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Abstract. A distance measure between objects is a key requirement for
many data mining tasks like clustering, classification or outlier detec-
tion. However, for objects characterized by categorical attributes, defin-
ing meaningful distance measures is a challenging task since the values
within such attributes have no inherent order, especially without addi-
tional domain knowledge. In this paper, we propose an unsupervised dis-
tance measure for objects with categorical attributes based on the idea,
that categorical attribute values are similar if they appear with similar
value distributions on correlated context attributes. Thus, the distance
measure is automatically derived from the given data set. We compare
our distance measure to existing categorical distance measures and evalu-
ate on different data sets from the UCI machine-learning repository. The
experiments show that our distance measure is recommendable, since it
achieves similar or better results in a more robust way than previous
approaches.

Keywords: categorical data, distance measure, heterogeneous data, un-
supervised learning

1 Introduction

Distance calculation between objects is a key requirement for many data mining
tasks like clustering, classification or outlier detection [16]. Objects are described
by a set of attributes. For continuous attributes, the distance calculation is well
understood and mostly the Minkowski distance is used [2]. For categorical at-
tributes, defining meaningful distance measures is more challenging since the
values within such attributes have no inherent order [4]. The absence of addi-
tional domain knowledge, further complicates this task.

However, several methods exist to address this issue. Some are based on sim-
ple approaches like checking for equality and inequality of categorical values, or
create a new binary attribute for each categorical value [2]. An obvious draw-
back of these two approaches is that they can not reflect the degree of similarity



or dissimilarity between two distinct values. Yet, more sophisticated methods
incorporates statistical information about the data [8,9,10].

In this paper, we take the latter approach. In contrast to previous work,
we take into account the quality of information that can be extracted from the
data, in form of correlation between attributes. The resulting distance measure is
called ConDist (Context based Categorical Distance Measure): We first propose
a distance measure for each attribute separately. To this end, we take advan-
tage of the fact that categorical attributes are often correlated, as shown in an
empirical study [10], or by the fact that entire research fields exist which de-
tect and eliminate such correlations, e.g. feature selection [7] or dimensionality
reduction [13]. In order to calculate the distances for the values within a tar-
get attribute, we identify at first the correlated context attributes. The distance
measure on target attributes is then based on the idea that attribute values are
similar if they appear with similar value distributions on their corresponding set
of correlated context attributes. Finally, we combine these distance measures on
separate attributes to calculate the distance of objects, again taking into account
correlation information. We argue that incorporating the correlation of context
attributes and the target attribute itself are important in order to maximize the
relevant distance information extracted from the data and mitigate the possibly
incorrect influence of uncorrelated attributes.

Table 1 shows a sample data set. Let us assume, we want to calculate the
distance between the different values of attribute height, i.e., height is our tar-
get attribute. As mentioned above, our distance measure calculates its distance
based on the value distributions of other attributes. For the attributes weight
and haircolor these distributions (P (X|H = small), P (X|H = medium) and
P (X|H = tall)) are shown in Figure 1. In the case of weight the distributions are
different. Thus, they will add information to our distance calculations. However,
the distributions for haircolor are the same for all values of the target attribute.
Thus, they will not contribute information to our distance measure. At the same
time, we can see that weight is correlated to height, since higher weight implies
greater height with a high probability. For haircolor on the other hand, there
is no correlation, since haircolor does not imply height. Since we also take this
correlation information into account, we exclude uncorrelated attributes from
the distance measure. Therefore, context attribute haircolor will not be taken
into account when calculating distances between the values of height.

Overall, we propose an unsupervised distance measure for objects described
by categorical attributes. Our new distance measure ConDist calculates dis-
tances by identifying and utilizing relevant statistical relationships from the given
data set in form of correlations between attributes. With this approach, ConDist
tries to compensate the lack of inherent orders within categorical attribute do-
mains.

The rest of the paper is organized as follows: Related work on categorical
distance measures is discussed in Section 2. Section 3 describes the proposed
distance measure ConDist in detail. Section 4 gives an experimental evaluation
and the results are discussed in Section 5. The last section summarizes the paper.



Table 1: Example data set which describes nine people with three categorical
attributes. The attributes height and weight have natural orders. Whereas the
attribute haircolor has no natural order. Height and weight are correlated to
each other while the attribute haircolor is uncorrelated to the other two at-
tributes. ConDist uses such correlations between attributes to extract relevant
information for distance calculation.

