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Abstract. Text document clustering plays an important role in providing intuitive
navigation and browsing mechanisms by organizing large amounts of information
into a small number of meaningful clusters. Standard partitional or agglomerative
clustering methods efficiently compute results to this end.
However, the bag of words representation used for these clustering methods is of-
ten unsatisfactory as it ignores relationships between important terms that do not
co-occur literally. Also, it is mostly left to the user to find out why a particular par-
titioning has been achieved, because it is only specified extensionally. In order to
deal with the two problems, we integrate background knowledge into the process of
clustering text documents.
First, we preprocess the texts, enriching their representations by background knowl-
edge provided in a core ontology — in our application Wordnet. Then, we cluster
the documents by a partitional algorithm. Our experimental evaluation on Reuters
newsfeeds compares clustering results with pre-categorizations of news. In the ex-
periments, improvements of results by background knowledge compared to the base-
line can be shown for many interesting tasks.
Second, the clustering partitions the large number of documents to a relatively small
number of clusters, which may then be analyzed by conceptual clustering. In our ap-
proach, we applied Formal Concept Analysis. Conceptual clustering techniques are
known to be too slow for directly clustering several hundreds of documents, but they
give an intensional account of cluster results. They allow for a concise description
of commonalities and distinctions of different clusters. With background knowledge
they even find abstractions like “food” (vs. specializations like “beef” or “corn”).
Thus, in our approach, partitional clustering reduces first the size of the problem
such that it becomes tractable for conceptual clustering, which then facilitates the
understanding of the results.
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1 Introduction

With the abundance of text documents available through corporate document management
systems and the World Wide Web, the dynamic partitioning of texts into previously unseen
categories is a major topic for applications such as information retrieval from databases,
business intelligence solutions or enterprise portals.

However, in spite of a long tradition of research in similarity-based text document re-
trieval [21] there is no clustering method that could function as a panacea to this end. We
conjecture the reason to stem from the fact that text document clustering must simultane-
ously deal with quite a number of problems:

1. Problem of efficiency: Text document clustering must be efficient because it should be
able to do clustering on ad-hoc collections of documents, e.g. ones found by a search
engine through keyword search.

2. Problem of effectiveness: Text document clustering must be effective, i. e., it should
relate documents that talk about the same or a similar domain. Currently, similarity
may only be detected on the basis of correlation — which is not always given when
changing from one to a similar domain.

3. Problem of explanatory power: Text document clustering should be able to explain
to the user why a particular result was constructed, or at least provide him with an
intuition. Lack of understandability may pose a much bigger threat to the success of
an application that employs text document clustering than a few percentage points
decrease in accuracy.

4. Problem of user interaction and subjectivity: Applications that employ text document
clustering must be able to involve the user. The results should be explained, of course,
but it should also be possible to re-focus one’s attention on particularly relevant sub-
jects. For instance, a search for “health” might turn up food-related issues that a user
might want to explore in details relevant for him, such as “meat”, “pork”, “beef” and
others.

In this paper we explore an original combination of technologies in order to achieve
progress on these problems:

1. We base our principal clustering effort on well-known efficient and effective par-
titional algorithms. More specifically, we use Bi-Section-KMeans, which has been
shown to perform as good as other text clustering algorithms — and frequently better
(cf. the very seminal paper [24]).

2. We add background knowledge from a general resource, Wordnet, into the text docu-
ment representation in order to relate similar terms such as “beef”, “pork” and “meat”.
Our experiments demonstrate that the best strategies that involve such background
knowledge are never worse than the baseline, but often times better. We will see that
the best strategies include word sense disambiguation and feature weighting.

3. The background knowledge is crucial at this point, because it adds explanatory power
to the representation of the cluster and, thus, to the input of Conceptual Clustering:
Formal Concept Analysis then takes advantage of the semantic relationships between
previously isolated terms (synonymy and hypernymy) in order to provide the user with
a better explanation of cluster results.

4. We use visualization methods from the field of Formal Concept Analysis in order to
let the user navigate and explore the clustering results. Subsequently, we will describe
how this navigation works such that the user may find relevant information.
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In the remainder of the paper we proceed according to the stream of data going from
text documents to a baseline representation (Section 2). The baseline representation is ex-
tended to take background knowledge into account (Section 3). The two representations
are then clustered by Bi-Section-KMeans and the corresponding performances are com-
pared along different data sets and parameter dimensions (Section 4). Section 5 elaborates
the conceptual clustering phase that builds on the results of the partitional clustering with
background knowledge, before we discuss the results in Section 6.

2 Preprocessing: Baseline Text Document Representation

For the preprocessing of the documents, we used the text mining system developed at
AIFB within the Karlsruhe Ontology Framework KAON.1 For the clustering experiments
described subsequently, we had to prepare different representations of text documents suit-
able for the clustering algorithms.

Let us first consider documents to be bags of terms. Let tf(d; t) be the absolute fre-
quency of term t 2 T in document d 2 D, where D is the set of documents and
T = ft1; : : : ; tmg is the set all different terms occurring in D. We denote the term vectors
~td = (tf(d; t1); : : : ; tf(d; tm)). In the sequel, we will apply tf also on sets of terms: for
T 0 � T , we let tf(d; T 0) :=

P
t2T 0 tf(d; t).

As initial approach we have produced this standard representation of the texts by term
vectors (cf. [22]). As a slightly more advanced approach, we have taken into account sev-
eral combinations of stopword removal, stemming of terms, pruning of terms that appear
infrequently, and weighting by tfidf, which modify the term vectors ~td accordingly.

In the sequel, we will need the notion of the centroid of a set X of term vectors. It is
defined as the mean value ~tX := 1

jXj

P
~td2X

~td of its term vectors.

2.1 Stopword Removal

Stopwords are words which are considered as non–descriptive within a bag–of–words ap-
proach. They typically comprise prepositions, articles, etc. Following common practice,
we removed stopwords from T , using a standard list with 571 stopwords. 2

2.2 Stemming

We have processed our text documents using the Porter stemmer introduced in [20]. In-
stead of using the original terms in the documents, we have computed the frequency of
stemmed terms (modifying T correspondingly) and used them to construct a vector rep-
resentation ~td for each text document. The length of the resulting vectors is given by the
number of different stemmed terms in the text corpus.

2.3 Pruning

For some empirical investigations we have entirely discarded all terms appearing rarely.
For a pre-defined threshold Æ, a term t is discarded from the representation (i. e., from the

1 http://kaon.semanticweb.org
2 http://www.aifb.uni-karlsruhe.de/WBS/aho/clustering
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set T ), if
P

d2D tf(d; t) � Æ. We have used the values 0, 5 and 30 for Æ. The rationale
behind pruning is that infrequent terms do not help with identifying appropriate clusters,
but they may still add noise to the distance measures degrading overall performance. 3

2.4 TFIDF Weighting

Tfidf weighs the frequency of a term in a document with a factor that discounts its im-
portance when it appears in almost all documents. Therefore terms that appear too rarely
or too frequently are ranked lower than terms that balance between the two extremes and,
hence, are expected to be better able to contribute to clustering results.

Definition: The tfidf (term frequency�inverted document frequency) 4 of term t in docu-
ment d is defined by:

tfidf(d; t) := log(tf(d; t) + 1) � log

�
jDj

df(t)

�

where df(t) is the document frequency of term t that counts in how many documents term
t appears.

If tfidf weighting is applied then we replace the term vectors ~td :=
(tf(d; t1); : : : ; tf(d; tm)) by ~td := (tfidf(d; t1); : : : ; tfidf(d; tm)).

There are more sophisticated measures than tfidf in the literature (see, e. g., [2]), but
we abstract herefrom, as this is not the main topic of our approach.

