.3 27.5 33.3 23.0 24.9

TABLE VIII: Ablation study based on the AI dataset with
n = 10 in the predicting any collaborator task.

Hit@k NCDG@k

Model Hit@1 k = 5 k = 10 k = 5 k = 10

CoBERT 78.11 88.01 91.13 83.52 84.53
w/o ACE 78.88 88.13 90.97 83.92 84.84
w/o PCE 66.25 81.48 86.53 74.48 76.12
w/o ACE / PCE 71.21 82.88 86.88 77.54 78.84
w/o ACE / PCE / PPE

(= BERT4Rec) 22.55 50.03 65.00 36.73 41.57

TABLE IX: Ablation study based on the AI dataset with n =
10 in the predicting new collaborator task.

Hit@k NCDG@k

Model Hit@1 k = 5 k = 10 k = 5 k = 10

CoBERT 69.08 79.50 83.14 74.77 75.95
w/o ACE 65.32 76.36 80.21 71.31 72.55
w/o PCE 58.32 76.18 82.09 68.01 69.93
w/o ACE / PCE 59.26 73.62 78.72 67.03 68.69
w/o ACE / PCE / PPE

(= BERT4Rec) 27.30 47.77 59.92 37.91 41.83

TABLE X: Ablation study based on the PlosOne dataset with
n = 5 in the predicting any collaborator task.

Hit@k NCDG@k

Model Hit@1 k = 5 k = 10 k = 5 k = 10

CoBERT 30.53 39.26 43.71 35.14 36.57
w/o ACE 15.92 22.13 26.53 19.13 20.54
w/o PCE 13.51 22.17 28.06 17.98 19.87
w/o ACE / PCE 9.53 17.04 22.62 13.37 15.15
w/o ACE / PCE / PPE

(= BERT4Rec) 4.45 12.96 19.74 8.75 10.92

TABLE XI: Ablation study based on the PlosOne dataset with
n = 5 in the predicting new collaborator task.

Hit@k NCDG@k

Model Hit@1 k = 5 k = 10 k = 5 k = 10

CoBERT 28.33 37.98 42.81 33.42 34.98
w/o ACE 29.03 38.89 43.98 34.22 35.86
w/o PCE 26.18 36.66 42.53 31.66 33.55
w/o ACE / PCE 22.10 31.39 36.64 26.96 28.65
w/o ACE / PCE / PPE

(= BERT4Rec) 8.77 24.57 35.86 16.78 20.42

TABLE XII: Ablation study based on the PlosOne dataset with
n = 10 in the predicting any collaborator task.

Hit@k NCDG@k

Model Hit@1 k = 5 k = 10 k = 5 k = 10

CoBERT 48.20 58.84 63.18 53.90 55.31
w/o ACE 46.22 57.51 62.40 52.23 53.81
w/o PCE 19.68 32.96 40.86 26.56 29.11
w/o ACE / PCE 12.60 22.89 29.98 17.88 20.16
w/o ACE / PCE / PPE

(= BERT4Rec) 34.77 56.89 66.23 46.52 49.54

TABLE XIII: Ablation study based on the PlosOne dataset
with n = 10 in the predicting new collaborator task.

Hit@k NCDG@k

Model Hit@1 k = 5 k = 10 k = 5 k = 10

CoBERT 46.37 58.20 63.14 52.66 54.26
w/o ACE 46.46 57.84 62.58 52.53 54.06
w/o PCE 44.92 56.64 62.29 51.11 52.94
w/o ACE / PCE 38.66 49.99 55.51 44.68 46.46
w/o ACE / PCE / PPE

(= BERT4Rec) 23.32 44.58 55.78 34.38 37.99
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