# height weight haircolor

1 small low blond
2 small low brown
3 small middle black
4 medium low black
5 medium middle brown
6 medium high blond
7 tall middle blond
8 tall high brown
9 tall high black

 0

 0.2

 0.4

 0.6

 0.8

 1

P(W|H=small)

P(W|H=medium)

P(W|H=tall)

W=low
W=middle

W=high

(a) CPD of weight

 0

 0.2

 0.4

 0.6

 0.8

 1

P(C|H=small)

P(C|H=medium)

P(C|H=tall)

C=blond
C=brown
C=black

(b) CPD of haircolor

Fig. 1: This figure shows the conditional probability distributions (CPDs) of
context attributes weight and haircolor, given the different values of the target
attribute height based on Table 1. W stands for weight, C for haircolor and
H for height. ConDist uses the difference between CPDs of context attributes
to calculate the distance of target attribute values. Thus, weight can be used to
calculate a meaningful distance between the values of height, while haircolor will
yield the same distance for all three values of the target attribute.

2 Related Work

This section reviews related work on categorical distance measures. Distance
measures can be divided into supervised and unsupervised. In the supervised
setting, the class membership of the objects is provided and this information
is exploited by the distance measures. In the unsupervised setting, assumptions
and statistics about the data are exploited by the distance measures. Since the



proposed distance measure is unsupervised, the following review considers only
unsupervised categorical distance measures. We categorize them into distance
calculation (I) without considering context attributes, (II) considering all context
attributes, (III) considering a subset of context attributes and (IV) based on
entire objects instead of individual attributes like the first three categories.

Boriah et al. [4] give a comprehensive overview of distances measures from
the first category. In contrast to ConDist, these distance measures ignore avail-
able information that could be extracted from context attributes. For example,
the distance measure Eskin [6] only uses the cardinality of the target attribute
domain to calculate distances. [4] evaluated these distance measures for outlier
detection and observed that no specific distance measure dominates all others.

The second category includes distance measures that employ all context at-
tributes without distinguishing between correlated and uncorrelated context at-
tributes. Li and Ho [10] compute the distance between two categorical values as
the sum of dissimilarities between the context attributes’ conditional probability
distribution (CPD) when the target attribute takes these two values [10]. How-
ever, they do not recommend their distance measure for data sets with highly
independent attributes. Similary, Ahmad and Dey [1] calculate the distance be-
tween two values using the co-occurrence probabilities of these two values and
the values of the context attributes.

The third category selects a subset of context attributes for each target at-
tribute. DILCA [8] is a representative of this category and uses Symmetric Un-
certainty (SU) [18] for the selection of context attributes. SU is a measure which
calculates the correlation between two attributes. In contrast to our work, all
selected context attributes are weighted equally for the distance calculation.

The fourth category aims to compute distances between entire objects in-
stead of distances between different values within an attribute. Consequently,
the distance between different values within an attribute varies in dependence
of the whole objects. Recently, Jia and Cheung [9] proposed such a categorical
distance measure for cluster analysis. Their basic assumption is that two cat-
egorical values with high frequencies should have a higher distance than two
categorical values with low frequencies. Therefore, they select and weigh a set
of correlated context attributes for each target attribute using the normalized
mutual information [3]. Jia and Cheung [9] compared their distance measure
with the Hamming Distance on four data sets. They came to the conclusion
that their distance measure performed better than the Hamming Distance on
the evaluated data sets.

The proposed distance measure ConDist neither ignores context attributes
(category I) nor simply includes all context attributes (category II). Instead, it
follows the approach of the third category but extends the subset selection with a
weighting scheme for context attributes. Furthermore, the target attribute itself
is included in the distance computation. In contrast to the fourth category, two
particular values within an attribute have always the same distance, independent
of the objects enclosing that values. This allows ConDist to calculate a distance
matrix for each attribute.



3 The Distance Measure ConDist

In this section, we introduce our distance measure ConDist. The core formula
and the underlying ideas are proposed in the Section 3.1. Since ConDist first
calculates the distance between single attributes before combining them, it re-
quires adjusted distance functions for each attribute. In Section 3.2, we explain
how these attribute distance functions are derived. Then, when combining the
corresponding attribute-wise distances, ConDist uses a specific weighting scheme
which is explained in Section 3.3. Both, the attribute distance functions as well
as the weighting scheme use a set of correlated context attributes. Section 3.4
defines how the set of correlated context attributes is derived and how an im-
pact factor is calculated which accounts for the varying amount of information
dependent on different correlation values. Finally, we address the issue of how
ConDist can be applied to objects characterized by continuous and categorical
attributes in Section 3.5.