2.5 Combination of the Preprocessing Steps

Based on the initial text document representation, we have first applied stopword removal.
Then we performed stemming, pruning and tfidf weighting in all different combinations.
This also holds for the initial document representation involving background knowledge
described subsequently. When stemming and/or pruning and/or tfidf weighting was per-
formed, we have always performed them in the order in which they have been listed here.

3 Compiling Background Knowledge into the Text Document
Representation

The background knowledge we have exploited is given through a simple ontology. We
first describe its structure, then the actual ontology and the integration into the initial text
document representation through various strategies. Like the preprocessing strategies de-
scribed before, the different strategies for compiling background knowledge into the text
document representations may be arbitrarily combined, and will modify the term vectors
accordingly.

3 We investigated also the influence of the document frequency of a term t (cf. Section 2.4) for
pruning, but it showed that this parameter hardly effects the clustering results.

4 In the literature, different authors have used the term “tfidf” for different weighting schemes.
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3.1 Ontology

The background knowledge we will exploit further on is encoded in a core ontology. We
here present those parts of our wider ontology definition (cf. [3]) that we have exploited:

Definition: A core ontology is a tupleO := (C;�C) consisting of a set C whose elements
are called concept identifiers, and a partial order �C on C, called concept hierarchy or
taxonomy.

Often we will call concept identifiers just concepts, for sake of simplicity.

Definition: If c1 <C c2, for c1; c2 2 C, then c1 is a subconcept of c2, and c2 is a super-
concept of c1. If c1 <C c2 and there is no c3 2 C with c1 <C c3 <C c2, then c1 is a direct
subconcept of c2, and c2 is a direct superconcept of c1. We note this by c1 � c2.

According to the international standard ISO 704, we provide names for the concepts
(and relations). Instead of ‘name’, we here call them ‘sign’ or ‘lexical entries’ to better
describe the functions for which they are used.

Definition: A lexicon for an ontologyO is a tuple Lex := (SC ;Ref C) consisting of a set
SC whose elements are called signs for concepts, and a relation Ref C � SC � C called
lexical reference for concepts, where (c; c) 2 Ref C holds for all c 2 C \ SC .
Based on Ref C , we define, for s 2 SC , Ref C(s) := fc 2 C j (s; c) 2 Ref Cg and, for
c 2 C, Ref �1

C (c) := fs 2 SC j (s; c) 2 Ref Cg :

An ontology with lexicon is a pair (O;Lex ) where O is an ontology and Lex is a
lexicon for O.

This definition allows for a very generic approach towards using ontologies for clus-
tering. For the purpose of actual evaluation of clustering with background knowledge, we
needed a specific resource, which is large and general enough, while we wanted to avoid
expensive modeling. Therefore, we have chosen Wordnet 1.7. 5 Wordnet [15] comprises a
core ontology and a lexicon. It consists of 109377 concepts (synsets in Wordnet terminol-
ogy) and 144684 lexical entries6 (called words in Wordnet). One example synset is “foot,
ft” and a corresponding word is “foot”. In Wordnet, the function Ref C relates terms if
they have a lexical entry (e.g., s1 = “foot” and s2 = “feet”) with their corresponding con-
cepts (e.g., synsets c1 = “foot, ft”, c2 = “foot, human foot, pes”, ...). Thus, for a term t

appearing in a document d, Ref C(t) allows for retrieving its corresponding concepts.
In addition, Wordnet provides a ranking on the set Ref C(s) for each lexical entry s

indicating the frequency of its usage in English language. For example, Ref C(s1) returns
as the first concept c1 and then c2. Corresponding to our definition of a core ontology,
Wordnet also offers access functions to its concept hierarchy�C .

So far, from all the descriptions given in Wordnet, we have exploited only information
about nouns. I.e., we have used only 68:1% of the synsets available in Wordnet.

Using the morphological capabilities of Wordnet rather than a Porter stemmer we
achieved improved results. Therefore, when using background knowledge, the Porter stem-
mer has only been applied on terms that do not appear as lexical entries in Wordnet.

5 freely available from http://www.cogsci.princeton.edu/˜wn/obtain.shtml
6 The actual number of lexical entries is higher in our count, as for one stem like “foot”, Wordnet

includes several morphological derivations like “feet”.
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3.2 Strategies: Add Concepts / Replace Terms by Concepts / Concept Vector Only

Enriching the term vectors with concepts from the core ontology has two benefits. First it
resolves synonyms; and second it introduces more general concepts which help identify-
ing related topics. For instance, a document about beef may not be related to a document
about pork by the cluster algorithm if there are only ‘beef’ and ‘pork’ in the term vector.
But if the more general concept ‘meat’ is added to both documents, their semantical rela-
tionship is revealed. We have investigated different strategies for adding or replacing terms
by concepts:

Add Concepts (“add”7). When applying this strategy, we have extended each term vector
~td by new entries for Wordnet concepts c appearing in the document set. Thus, the
vector ~td was replaced by the concatenation of ~td and ~cd, where ~cd := (cf(d; c1); : : : ;
cf(d; cl)) is the concept vector with l = jCj and cf(d; c) denotes the frequency that
a concept c 2 C appears in a document d as indicated by applying the reference
function Ref C to all terms in the document d. For a detailed definition of cf, see next
subsection.
Hence, a term that also appeared in Wordnet as a synset would be accounted for at
least twice in the new vector representation, i. e., once as a part of the old ~td and at
least once as a part of ~cd. It could be accounted for also more often, because a term
like “bank” has several corresponding concepts in Wordnet.

Replace Terms by Concepts (“repl”). This strategy works like “Add Concepts” but it
expels all terms from the vector representations ~td for which at least one corresponding
concept exists. Thus, terms that appear in Wordnet are only accounted at the concept
level, but terms that do not appear in Wordnet are not discarded.

Concept Vector Only (“only”). This strategy works like “Replace Terms by Concepts”
but it expels all term frequencies from the vector representations. Thus, terms that do
not appear in Wordnet are discarded. ~cd is used to represent the documents d.

3.3 Strategies for Disambiguation

The assignment of terms to concepts in Wordnet is ambiguous. Therefore, adding or re-
placing terms by concepts may add noise to the representation and may induce a loss of
information. Therefore, we have also investigated how the choice of a “most appropriate”
concept from the set of alternatives may influence the clustering results.

While there is a whole field of research dedicated to word sense disambiguation (e.g.,
cf. [11]), it has not been our intention to determine which one could be the most appropri-
ate, but simply whether word sense disambiguation is needed at all. For this purpose, we
have considered two simple disambiguation strategies besides of the baseline:

All Concepts (“all”). The baseline strategy is not to do anything about disambiguation
and consider all concepts for augmenting the text document representation. Then, the
concept frequencies are calculated as follows:

cf(d; c) := tf(d; ft 2 T j c 2 Ref C(t)g) :

7 These abbreviations are used below in Section 4.4
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First Concept (“first”). As mentioned in Sec. 3.1 Wordnet returns an ordered list of con-
cepts when applying Ref C to a set of terms. Thereby, the ordering is supposed to
reflect how common it is that a term reflects a concept in “standard” English lan-
guage. More common term meanings are listed before less common ones. Completely
ignoring the context of a term, the probability that the first concept returned for the
term was in the mind of the writer is supposed to be maximized.
For a term t appearing in SC , this strategy counts only the concept frequency cf for
the first ranked element of Ref C(t), i.e. the most common meaning of t. For the other
elements of Ref C(t), frequencies of concepts are not increased by the occurrence of
t. Thus the concept frequency is calculated as follows:

cf(d; c) := tf(d; ft 2 T j first(Ref C(t)) = cg)

where first(Ref C) gives the first concept c 2 Ref C according to the order from Word-
net.

Disambiguation by Context (“context”). The sense of a term t that refers to several dif-
ferent concepts Ref C(t) := fb; c; : : :gmay be disambiguated by the following simple
strategy8:
1. Define the semantic vicinity of a concept c to be the set of all its direct sub- and

superconcepts V (c) := fb 2 Cjc � b or b � cg.
2. Collect all terms that could express a concept from the conceptual vicinity of c by

U(c) :=
S
b2V (c)Ref

�1
C (b).

3. The function dis:D�T ! C with dis(d; t) := firstfc 2 Ref C(t) j c maximizes tf(d; U(c))g
disambiguates term t based on the context provided by document d.

4. Let cf(d; c) := tf(d; ft 2 T j dis(d; t) = cg).

3.4 Strategies for considering Hypernyms

The third set of strategies varies the amount of background knowledge. Its principal idea is
that if a term like ‘beef’ appears, one does not only represent the document by the concept
corresponding to ‘beef’, but also by the concepts corresponding to ‘meat’ and ‘food’ etc.
up to a certain level of generality. The following procedure realizes this idea by adding to
the concept frequency of higher level concepts in a document d the frequencies that their
subconcepts (at most r levels down in the hierarchy) appear, i.e. for r 2 N:

The vectors we consider are of the form

~td := (tf(d; t1); : : : ; tf(d; tm); cf(d; c1); : : : ; cf(d; cn))

(the concatenation of an initial term representation with a concept vector). Then the fre-
quencies of the concept vector part are updated in the following way: For all c 2 C, replace
cf(d; c) by

cf0(d; c) :=
X

b2H(c;r)

cf(d; b) ;

where H(c; r) := fc0j9c1; : : : ; ci 2 C: c0 � c1 � : : : � ci = c; 0 � i � rg gives for a
given concept c the r next subconceps in the taxonomy. In particular H(c;1) returns all
subconcepts of c. For the following parameters this implies:

8 This strategy is a simplified version of [1].
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r = 0: The strategy does not change the given concept frequencies.
r = n: the strategy adds to each concept the frequency counts of all subconcepts in the n

levels below it in the ontology.
r =1: The strategy adds to each concept the frequency counts of all its subconcepts.

4 Partitional Clustering

On the text document representations resulting out of different combinations of prepro-
cessing strategies we have run Bi-Section-KMeans (cf. [24]) using the cosine-distance on
the different vector representations.

4.1 Cosine-distance

We calculate the similarity between two text documents d1; d2 2 D by computing the
cosine of the angle between the vectors ~t1;~t2 representing them:

cos(^(~t1;~t2)) =
~t1 � ~t2

k ~t1 k � k ~t2 k

4.2 Bi-Section-KMeans

For the clustering, we looked for a fast and good quality clustering algorithm, which would
also be able to deal with the large size of the Reuters dataset. In [24] it was shown that Bi-
Section-KMeans is a fast and high-quality clustering algorithm for text documents which
is frequently outperforming standard KMeans as well as agglomerative clustering tech-
niques.

Bi-Section-KMeans is based on the KMeans algorithm. It repeatedly splits the largest
cluster (using KMeans) until the desired number of clusters is obtained:

Input: The number k of desired clusters.
Output: A partitioning P of the set D of documents (i. e., a set P of k disjoint
subsets of D with

S
P2PP = D).

(1) Let P := fDg.
(2) For i := 1 to k � 1 do

� Select P 2 P with maximal cardinality.
� Choose randomly two data points in P as starting centroids ~tP1 and ~tP2 .
� Assign each point of P to the closest centroid, splitting thus P in two

clusters P1 and P2.
� (Re-)calculate the cluster centroids ~tP1 and ~tP2 of P1 and P2.
� Repeat the last two steps until the centroids do not change anymore.
� Let P := (P n fPg) [ fP1; P2g.

4.3 Evaluation Setting

This section describes the setting in which the experiments have been performed. The prin-
cipal idea behind the experiments was the comparison of clustering results on a standard

9



text corpus against a manually predefined categorization of the corpus. Such a predefined
categorization exists only for few text corpora.

We have chosen the Reuters-21578 news corpus (cf. section 4.3), because it comprises
an a priori categorization of documents, its domain is broad enough to be realistic, and
the content of the news were understandable for non-experts (like us) in order to be able
to explain results. Furthermore, Reuters-21578 is a well-known, freely available and well
investigated corpus allowing even for future comparisons only based on numbers instead
of direct experiments.

Important reasons for us to use Wordnet as a core ontology in conjunction with Reu-
ters-21578 as a corpus were that Wordnet is freely available and that it has not been specif-
ically designed to facilitate the clustering task. We expect further improvements when on-
tologies specifically designed for some concrete task can be used.

In the experiments we have varied the different strategies for plain term vector repre-
sentation and for vector representations containing background knowledge as elaborated
in Sections 2 and 3. We have clustered the representations using Bi-Section-KMeans and
have compared the pre-categorization with our clustering results using standard measures
for this task, i. e., purity and inverse purity (defined below).

Evaluation Measure: Purity and Inverse Purity Purity is based on the precision mea-
sure as well-known from information retrieval (cf. [19]). Each resulting cluster P from a
partitioning P of the overall document set D is treated as if it were the result of a query.
Each set L of documents of a partitioning L which is obtained by manually labeling is
treated as if it were the desired set of documents for a query. The two partitionings P and
L are then compared as follows.

The precision of a cluster P 2 P for a given category L 2 L is given by

Precision(P;L) :=
jP \ Lj

jP j
(1)

The overall value for purity is computed by taking the weighted average of maximal pre-
cision values:

Purity(P;L) :=
X
P2P

jP j

jDj
max
L2L

Precision(P;L): (2)

For some selected parameter combinations that proved to be very good wrt. purity, we
also investigated their InversePurity:

Inverse Purity(P;L) :=
X
L2L

jLj

jDj
max
P2P

Precision(L; P ): (3)

Both measures have the interval [0, 1] as range. Their difference is that purity measures
the purity of the resulting clusters when evaluated against a pre-categorization, while in-
verse purity measures how pure the pre-defined categories are when split up into clusters.
Thus, purity achieves an “optimal” value of 1 when k equals jDj, whereas inverse pu-
rity achieves an “optimal” value of 1 when k equals 1. Another name in the literature
for inverse purity is microaveraged precision. The reader may note that, in our scenario,
microaveraged precision is identical to microaveraged recall (cf. e.g. [23]).
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The Reuters-Corpus We have performed all evaluations on the Reuters-21578 docu-
ment set [13]9 or on parts of it. In order to be able to perform comparisons with a priori
categorizations, we have restricted ourselves to the 12344 documents that were manually
classified by Reuters. Documents in the manually classified set were labeled with zero,
one, or more of the 135 pre-defined categories. 10

The lack of a label indicates that the human annotator could not find an adequate
category. We gathered all the documents without any category label into a new category
“defnoclass”.11

Standard measures like purity (or mutual information or entropy) only allow for the
comparison of two partitionings, but they do not allow for the comparison of structures
when documents are manually assigned to several categorizations and/or documents are
automatically assigned to multiple clusters. Therefore, we have only selected the first label
of each document retaining a manual categorization of documents into overall 82 cate-
gories, including “defnoclass”.

This way, we end up with a preprocessed version of the Reuters-21578 corpus, which
we call PRC. It consists of 12344 documents partitioned into 82 Reuters categories.

Derived Corpora Even with the preprocessing, the resulting corpus exhibits several prob-
lems for evaluation purposes:

1. Most documents are assigned to one category out of a small subset of all categories
(cf. Figure 1).12 For this situation the purity measure typically indicates very good
results, as medium sized clusters — as typically produced by Bi-Section-KMeans—
are wholly contained in one of the few large categories. Therefore, improvements for
purity are hard to produce, and even when they occur they are hard to observe with
the purity measure.