3.1 Definition of ConDist

This section provides the core formula of ConDist, calculating the distance be-
tween two objects characterized by attributes.

Let A and B be two objects in the data set D and let each object be charac-
terized by n attributes. Furthermore, let the value of attribute X for object A be
denoted by AX . ConDist is a two-step process: First, it calculates the distance
between each of the attributes of the objects A and B and then it combines them
using attribute specific weights. Formally, ConDist defines the distance for two
objects A and B as the weighted sum over all attribute distances:

ConDist(A,B) =

n∑
X=1

wX · dX(A,B), (1)

where wX denotes the weighting factor assigned to attribute X (defined in Sec-
tion 3.3) and dX(A,B) denotes the distance of the values AX and BX of attribute
X in objects A and B (defined in Section 3.2).

The distance function dX on the values of each attribute X needs to be cal-
culated beforehand and is based on the idea that attribute values that appear
with similar distributions of values in a set of correlated context attributes are
similar. Whereas the weighting factor wX accounts for differences in the number
of context attributes and the degree of their correlation with the target attribute
X. Both, the attribute distance functions dX as well as the weighting factor wX

incorporate correlation information in order to maximize the relevant informa-
tion that can be extracted from the data set and mitigate the possibly incorrect
influence of uncorrelated attributes. For an example on differently correlated at-
tributes and their influence on distribution based distance measures, please refer
to Section 1 as well as Table 1 and Figure 1.



3.2 Attribute Distance dX

As mentioned in Section 3.1, the distance dX of values of a single attribute X is
based on the idea that attribute values x ∈ X are similar if they appear with sim-
ilar distributions of values in a set of correlated context attributes. Thus, when
comparing two objects A and B in attribute X, we first calculate the Euclidean
distance between the two conditional probability distributions P (Y |X = AX)
and P (Y |X = BX) for each attribute Y ∈ contextX from the set of corre-
lated context attributes contextX of the target attribute X. Then, we weigh
them based on an individual impact factor impactX(Y ) (Section 3.4) and add
up these distances for all attributes Y ∈ contextX . The impact factor accounts
for the fact that the amount of information about the target attribute X in a
context attribute Y decreases with both increasing and decreasing correlation
cor(X|Y ) as explained in Section 3.4. The resulting formula is:

d̂X(A,B) =
∑

Y ∈contextX

impactX(Y )

√∑
y∈Y

(
p(y|AX)− p(y|BX)

)2
, (2)

where p(y|AX) = p(y|X = AX) denotes the probability that value y of context
attribute Y is observed under the condition that value AX of attribute X is
observed in the data set D.

As mentioned above, the attribute distance dX relies on a set of correlated
context attributes contextX as defined in Section 3.4. Because every attribute
is correlated to itself, the target attribute is also added to the set of context
attributes. The motivation for including the target attribute is two-fold: First, it
ensures that the list of context attributes is not empty even if all attributes are
independent. Second, it ensures that the distance between two distinct values is
always larger than 0. Thus, if no correlated context attributes can be identified,
ConDist calculates the maximum distance for each distinct value-pair in target
attribute X. In this case, the proposed distance measure ConDist reduces to the
distance measure Overlap.

Note that, in the final definition of ConDist (Section 3.1), we normalize
the attribute distance by the maximum distance value dX,max between any two
values x, u ∈ X of attribute X:

dX(A,B) =
d̂X(A,B)

dX,max
(3)

3.3 Attribute Weighting Function wX

ConDist compares objects based on the distances between each of the attribute
values associated with the objects it compares (see Equation (2)). Each of these
attributes is weighted differently by the weighting factor wX . This section ex-
plains why these weights wX are necessary and how they are calculated.

The weight wX is especially necessary for data sets in which some attributes
are independent from and others are dependent on each other: Consider the



example from Table 1. For attribute haircolor, no correlated context attribute
can be identified. Consequently, only the attribute haircolor itself is used for
distance calculation and no additional information can be extracted from context
attributes. Therefore, the normalized results of Equation (2) always results in
the maximum distance 1 for any pair of non-identical values. In contrast, the
attribute weight is a correlated context attribute for attribute height, and vica
versa. Consequently, ConDist is able to calculate more meaningful distances for
both attributes and these attributes should be weighted higher than haircolor.

However, average distances in attribute haircolor are larger than in attributes
weight and height. Consequently, distinct values in attribute haircolor have im-
plicitly larger relative weight than distinct values in attributes height and weight.

To solve this issue, the weighting factor wX is introduced which assigns to
each attributeX a weight based on (I) the amount of identified context attributes
and (II) the impact of these context attributes on the target attribute X. This
is formally defined in Equation (4).

wX = 1 +

∑
Y ∈contextX

impactX(Y )

n · c
, (4)

where contextX and impactX(Y ) are defined as in section 3.4, n is the number
of attributes in the data set D and c denotes a normalization factor defined as
the the maximum of the impact function (see Section 3.4) which is independent
of the attributes X and Y and amounts to 8

27 .

3.4 Correlation, Context and Impact

The attribute distance measures dX (Section 3.2) and the weighting scheme wX

(Section 3.3) use the notion of correlation on categorical distance measures as
well as a correlation related impact factor. Both are defined here.

Correlation cor(X|Y ). A measure of correlation is required to determine an
appropriate set of context attributes. For this purpose, we build a correlation
measure on the basis of Information Gain (IG) which a widely used correlation
measure in information theory [11]. The IG is calculated as described in the
following formula:

IG(X|Y ) = H(X)−H(X|Y ), (5)

where H(X) is the entropy of an attribute X, and H(X|Y ) is the conditional
entropy of attribute X given attribute Y .

According to this measure, the attribute X is more correlated with attribute
Y than attribute W if IG(X|Y ) > IG(X|W ). The information gain IG(X|Y ) is
always less than or equal to the entropy H(X). Based on this observation, the
function cor(X|Y ) is defined as:

cor(X|Y ) =
IG(X|Y )

H(X)
(6)

and describes a correlation measure which is normalized to the interval [0, 1].



Context contextX . For both, the attribute distance dX (Section 3.2) in
ConDist as well as for the weighting scheme wX (Section 3.3), the notion of a set
of correlated context attributes contextX is used. This set is defined using the
previously defined correlation function cor(X|Y ) and a user-defined threshold θ.
That is, context attributes Y are included in contextX only if their correlation
with target attribute X is equal to or exceeds the threshold θ:

contextX = {Y | cor(X|Y ) ≥ θ} (7)

Impact impactX(Y ). Again, for both, the attribute distance dX (Section
3.2) as well as for the weighting scheme wX (Section 3.3), a so called impact
factor impactX(Y ) is used. This factor accounts for the fact that the amount
of information about the target attribute X in a context attribute Y decreases
with both increasing and decreasing correlation cor(X|Y ).

A high correlation value means that a value of a context attribute Y ∈
contextX implies the value of a target attribute X with a high probability.
For example, when we know that someone is heavy, it is more likely that this
person is tall than small (see Table 1). Thus, in the extreme case of perfectly
correlated attributes, the conditional probability distributions P (Y |X = AX)
and P (Y |X = BX), for AX 6= BX do not overlap. This means that using the
Euclidean distance to calculate the similarity of those two CPDs (as in Formula
(2)) limits the distance information gained from the context attribute to values
of 0 (for AX = BX) and 1 (for AX 6= BX) after normalization in Formula (3).

A low correlation value means that a value of a context attribute Y ∈
contextX implies little to no preference for a particular value of a target at-
tribute X. This means that the similarity between the conditional probability
distributions P (Y |X = AX) and P (Y |X = BX) may be random, thus, possibly
conveying incorrect distance information.

However, since perfectly correlated attributes contribute at least no incor-
rect information, they are still used but weighted with smaller impact factors.
In contrast, non-correlated attributes are excluded since they could contribute
incorrect information.

Therefore, we choose a weighting function that (I) increases fast at the onset
of correlation between attributes, (II) increases more slowly with existing, but
partial correlation, and (III) decreases at nearly perfect correlation. In particular,
we propose the impact function as depicted in Figure 2 and defined as:

impactX(Y ) = cor(X|Y ) (1− 0.5 · cor(X|Y ))
2

(8)

In general, any other function with similar properties can be chosen.