2. There are a few categories which contain very few documents. Some categories only
contain one document.

3. As described above, we used only the first label assigned by the Reuters domain ex-
perts for evaluation, as the purity measure does not allow for multiple labels. This
implies that our classification may fail according to that measure, even though the
assignment would have been correct according to the second (or third) label. As men-
tioned before, when using a clustering algorithm allowing for multiple assignments,
we would not be able to perform an evaluation with a generally accepted evaluation
measure like purity.

While we must live with the third problem (unless we want to use an ideosyncratic,
specifically developed evaluation measure), we have dealt with the first two problems by
modifying the number of documents available in a category. This was done by specifying a
minimum number of documents per category. Below the threshold, e.g. 5 or 25, the entire
category and its documents would be discarded from PRC in order to create a new corpus,
e.g. PRC-min5 and PRC-min25, respectively. Also, we have specified a maximum number

9 http://www.daviddlewis.com/resources/testcollections/reuters21578/
10 The categories are called “topics” in Reuters-21578. To be more general, we will refer to them as

“category” in the sequel.
11 The 12344 documents are indicated by an attribute “TOPIC” set to yes and contain the text sur-

rounded by the “BODY” tag.
12 For instance, the largest category contains 3760 documents.
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Fig. 1. Distribution of documents to categories for PRC.

of documents per category. Above the threshold, e.g. 100, we would retain the category,
but select an arbitrary sample of, e.g. 100, documents, thus constructing a new corpus
PRC-max100. We have also investigated combined constraints, i. e., derived corpora like
PRC-min25-max100.

Overall we have derived five additional corpora:

– PRC-max20: This corpus contains only categories with very few documents (max
20). Thereby, PRC-max20 very nicely shows the effects of background knowledge on
categories with extremely few documents. It consists of 82 categories with an average
of 12.62 documents per category (standard deviation of 8.18).

– PRC-min15-max20: This is a very homogeneous corpus (almost uniform distribution
of documents to categories). All 46 categories contain 15 to 20 documents (average of
19.54, standard deviation of 1.15).

– PRC-max100: The corpus consists of 82 categories, which exhibit a less uniform dis-
tribution of documents to categories, but which do not flood the evaluation with overly
large categories (average of 33.59 documents per category with a standard deviation
of 36.28).

– PRC-min15-max100: This corpus is like PRC-max100, but categories with extremely
few documents are discarded — thus, “outlier categories” may be ignored in the eval-
uation (cf. Figure 2). Thus, PRC-min15-max100 consists of 46 categories with an
average of 56.93 documents (standard deviation of 33.12).

– PRC-min15: This one is like PRC, but it consists of 46 categories eliminating outliers.
The average number of documents per category is 672.7 and the standard deviation is
265.39.

– PRC: For a direct comparison enclosed here — PRC contains 12344 documents, av-
erage 150.54 documents, standard deviation 520.3 (cf. Figure 1).

4.4 Results

This section describes the combination of parameter values for which tests have been per-
formed and highlights some of them.
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Table 1. List of all parameters

parameter name used values
corpus PRC, PRC-min15, PRC-max100, PRC-min15-

max100, PRC-max20, PRC-min15-max20
stopword removal yes
stemming applied only without background knowledge
word pruning no, 5 words, 30 words
weighting of the term vector tfidf, no weighting
integration of background knowledge add, replace, only
amount of hypernyms 0 and 5
words sense disambiguation without, first, context
cluster count k 5,10,20,30,50,60,70,100

General Procedure Each evaluation result described in the following denotes an average
from 20 test runs performed on a given corpus for a given combination of parameter values
with randomly chosen initial values for Bi-Section-KMeans.

Table 1 summarizes the different dimensions that we investigated and that led us to an
investigation of 20 � 8 � 6 � 2 � 3 = 5760 clustering experiments without background
knowledge (number of test runs � number of different cluster counts k � number of
different corpora� number of weighting schemes� number of pruning strategies applied)
and 20� 8� 6� 2� 3� 3� 3� 2 = 103680 clustering experiments with background
knowledge (number of test runs � number of different cluster counts k � number of
different corpora� number of weighting schemes� number of pruning strategies applied
� number of strategies for applying background knowledge � number of word sense
disambiguation strategies � number of different amounts of hypernyms).

We varied the number of clusters k to be computed by Bi-Section-KMeans from k :=
5; 10; 20; 30; 50; 60; 70 to 100. Purity values ‘improve’ with increased number of clusters
— attaining 1:0 in the unrealistic case when k is set to equal the number of documents.
Given that even human annotators are far from agreeing on any particular labeling, we did
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not and could not expect to find perfect matches of document clusters to categories for
reasonable values of k.

In all the test runs we have used stopword removal (Section 2.1). Stemming (Sec-
tion 2.2) was applied only when we did not make use of background knowledge. We have
performed tests with and without using pruning (Section 2.3). We set the different thresh-
olds to 0, 5, and 30. Furthermore, we have varied the strategies for weighting from “no
weighting” to tfidf weighting (Section 2.4).

We have performed all combinations of these parameters on the six text corpora pre-
sented in Section 11. We did the tests using representations without (described in Sec-
tion 13) and with background knowledge (Section 13). The text document representa-
tions consisted of term vectors of length 544 to 20574 and concept vectors (or mixed
term/concept vectors) of length 2627 to 36322, respectively. We have selected some re-
sults for presentation in the following.13

Clustering without Background Knowledge

Effects of tfidf Weighting. We have observed that tfidf weighting decisively increased pu-
rity values irrespective of what the combination of parameter values was (see for instance
Table 2).

Effects of Pruning. Pruning with a threshold of 5 or 30 has not always shown an effect.
But it increased purity values when it was combined with tfidf weighting and applied
to corpora with few documents per category. To elucidate the latter: Clustering of PRC-
min15-max20 with k = 100 (alternatively: k = 50) increased the purity from 49,8% (alt.:
42,5%) without pruning to 60% (alt.: 52,1%) when pruning with a threshold of 30.

For corpora with large numbers of documents per category, e.g. PRC-min15, the cor-
responding difference has become almost negligible, namely 0.6%. Experiments with a
threshold above 30 showed no further improvement on the PRC-min15 corpus.

Clustering with Background Knowledge For clustering using background knowledge,
we also performed pruning and tfidf weighting as described just before. The thresholds and
modifications have been enacted on concept frequencies (or mixed term/concept frequen-
cies) instead of term frequencies only. We have computed the purity results for varying
parameter combinations as described before.

Evaluation on PRC-min15-max100. A subset of all cross evaluations is depicted in Fig-
ure 3 and Table 2. Each data point is the average over 20 runs of Bi-Section-KMeans and
indicates a combination of values as follows:

X-axis: On the X-axis, different parameter combinations are indicated. From bottom to
top there are:

– Without background knowledge (Section 2) vs. with background knowledge (Sec-
tion 3), (Ontology = false/true).

– No use of hypernyms (r=0) vs. five levels of hypernyms added to concept frequencies
(r = 5), cf. Section 3.4 (Hypdepth = 0 / 5).

13 The complete data set can be found at http://www.aifb.uni-karlsruhe.de/WBS/aho/clustering.
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– Disambiguation strategy: All concepts / First concept / Disambiguation by context; cf.
Section 3.3 (Hypdis = All/First/Context).

– Add Concepts vs. Replace Terms by Concepts vs. Concept Vector Only; cf. Section 3.2
(Hypint = add/repl/only).

Y-axis: On the Y-axis the resulting purity averaged over 20 test runs for each data point
(as defined in Section 4.3) is shown.

Different Lines represent different combinations of tfidf weighting vs. no weighting with
different pruning thresholds (0 vs. 5 vs. 30).

Results. The baseline, i. e., the representation without background knowledge, in Figure 3
is given by the best value, 57%, in the leftmost sector (the one for tfidf weighting and a
pruning threshold of 30). The best overall value is achieved by the following combina-
tion of strategies: Background knowledge with five levels of hypernyms (r = 5), using
“disambiguation by context” and term vectors extended by concept frequencies. Purity
values then reached 61,8%, thus yielding a relative improvement of 8.4% compared to the
baseline (cf. Table 2).

Without the application of tfidf weighting, all different parameter combinations achieve
lower values. Also the difference between the best baseline result (47%) and the best
results achieved by adding background knowledge (48,6%) decreases considerably. Fur-
thermore, strategies that consider hypernyms without weighting, like r = 5 without tfidf
weighting, even decrease the purity compared to the baseline.

Varying the number of clusters k for the parameter combinations described in Figure 3
has hardly altered the overall picture. The reported results for dataset PRC-min15-max100
are very similar to the results of PRC-max100.

Significance. We have applied a T-test to check for the significance with a confidence of
99.5%. Unless stated explicitly otherwise, all differences that are mentioned are significant
within the confidence interval � = 0:5%.

Evaluation on the Complete PRC. Figure 4 describes the result like in Figure 3, but this
time applying the parameter combinations on the complete corpus PRC. Overall, similar
qualitative results are achieved on PRC as on PRC-min15-max100, but the margin be-
tween the best baseline (75.1%) and the best clustering result with background knowledge
(75.4% for using no hypernyms, disambiguating by context and adding concepts) becomes
almost negligible. The difference is not significant with � = 0:5%.

In order to investigate why the improvement by background knowledge became so
small for PRC, we continued with two further investigations.

Inverse Purity.As may be seen from the description in Section 4.3, purity overly favors
large split counts and does not discount evaluation results when splitting up large cate-
gories. Therefore, we have investigated how the inverse purity values would be affected
for the best baseline (in terms of purity) and a typically good strategy based on background
knowledge (again measured in terms of purity). Tables 3 and 4 summarize the results.

As seen before, the purity values for PRC do not differ significantly between our
typically good strategies based on background knowledge (Hypdis = context, prune=30,
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Table 2. Using Purity to compare clustering without background
knowledge (first row) against various combinations of parameter
settings using background knowledge on PRC-min15-max100 with k = 60
(avg denotes average over 20 cluster runs and std denotes standard deviation).
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Fig. 4. Comparing clustering without background knowledge (leftmost column) against
various combinations of parameter setting using background knowledge on PRC with k =
60.
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Table 3. Results on PRC k = 60, prune=30 (with background knowledge also HYPDIS =
context, avg denotes average over 20 cluster runs and std denotes standard deviation)

ONTO HYPDEPTH HYPINT Purity InversePurity
avg � std avg � std

false 0,751 � 0,006 0,263 � 0,007

true 0 add 0,755 � 0,007 0,269 � 0,009
only 0,736 � 0,008 0,266 � 0,009

5 add 0,746 � 0,006 0,272 � 0,007
only 0,721 � 0,007 0,271 � 0,010

HYPDEPTH=5, HYPINT=add) and the best baseline. For inverse purity, the improvement
by the same background knowledge strategy is small, but significant within a confidence
interval of 0.5%. On PRC-min15-max100, purity and inverse purity are clearly improved
by the same background knowledge strategy.

Table 4. Results on PRC-min15-max100 k = 60, prune=30 (with background knowledge
also HYPDIS = context, avg denotes average over 20 cluster runs and std denotes standard
deviation)

ONTO HYPDEPTH HYPINT Purity InversePurity
avg � std avg � std

false 0,57 � 0,019 0,479 � 0,016

true 0 add 0,585 � 0,014 0,492 � 0,017
only 0,603 � 0,019 0,504 � 0,021

5 add 0,618 � 0,015 0,514 � 0,019
only 0,593 � 0,01 0,500 � 0,016

Inverse Purity and Variance Analysis. Considering the significant, but nevertheless small
improvement of inverse purity on PRC in contrast to the very clear improvements on PRC-
min15-max100, we have investigated when and why background knowledge will improve
the results of Bi-Section-KMeans. We investigated the within-class variance of the Reuters
categorization of PRC. For X � D the variance is defined as:

var(X) :=
X
d2X

jj~td � ~tX jj
2 : (4)

Based on this definition, we define the normalized variance within a class L as follows,
where the denominator performs a normalization adjusting the variance to the correspond-
ing overall variance of D:

varin(L) :=
var(L)

var(D)
: (5)
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This variance can be computed both for vector representations with or without back-
ground knowledge. We thus obtain two values for each class L, namely varwithin (L) and
varwithoutin (L).14

The normalized difference of the variances is obtained by

vd(L) :=
varwithin (L)� varwithoutin (L)

varwithoutin (L)
; (6)

The decreasing line in Figure 5 shows this normalized difference of the within-class vari-
ance between the representations with (strategy hypdepth=5, hypint=add, hypdis=context,
prune=30) and without background knowledge. As becomes evident, for the large majority
of pre-defined categories, background knowledge reduces the within-class variance.

Furthermore, there is a clear tendency that the unsupervised reduction of variance
within predefined categories improves the inverse purity in comparison to the best base-
line. This tendency becomes evident when one compares the variance difference against
the individual inverse purity values

ipv(L;P) := max
P2P

Precision(L; P ) (7)

— which again can be computed with15 (ipvwith) and without (ipvwithout) background
knowledge. This comparison is done in Figure 5 by comparing the variance difference
against the inverse purity difference

ipd(L) :=
ipvwith(L;P)� ipvwithout(L;P)

ipvwithout(L;P)
: (8)

and against its linear interpolation. The diagram shows that the linear interpolation in-
creases with decreasing variance difference.

We analyzed the categories that are not positively influenced by background knowl-
edge. A detailed inspection shows that background knowledge does not improve variance
for a few categories with extremely few members.16 However, these categories do not af-
fect (inverse) purity values because micro-averaging gives their purity values little weight.
Furthermore, PRC has, among others, a category, i. e., the one labeled by ‘earn’, that could
have been nicely classified in a supervised setting by signs that are semantically void (us-
ing, e.g., stop terms like ‘vs.’ which are not contained in Wordnet), that shows little vari-
ance anyway and that is therefore not improved by background representation. As ‘earn’
alone by far outnumbers all other categories in PRC (about 30% of all documents in PRC
are categorized into ‘earn’), the inverse purity value increases only slightly, though sig-
nificantly within the 0.5% confidence interval when background knowledge is added (see
Table 3). In PRC-min15-max100 ‘earn’ is reduced to 100 members consequently decreas-
ing its influence when micro-averaging.

4.5 Observations.

General observations of our experiments are that

14 Observe that in Equation 5 both var(L) and var(D) change when background knowledge is
incorporated.

15 Using the same strategy with background knowledge mentioned before.
16 36 categories with less than 15 members are even left out of the figure.
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Fig. 5. Comparing the change of variance for each given category against the change
of clustering results in terms of individual inverse purity values when the preprocessing
strategy changes from best baseline to ‘standard’ (good) background knowledge (strategy
hypdepth=5, hypint=add, hypdis=context, prune=30) on PRC with k = 60.
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– background knowledge bought a lot of mileage if not too many documents had to be
considered. The best results were achieved if categories had less than 20 documents.
With an increase of documents per category the improvement by background knowl-
edge decreased, however the good strategies were always as good as the baseline!

– background knowledge needs word sense disambiguation to be effective. However,
extremely simple, generally applicable disambiguation strategies are already success-
ful.

– Pruning with a threshold of 30 brought the best results. For categories with many
documents pruning became less relevant.

Further evaluation values substantiating these results can be found at http://www.aifb.uni-
karlsruhe.de/WBS/aho/clustering.