3.5 Heterogeneous Data Sets

Many real-world data sets contain both continuous and categorical attributes.
To apply ConDist to such data sets, two situations have to be distinguished:
either the target attribute is continuous or the context attribute is continuous.
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Fig. 2: Graph of the impact function impactX(Y ) as defined in (8).

If the target attribute is continuous, no context attributes are necessary. The
Minkowski distance can be used, but should be normalized to the interval [0, 1].
Since meaningful distances can be calculated for continuous attributes, the at-
tribute weight wX (see Section 3.3) should be maximized. If the context attribute
is continuous, the continuous value range should be discretized. We propose to
use the discretization algorithm TUBE [14], because it does not require any
parameters. Other discretization algorithms can be used as well.

4 Experiments

This section presents an experimental evaluation of ConDist in the context of
classification and clustering. We compared ConDist with DILCA [8], JiaCheung
[9], Quang [10] and several distance measures presented in [4], namely Eskin,
Gambaryan, Occurrence Frequency (OF) and Overlap.

4.1 Evaluation Methodology

Classification. A k-Nearest-Neighbour classifier is used to compare ConDist
with existing categorical distance measures in the context of classification. For
simplification, we fix k = 7 in all tests. We evaluate by 10-fold-cross validation
and use the classification accuracy as evaluation measure. To reduce confounding
effects of the generated subsets, the 10-fold cross-validation is repeated 100 times
with different subsets for each data set. We finally compare the averages of the
classification accuracies over all executions.

Clustering. The hierarchical WARD algorithm [17] is used to evaluate the per-
formance of ConDist in the context of clustering. ConDist and its competitors
are used to calculate the initial distance matrix as input for WARD. For sim-
plification, the clustering process is terminated when the number of clusters is
equal to the number of classes in the data sets. Performance is measured by Nor-
malized Mutual Information (NMI) [15] which ranges from 0 for poor clustering
to 1 for perfect clustering with respect to the predefined classes.



Table 2: Characteristics of the data sets. The column Correlation contains the
average of the correlations between each pair of attributes in the data set, cal-
culated by the function cor(X|Y ), see Equation (6). The value ranges from 0 if
no correlation exists to 1 if all attributes are fully correlated. The data sets are
separated in three subsets from highly correlated to uncorrelated based on their
average correlation.

Data Sets Instances Attributes Classes Correlation

Teaching Assistant Evaluation 151 5 3 0.336
Soybean Large 307 35 19 0.263
Breast Cancer Winconsin 699 10 2 0.216
Mushroom-Extended 8416 22 2 0.162
Mushroom 8124 22 2 0.161
Dermatology 366 34 6 0.098
Lymphography 148 18 4 0.070
Soybean Small 47 35 19 0.070
Breast Cancer 286 9 2 0.054

Audiology-Standard 226 69 24 0.044
Hayes-Roth 160 4 3 0.045
Post-Operative Patient 90 8 3 0.031
TicTacToe 958 9 2 0.012

Monks 432 6 2 0.000
Balance-Scale 625 4 3 0.000
Car 1728 6 4 0.000
Nursey 12960 8 5 0.000

Data Sets. For the evaluation of ConDist the multivariate categorical data
sets for classification from the UCI machine learning repository [12] are chosen.
We exclude data sets with less than 25 objects (e.g., Balloons) or which have
mainly binary attributes (e.g., Chess). Furthermore, we include some multivari-
ate mixed data sets for classification from the UCI machine learning repository
[12] which mainly consist of categorical attributes and some numerical attributes
with few discrete values: Teaching Assistant Evaluation, Breast Cancer Wincon-
sin, Dermatology and Post-Operative Patient. Since not all competitors have an
explicit way to process numerical attributes, we treated all numerical attributes
as categorical. The final set of data sets is given in Table 2.

The data sets are divided in three subgroups: highly-correlated (Correla-
tion ≥ 0.05), weakly-correlated (Correlation > 0) and uncorrelated (Correla-
tion = 0).

4.2 Experiment 1 – Context Attribute Selection

Experiment 1 analyzes the effects when varying threshold θ (see Section 3.4)
in ConDist ’s context attribute selection. The threshold θ defines the minimum
value of the function cor(X|Y ) that a candidate attribute Y has to achieve in
order to be selected as context attribute for the target attribute X. The higher



Table 3: Classification accuracies for various thresholds θ in ConDist. Each col-
umn contains the results in percent for particular thresholds θ.