5 Conceptual Clustering of Texts and Text Clusters

Partitional clustering techniques as the ones discussed above have the disadvantage that
they do not provide intensional descriptions of the clusters obtained. Conceptual Cluster-
ing techniques, on the other hand, provide such descriptions, but are known to be rather
slow. In this section, we discuss a way of combining the advantages of both techniques.

Our approach consists of two steps. First, we apply Bi-Section-KMeans as described
in the previous section in order to decrease the size of the problem. Each resulting cluster
is considered as a ‘summary’ of similar documents, which will be treated as one object in
the sequel. This step also incorporates the background knowledge as discussed above.

Then we cluster these objects using a conceptual clustering technique — in our case,
Formal Concept Analysis. The latter provides intensional descriptions of the resulting clus-
ters; and it is efficient enough, if the number of clusters chosen in the first clustering step is
not too high. The resulting concept lattice can then be accessed using existing techniques
from Formal Concept Analysis.

This section is composed of three parts. In Subsection 5.1, we recall the basic notions
of Formal Concept Analysis. In Subsection 5.2, we explain how the document clusters
are clustered conceptually. A discussion of exploration techniques and results is given in
Section 5.3.

5.1 Conceptual Clustering by Formal Concept Analysis

As conceptual clustering technique, we make use of Formal Concept Analysis. Formal
Concept Analysis (FCA) was introduced as a mathematical theory modeling the concept
‘concept’ in terms of lattice theory. This approach arose independently of ontologies, re-
sulting in a different formalization of concepts. We discuss the differences below, after
recalling the basics of Formal Concept Analysis as far as they are needed for this paper.
An extensive overview is given in [8]. To allow a mathematical description of concepts
as being composed of extensions and intensions, Formal Concept Analysis starts with a
formal context:

Definition: A formal context is a triple K := (G;M; I), where G is a set of objects, M
is a set of attributes, and I is a binary relation between G and M (i. e. I � G �M ).
(g;m) 2 I is read “object g has attribute m”.
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Let us first consider the following, simplified17 situation: The set of objects consists
of all documents, i. e., G := D, the set of attributes consists of all terms and concepts,
i. e., M := T [ C, and the relation I indicates if an attribute describes a document. How
the relation is derived from the document representations will be discussed in Section 5.2
in detail. At the moment, consider only that we let (d; t) 2 I if document d ‘is about’
attribute t. For sake of simplicity, we will use ‘attribute’ as synonym for ‘term or concept’
and will denote it by t in the sequel; independent of the strategy chosen in Section 3.

Figure 6 shows a formal context with four texts as objects, and 80 terms and concepts
as attributes, from which the first twelve are displayed.
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Fig. 6. Formal context describing four texts.

From a formal context, a concept hierarchy, called concept lattice, can be derived:

Definition: For A � G, we define A0 := fm 2 M j 8g 2 A: (g;m) 2 Ig and, for
B �M , we define B0 := fg 2 G j 8m 2 B: (g;m) 2 Ig.

A formal concept of a formal context (G;M; I) is defined as a pair (A;B) withA � G,
B �M , A0 = B and B0 = A. The sets A and B are called the extent and the intent of the
formal concept (A;B). The subconcept–superconcept relation is formalized by

(A1; B1) � (A2; B2) :() A1�A2 (() B1 � B2) :

The set of all formal concepts of a context K together with the partial order � is always a
complete lattice,18 called the concept lattice of K and denoted by B(K ).

The extent of a formal concept consists thus of all objects belonging to the concept,
and the intent consists of all their common attributes.

A possible confusion might arise from the double use of the word ‘concept’ in FCA
and in ontologies. This comes from the fact that FCA and ontologies are two models for
the concept of ‘concept’ which arose independently. In order to distinguish both notions,
we will always refer to the FCA concepts as ‘formal concepts’ unless the meaning is
clear from the context. The concepts in ontologies are referred to just as ‘concepts’ or
as ‘ontology concepts’. There is no direct counter-part of formal concepts in ontologies.
Ontology concepts are best compared to FCA attributes, as both can be considered as
unary predicates on the set of objects.

One of the twelve formal concepts which can be derived from the context given in
Figure 6 is the tuple (fFinance Text 1, Finance Text 2 g, fmarket, washington, report,

17 In the sequel, we will use the clusters obtained by KMeans as objects, i. e., G := P.
18 I. e., for each set of formal concepts, there exists always a unique greatest common subconcept

and a unique least common superconcept.
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Fig. 7. Concept lattice of the context in Figure 6.

bank, [. . . ] g), where [. . . ] stands for 29 more attributes which are common to the two
finance texts, but not to the two sports texts. These 29 attributes are not explicitly listed
in Figure 6. Another formal concept — which is actually a subconcept of the first —
is (fFinance Text 1 g, f european, corpor, europ, central, american, market, washington,
report, bank, [. . . ] g) where [. . . ] now stands for the 29 attributes from above plus four
more attributes (which are not given explicitly in Figure 6 either) being shared by Finance
Text 1 and Sports Text 1, but not by the two other texts.

Figure 7 shows a line diagram of the concept lattice derived from the formal context in
Figure 6. The lattice was computed and visualized using the Cernato software of NaviCon
Gmbh.19 The first formal concept mentioned above is the left-most node in the diagram,
the second concept the left-most node above it.

Line diagrams of concept lattices follow the conventions for the visualization of hi-
erarchical concept systems as established in the international standard ISO 704. In a line
diagram, each node represents a formal concept. Due to technical reasons we reverse, in
this article, the usual reading order: A formal concept c1 2 B(K ) is a subconcept of a for-
mal concept c2 2 B(K ) if and only if there is a path of ascending(!) edges from the node
representing c2 to the node representing c1. The name of an object g is always attached to
the node representing the most specific concept (i. e., the smallest concept with respect to
�) with g in its extent (i. e., in our figure, the highest such node); dually, the name of an
attribute m is always attached to the node representing the most general concept with m

in its intent (i. e., the lowest such node in the diagram). We can always read the context
relation from the diagram, since an object g has an attribute m if and only if the concept
labeled by g is a subconcept of the one labeled bym. The extent of a concept consists of all
objects whose labels are attached to subconcepts, and, dually, the intent consists of all at-
tributes attached to superconcepts. The leftmost concept, for instance, has the two finance
texts in its extent, and 33 attributes in its intent (from which the first four are listed).

In the diagram, the lowest node is always the concept having all objects in its extent
and (in our case) no attributes in its intent. This is always the most general concept. This
‘all’-concept has six immediate subconcepts, each having exactly two objects in its extent,

19 http://www.navicon.de
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as there is no combination of words which describes a set of three objects, but not of the
fourth one. Among these six concepts, we find the finance texts on the very left, and the
sports texts on the very right. The second concept from the left is about the documents
which are related to America. From the number of attributes attached to a concept, we
can see the strength by which the documents are grouped together: the America concept
depends on only one word (‘american’), while the two sports texts are grouped together by
23 and the two finance texts are grouped together by 33 attributes, which indicates a much
stronger relationship.

5.2 Clustering the Text Clusters with Formal Concept Analysis

As argued above, the computation of the concept lattice may be too time-consuming and/or
the result too fine-grained for large sets of objects and/or attributes. Therefore, we now
‘summarize’ similar documents and treat them as one object in the sequel. ‘Similar’ means
here being in the same Bi-Section-KMeans cluster.

Extracting Cluster Descriptions For applying a conceptual clustering approach like For-
mal Concept Analysis, we need intensional descriptions of the objects to be clustered. In
our scenario this means that we have to determine the relation I , i. e., we have to decide,
for each cluster and each attribute, if the attribute shall be considered as being important
for the cluster or not. For performance reasons, we also would like to keep the total number
of selected attributes small.