Threshold θ
Data Set 0.00 0.01 0.02 0.03 0.05 0.10 0.20 0.50 1.00

Soybean Large 91.74 91.74 91.79 91.80 91.82 89.75 89.36 89.63 91.30
Lymphography 83.36 83.36 83.30 83.24 83.01 81.99 82.01 81.24 81.26
Hayes-Roth 68.11 68.36 68.51 68.60 69.21 64.47 64.47 64.47 64.47
TicTacToe 99.99 99.99 99.99 99.98 94.74 94.74 94.74 94.74 94.74
Balance-Scale 77.35 78.66 78.66 78.66 78.66 78.66 78.66 78.66 78.66
Car 88.98 90.56 90.56 90.56 90.56 90.56 90.56 90.56 90.56

Average 84.92 85.45 85.47 85.47 84.67 83.36 83.30 83.22 83.50

the threshold θ, the fewer context attributes are used. In the extreme case of
θ = 0, all context attributes are used for distance calculation. In the other ex-
treme case θ = 1, only the target attribute itself is used. For this experiment, a
representative subset of two highly-correlated (Soybean Large and Lymphogra-
phy), two weakly-correlated (Hayes-Roth and TicTacToe) and two uncorrelated
(Balance-Scale and Car) data sets are used. The results can be seen in Table 3.

The average classification accuracy (I) increases with low thresholds θ, (II)
reaches a peak at θ = 0.02 and θ = 0.03, (III) decreases slowly with medium
high thresholds, (IV) reaches the minimum at θ = 0.5 and (V) slowly increases
with high thresholds again. For nearly all data sets, the classification accuracy
stabilizes with increasing thresholds. The lower the attribute correlation within
the data set, the faster this effect is reached. For uncorrelated data sets like Car
and Balance-Scale, it can already be observed with thresholds greater than or
equal to θ = 0.01. Due to the peak for θ = 0.02, this value is used for the further
experiments in this paper.

4.3 Experiment 2 – Comparison in the Context of Classification

Experiment 2 compares ConDist with several categorical distance measures in
the context of classification. All data sets from Table 2 are used. The results
are given in Table 4, except for the data sets Mushroom-Extended, Mushroom
and Soybean Small. These data sets are omitted in the table, since all distance
measures reach 100 percent classification accuracy. Consequently, these data sets
would only blur the differences between the categorical distance measures.

ConDist achieves the highest average classification accuracy of all distance
measures. In the case of highly- and weakly-correlated data sets, context based
categorical distance measures (ConDist, DILCA, JiaCheung and Quang) achieve
mostly better results than other distance measures. In the case of uncorre-
lated data, previous context based categorical distance measures are inferior
to ConDist and non-context based categorical distance measures.



Table 4: Comparison of categorical distance measures in the context of clas-
sification. Each column contains the classification accuracies in percent for a
particular distance measure. The data sets are separated in three subsets from
highly correlated to uncorrelated based on their average correlation.

Data Set ConDist

DIL
CA

Eskin
JiaCheu

ng

Gambaryan

OF Overl
ap

Quang

Teaching Assistant. E. 49.85 50.68 48.79 49.54 49.44 39.16 45.84 44.48
Soybean Large 91.79 91.48 89.83 89.45 87.18 89.61 91.30 92.01
Breast Cancer W. 96.13 95.55 95.67 95.08 92.84 72.47 95.25 96.28
Dermatology 96.76 97.97 94.91 97.39 91.69 61.12 95.90 96.64
Lymphography 83.30 82.09 79.17 83.95 80.72 72.77 81.26 81.53
Breast Cancer 73.85 72.94 73.18 74.30 74.55 68.32 74.06 70.45

Audiology Standard 66.44 64.80 63.24 60.95 66.16 51.87 61.27 55.56
Hayes-Roth 68.50 67.59 46.71 68.27 60.84 58.71 61.74 71.19
Post-Operative Patient 69.62 68.22 68.36 67.28 69.69 69.44 68.59 68.69
TicTacToe 99.99 90.65 94.74 99.93 98.25 76.80 94.74 99.65

Car 90.56 90.25 90.03 90.01 90.25 87.83 90.56 88.25
Nursey 94.94 92.61 93.29 93.32 93.24 94.65 94.94 94.72
Monks 94.50 90.76 87.29 87.34 86.61 98.67 94.50 96.66
Balance-Scale 78.66 78.43 78.66 78.65 77.13 78.54 78.66 77.51

Average 82.49 81.00 78.85 81.10 79.90 72.85 80.62 80.97

Statistical Significance Test. In this test, we want to evaluate if the differ-
ences in Table 4 are statistically significant. Dems̆ar [5] deals with the statistical
comparison of classifiers over multiple data sets. They recommend the Wilcoxon-
Test for the comparison of two classifiers. Based on their recommendation, we
apply the Wilcoxon-Test with α = 0.05 on the classification accuracies of Table
4. The results of this test are given in Table 5.

Table 5: Results of the Wilcoxon-Test comparing the classification accuracies of
ConDist with each other distance measure. The first row contains the calculated
p-value, the second rwo contains the result of the Wilcoxon-Test: yes, if ConDist
performs statistically different, no otherwise.

DILCA Eskin JiaCheung Gambaryan OF Overlap Quang

p-value .0156 0.002 0.045 0.002 0.002 0.008 0.096
significant yes yes yes yes yes yes no

Table 5 shows that there is a significant difference between ConDist and the
distance measures Eskin, JiaCheung, Gambaryan, OF and Overlap. However,
the test fails for ConDist and Quang.



Table 6: Comparison of categorical distance measures in the context of clustering.
Each column contains the NMI of the clustering results found by the WARD
algorithm where the initial distance matrix is calculated with the particular
distance measure. The NMI assigns low values to poor clusterings and high
values to good clusterings with respect to the predefined classes. The data sets
are separated in three subsets from highly correlated to uncorrelated based on
their average correlation.

Data Set ConDist

DIL
CA

Eskin
JiaCheu

ng

Gambaryan

OF Overl
ap

Quang

Teaching Assistant Eva. .078 .085 .085 .085 .085 .060 .044 .042
Soybean Large .803 .785 .758 .735 .772 .805 .793 .778
Breast Cancer Winconsin .785 .557 .749 .656 .601 .217 .621 .798
Mushroom Extended .597 .597 .317 .223 .597 .597 .597 .245
Mushroom .594 .594 .312 .594 .594 .312 .594 .241
Dermatology .855 .946 .832 .879 .863 .292 .847 .859
Lymphography .209 .303 .165 .207 .163 .243 .226 .320
Soybean Small .687 .690 .687 .701 .692 .690 .689 .692
Breast Cancer .063 .068 .031 .074 .001 .002 .100 .001

Audiology-Standard .661 .612 .623 .679 .620 .439 .568 .582
Hayes-Roth .017 .027 .004 .012 .007 .166 .006 .029
Post-Operative Patient .043 .017 .018 .025 .017 .032 .019 .033
TicTacToe .087 .003 .003 .082 .085 .001 .033 .039

Monks .001 .000 .000 .000 .000 .081 .001 .003
Balance-Scale .083 .036 .064 .067 .064 .064 .083 .036
Car .062 .036 .150 .150 .150 .062 .062 .036
Nursey .048 .006 .037 .037 .037 .098 .048 .006

Average .334 .315 .284 .306 .315 .245 .314 .279

4.4 Experiment 3 – Comparison in the Context of Clustering

Experiment 3 compares ConDist with several categorical distance measures in
the context of clustering. All data sets from Table 4 are used. The results are
given in Table 6.

For some data sets (Teaching Assistang Evaluation, Lymphography, Breast
Cancer, Hayes-Roth, Post-Operative Patient, TicTacToe, Monks, Balance-Scale,
Nursey and Car) the clustering fails to reconstruct the predefined classes. For the
remaining data sets, no distance measure dominates the other distance measures.
However, most distance measures perform poorly on single data sets, whereas
ConDist achieves more stable results.

Statistical Significance Test. In analogy to Section 4.3, the Wilcoxon-Test
(α = 0.05) is applied on the results shown in Table 6.

Except for Eskin and Quang, the results of the Wilcoxon-Test (Table 7) show
no statistically significant differences.



Table 7: Results of the Wilcoxon-Test comparing the NMI of ConDist with each
other distance measure used in the WARD algorithm. The first row contains the
calculated p-value, the second row contains the result of the Wilcoxon-Test: yes,
if ConDist performs statistically different, no otherwise.