Therefore we need a method which points us to the most important attributes for each
cluster. We followed an approach similar to the one described in [12]: We introduce a
threshold � to decide whether an attribute is important or not. This way we are also able
to control how many attributes remain to describe the clusters. In our application, we used
two thresholds, namely 15 % and 35 % of the maximal value. We could have used other,
more sophisticated techniques for feature selection, as, e. g., described in [17,29]. But as
feature selection is not our main research topic, we abstract from that aspect in this article.

We used the centroid vectors of the clusters for extracting the cluster descriptions.
For each cluster, the description of the cluster is the set of all attributes having a value in
the centroid vector which is above the threshold �. This assures that those attributes are
selected which are most important for the cluster. All attributes which were not assigned
to at least one cluster were finally dropped. The assignment of the attributes to the clusters
is the basis for the next step, the conceptual clustering part.

Being more precise, this approach looks as follows: The set of objects consists of all
clusters determined in the previous step, i. e., G := P. The set of attributes consists of all
terms and concepts (which appear at least once), i. e.,M := T[C. In the sequel, ‘attribute’
and ‘term or cluster’ are thus used synonymously. ‘Object’ is used synonymously with ‘Bi-
Section-KMeans cluster’ unless otherwise stated. The relation I indicates if an attribute
is related to a cluster, i. e., if its value in the centroid vector is above the threshold �:
(P; t) 2 I :() ( ~tP )t � �.

In order to obtain a more fine-grained view, we additionally apply conceptual scaling.
We may for instance use two (or more) thresholds in parallel. In the example in Sub-
section 5.3, we have for instance applied such an ordinal scale on the object set with
two thresholds �1 and �2. The formal context (G;M; I) is then composed as follows:
G := P� f�1; �2g, M := T [ C, and ((P; �i); t) 2 I :() ( ~tP )t � �i. The relation I ,
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applied to a pair (P; �i), returns thus the set f(P; �i)g0 of all attributes which are more or
less (i. e., with threshold �i) relevant for cluster P .

Once the formal context is set up, the concept lattice can be computed by one of the
known algorithms (for an overview, see for instance [26]). We applied the Cernato tool
mentioned above which makes use of B. Ganter’s Next-Closure algorithm [7].

Partitional Clustering as Preprocessing for Conceptual Clustering Instead of consid-
ering the concept lattice as a clustering of clusters (i. e., as concept lattice of the context
(P; T; I)), the resulting concept lattice can also be interpreted as a concept hierarchy di-
rectly on the documents, as it is isomorphic to the concept lattice of the context (D;T; J)
with (d; t) 2 J iff d 2 P and ( ~tP )t � � for some cluster P 2 P. This context is in fact
an approximation of the descriptions of the documents by term vectors 20 with the prop-
erty that all documents in one cluster obtain exactly the same description. This loss of
information is the price we pay for improving the efficiency. 21

An advantage of using the partitional clusters as intermediate step, however, is that we
can deal with new, previously unseen documents in a robust way: A new document is first
assigned to the cluster with the closest centroid, and then finds its place within the concept
lattice. If on the contrary the document would be considered directly for computing the
concept lattice, it could not be guaranteed that the structure of the lattice would not change
when a new document arises.

5.3 Exploring the Conceptual Structure of the Document Collection

Line diagrams of concept lattices provide a visualization of the clustering obtained. An
interactive exploration of the diagrams supports the user in analyzing the conceptual struc-
ture inherently present in the document collection.

In this section, we present two examples which show up the potential of the approach.
Both are based on the dataset PRC-min15-max100 described in Section 4.3. Partitional
clustering was performed with Bi-Section-KMeans with the following parameters and
strategies: number of clusters k = 60, Ontology = true, Hypdepth = 5, Hypdis = first,
Hypint = only, and weighting with tfidf using pruning threshold 30. We obtained a cluster-
ing with 60 clusters, having a purity of 59,1 % (which is close to the average of the 20 runs
we performed). Based on this clustering, we extracted the important ontology concepts for
each cluster descriptions (with thresholds �2 = 15% and �2 = 35%) and computed the
concept lattice.

Exploring the Concept Lattice The concept lattice is shown in Figure 8. The clusters
are named CL 0 to CL 59, and the number in brackets behind each name indicates how
many documents the cluster contains. ‘m’ stands for ‘medium’, i. e., for � 1 = 15% of the
maximal value, and ‘h’ stands for ‘high’, i. e., for � 2 = 35% of the maximal value. For
instance, ‘CL 19 - (67): m’ represents Cluster 19 which consists of 67 documents; and all
ontology concepts which have at least medium importance for this document (e. g., ‘food,
nutrient’) can be found below in the diagram.

20 I. e., of the formal context (D; T; ~J) with (d; t) 2 ~J iff d 2 P and (~td)t � �. This context
however would result, after a very time-consuming computation, in a far too large concept lattice.

21 In the worst case, the complexity of the resulting concept lattice is exponential in the size of G
(i. e., of D or P, whereby jPj � jDj in practice ).
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Fig. 8. The total concept lattice (highlighting the formal concepts related to food).

Even though we have performed partitional clustering before, the concept lattice is
usually too large to be completely displayed at once. A typical approach for exploring the
lattice is to study the top-level concepts (i. e., those close to the bottom of the diagram)
first. In the diagram, we have highlighted the top-level concept food, together with all
its subconcepts. We can see that food has a high (and hence also medium) occurrence in
clusters 19, 28, 35, and 37; and medium occurrence in clusters 1, 13, and 51. In order to
analyze these clusters in more detail, we can restrict the set of objects to these clusters,
and visualize only that part of the concept lattice. The resulting sub–semilattice is shown
in Figure 9.

Starting with the top formal concepts again (i. e., with the bottom part of the fig-
ure), we discover that our clusters belong to three overlapping topics: beverages, food and
sugar/food ingredients. For the latter, our knowledge representation is not detailed enough
to decide whether all these documents are about sugar as a food ingredient, or if the par-
titioning algorithm grouped together documents about sugar with documents about food
ingredients. If one is interested in this set of clusters in more detail, one must have a closer
look either by analyzing the centroid vectors, or by directly browsing the documents.

As for the beverages, one discovers that there are two main beverages mentioned, cof-
fee and cocoa. Among the clusters dealing with coffee, there are some about South Amer-
ican countries. Among them, Brazil and Colombia are most relevant, but there are more
countries of that region, which are for instance mentioned in documents of Cluster 19.
More details can be read from the diagram.

We want to emphasize that the resulting conceptual clustering benefits heavily from
the use of background knowledge: The attributes ‘food’, ‘beverage’, etc. are not contained
explicitly in the documents, and hence neither in the cluster descriptions unless we make
use of the background knowledge (i. e., using one of the strategies ‘add’, ‘repl’, or ‘only’
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Fig. 9. The concept lattice restricted to the formal concepts related to food.

from Section 3.2). Without this additional input, the concept lattice would be completely
flat, and would not support the discovery of conceptual relationships between the clusters
determined by the partitional clustering algorithm.

Using the Similarity Measure to Find Interesting Parts Another way of starting the
exploration of the conceptual structure of the document collection is to focus on some
clusters which are indicated to be similar according to the similarity measure used in the
partitional clustering step as described in Section 4.

In order to give a first hint where to discover interesting structures, we applied first
a magnetic spring algorithm for graph visualization 22 for recognizing which clusters are
related. A part of the resulting graph is shown in Figure 10. Based on the cosine similarity,
it tries to map the clusters into the Euclidean plane such that clusters with similar centroids
attract each other, and clusters with different centroids repel each other. Strong similarity
(with respect to a given threshold, in our example 25 % of the maximal similarity) is indi-
cated by a line between the clusters. The term in parentheses behind a cluster name in the
diagram indicates to which Reuters topic the majority of the documents in the cluster were
assigned by the Reuters experts. Of course one does not have this additional information
when clustering documents in an unsupervised way. We added this information for sim-
plifying the evaluation. In an unsupervised setting, one could display the most important
attribute(s) describing the cluster instead.