DILCA Eskin JiaCheung Gambaryan OF Overlap Quang

p-Value 0.293 0.008 0.057 0.552 0.182 0.100 0.035
significant no yes no no no no yes

5 Discussion

5.1 Experiment 1 – Context Attribute Selection

Table 3 shows that a small threshold of θ = 0.02 is already sufficient to remove
noise and simultaneously receive correlation information. If the threshold θ is too
high, many useful context attributes are discarded. This is especially the case for
weakly correlated data sets, e.g. Hayes-Roth and TicTacToe. For Hayes-Roth,
the decrease of classification accuracy is observed for θ > 0.05, and for TicTacToe
the decrease of classification accuracy is already observed for θ > 0.02.

In contrast to this, if the threshold θ is too low, independent context at-
tributes are added which may contribute noise to the distance calculation. This
is especially the case for uncorrelated data sets, e.g. for θ = 0 in Balance-Scale
and Car. In contrast, ConDist’s impact function impactX(Y ) accounts for this
effect in highly-correlated data sets.

Therefore, we recommend θ = 0.02 for ConDist, because the experiments
show that this threshold achieves the best overall results. Furthermore, for cor-
related data sets, ConDists’ impact function handles this issue automatically.

5.2 Experiment 2 – Comparison in the Context of Classification

For of highly correlated data sets, distance measures using context attributes
outperform other distance measures. However, for those data sets no best dis-
tance measures can be identified among the context based distance measures.

For uncorrelated data sets, previous context-based distance measures (DILCA,
Quang and JiaCheung) achieved inferior results in comparison to ConDist and
non-context based distance measures. This is because, e.g. DILCA and Quang
use only context attributes for the distance calculation which results in random
distances if all context attributes are uncorrelated.

In contrast, ConDist achieved acceptable results because not only correlated
context attributes, but also the target attributes are considered. This very effect
is also illustrated by the comparison between ConDist and Overlap. ConDist is
equal to Overlap if no correlated context attributes can be identified, see uncor-
related data sets (Monks, Balance-Scale, Nursey and Car) in Table 4. However,
for weakly- and highly-correlated data sets, ConDist’s advantage of consider-
ing context attributes achieves better results than Overlap. The improvement of
ConDist can be statistically confirmed by the Wilcoxon-Test (see Table 5).



5.3 Experiment 3 – Comparison in the Context of Clustering

Table 6 shows that the majority of the different distance measures reach roughly
similar outcomes for individual data sets. This is because the clustering algo-
rithm and its ability to reconstruct the given classes have much higher impact
on the results than the distance measure used to calculate the initial distance
matrix. However, it can be seen that the performance of single distance mea-
sures strongly decreases for individual data sets. For example, JiaCheung which
often achieves good results, performs very poorly in the Mushroom data set.
Similar observations can be made for OF, Eskin, Quang and DILCA, mainly in
the data sets Breast Cancer Winconsin, Mushroom, Mushroom Extended, Der-
matology and Audiology. In contrast, ConDist is almost always among the best
results and shows the most stable results for the different data sets.

Except for Eskin and Quang, the Wilcoxon-Test in Section 4.4 shows no sta-
tistical significant differences in the performance of ConDist and the compared
distance measures. However, the results of Experiment 3 lead to the assumption
that ConDist may be a more robust distance measure than its competitors.

6 Summary

Categorical distance calculation is a key requirement for many data mining tasks.
In this paper, we proposed ConDist, an unsupervised categorical distance mea-
sure based on the correlation between the target attribute and context attributes.
With this approach, we aim to compensate for the lack of inherent orders within
categorical attribute by extracting statistical relationships from the data set.
Such correlations are often present in real-world data sets [10].

Our experiments show that ConDist is a generally usable categorical distance
measure. In the case of correlated data sets, ConDist is comparable to existing
context based categorical distance measures and superior to non-context based
categorical distance measures. In the case of weakly and uncorrelated data sets,
ConDist is comparable to non-context based categorical distance measures and
superior to context based categorical distance measures. The overall improve-
ment of ConDist can be statistically confirmed in the context of classification. In
the context of clustering, this improvement could not be statistically confirmed.

In the future, we want to extend the proposed distance measure so that it
can automatically infer the parameter θ from the data sets. Additionally, we
want to transform categorical attributes to continuous attributes with aid of the
proposed distance measure.
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