In the diagram, we see for instance that the Clusters 39, 12, 16, 30, 53, 38, 10, and 34 in
the upper right part of the figure have similar centroids. In order to analyze the similarity

22 http://java.sun.com/applets/jdk/1.0/demo/GraphLayout/
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Fig. 10. Graph showing (distance-based) similarities between the text clusters

of this group of clusters conceptually, we restrict the object set of the formal context to
just those clusters, and re-compute the concept lattice. In order to discover the general
structure before going into too much detail, we selected only one threshold, � = 15% of
the maximal value (indicated by ‘y’ in the diagram). The resulting concept lattice is again
a sub–semilattice of the concept lattice in Figure 8. It is shown in Figure 11.

Starting from the top level (i. e., the bottom part of the figure) again, we see that there
are three main areas: crude oil, gas, and business. The first two of them overlap in Cluster
53, which groups together documents where the use of oil or gas for heating is addressed.
In fact, the majority of documents in this cluster was assigned to the ‘heat’ label by the
Reuters experts (see Fig. 10). From the concept lattice we can read that Clusters 10, 34 and
38 are about crude oil (and Clusters 10 and 34 additionally about (its) transport); which
coincides for the first two clusters with the Reuters classification to ‘crude’ for the majority
of documents in these clusters. Most of the texts in Cluster 38 contain the word ‘gasoline’,
which justifies its classification under the more general attribute ‘oil’. The concept lattice
shows that Cluster 30 is about gas as a natural phenomenon, which coincides with the
assignment of most of its texts to the label ‘natxgas’ by the Reuters experts.

The third top level concept, labeled by ‘business’, is disjoint to the two other top level
concepts. And in fact, the majority of the documents in clusters 12 and 16 were assigned by
the Reuters experts to a different label, namely ‘acq[uisition]’. When checking the concept
intent of the concept labeled by ‘CL 39’, one observes a large diversity of topics, e. g.,
issue, vehicle, park, document, security, share, business. When reading the documents in
this cluster, one observes that they cover indeed many unrelated topics. The fact that our
approach could not provide a clear description of this cluster correlates with the fact that
the Reuters experts could not do better, as they could not assign meaningful labels to the
majority of documents in Cluster 39 either — most of them have the label‘defnoclass’.

This last example shows that one can also identify inconsistencies in the results of par-
titional clustering by using Formal Concept Analysis. We observed during our exploration
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Fig. 11. Concept lattice focusing on the clusters 10, 12, 16, 30, 34, 38, 39, and 53.

of the concept lattice that humans deal quite well with noise (i. e., words which do not help
to understand the clustering) which may have been accidentally in the preprocessing steps,
due to the presentation of the results on a semantical level by the concept lattice.

6 Discussion

Let us discuss the major insights that we have gained from our experiments:

Background knowledge helps. The best strategies (e.g., hypint = add, hypdis = context,
hypdepth= 5) can be safely used, as they are frequently improving and never degrading
performance compared to the best baseline.

The principal idea of our approach is that the variance of documents within one cate-
gory is reduced by representation with background knowledge, thus improving results of
text clustering measured in terms of purity and inverse purity with conventional means like
Bi-Section-KMeans. To this end, different, but semantically similar terms in two text doc-
uments may contribute to a good similarity rating if they are related via Wordnet synsets
or hypernyms. The vector representations are thereby re-adjusted such that the angles in-
between term vectors containing these hypernyms decrease, i.e. their similarities increase.
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Our results indicate that this effect is particularly relevant, if terms occur infrequently in
the corpus (as is typically the case when categories have few documents only).

In the Reuters corpus we have seen that variance reduction is achieved and effective
for most categories, with one exception, the ‘earn’ category (cf. Section 13), which may
best be clustered by syntactic indicators like ‘vs.’, rather than semantic representations.
Our assumption is that in other real-world applications, one will also find categories that
should rather be clustered by syntactic means as well as categories that would rather profit
from background knowledge. As we did not significantly decrease performance on the
former ones, but clearly improved performance on the latter, the conclusion from PRC and
its derivations is that one should always use background knowledge for text clustering (and
eventually also consider further syntactic means).

Background knowledge strongly benefits from feature weighting. Adding background
knowledge may not be beneficial for the clustering task per se. Rather, hypernyms at the
higher levels may even detriment the clustering performance (as shown by r = 5 without
tfidf weighting in Figure 3).

However, such hypernym representations constitute “systematic noise”. Therefore, if a
hypernym occurs often and is too general to be helpful, then its effect on the representation
may be outweighed by feature weighting. To some extent this may even be the case should
the hypernym be misleading.

Only if a hypernym occurs with low or medium frequency and it is misleading consid-
ering the original term it represents, then it appears to be detrimental. The reader may note
that a resource like Wordnet has been carefully built in order to reflect common under-
standing. Errors in the basic level concepts, i.e. the ones in the middle that are neither very
general nor very specific, or misleading re-interpretations of the concepts by the writer of
a text do not seem to occur too often.

Word sense disambiguation helps. While Wordnet contributes additional knowledge, im-
portant distinctions may be blurred without word sense disambiguation. There seems to be
the tendency that vector re-adjustments are too strong without a selection of a particular
concept.

We could show that some kind of word sense disambiguation is needed in order to
avoid the incorporation of too much noise. We conjecture that the inclusion of more refined
strategies such as known from the literature will further improve the clustering results.

Conceptual clustering adds explanatory power to the cluster results. The major advan-
tage of conceptual clustering is the intensional description coming along with each cluster.
While some intensional description can also be obtained by post-processing the partional
clustering results (e. g., by just applying our attribute assignment described in Section 5.2),
conceptual clustering provides additional benefits. First, it derives more general clusters
and arranges them in a hierarchy which is consistent with the cluster descriptions (and with
the hierarchical organization of the background knowledge). Second, it allows for multi-
ple inheritance (unlike many hierarchical clustering techniques) which reflects the human
way to structure conceptual knowledge. And third, being a lattice, it allows to compute,
for each set of clusters, the unique least common supercluster and the greatest common
subcluster. This allows the computation of dependencies between important terms in the
document collection, and algorithmic support of navigation and retrieval tasks.

Navigation by Formal Concept Analysis is suitable to support the novice data min-
ing expert. Even though we did not perform systematic user studies, our experiments
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(performed by an FCA novice) showed that the visualization by concept lattices and the
interaction with them offer an intuitive access to the clustering results. Especially the top-
down access from quite general to more specific (formal) concepts was considered as very
natural and straightforward.

The combination of partitional and conceptual clustering works. While producing re-
sults as good as or better as the baseline, our experiments show that the explanatory power
(which is hard to measure by ‘objective’ measures) is improved. As from a performance
point of view, our observations show that we are indeed able to derive clusters of objects
together with intensional descriptions in reasonable time; and still with a reasonable de-
gree of detail. In particular, the background knowledge added in the first place to improve
partitional clustering is also fully exploited by conceptual clustering. For instance, this can
be seen by major intensional descriptions like ‘food’ that are derived and highly ranked
without appearing in the texts at all.

Further improvements. Further improvements by background knowledge might still be
achieved by exploiting syntactic taggers and all of Wordnet including adjectives and verbs.
For instance, the term “international” in “an international company” has not been recog-
nized to be an adjective by our approach. Instead it has been used assuming that it stands
for a noun as in “the communist international”.

The purity and inverse purity measures we have applied for evaluation only consider
the first Reuters label. Our experiments however showed that even when the clustering did
not map to this first label, it mostly got the second (and sometimes third) label correct.
Since a standard measure that properly accounts for multi-labeling does not exist, there is
a need to modify the (inverse) purity measure accordingly.

Thus, we have only reaped the — comparatively — low hanging fruits, improving stan-
dard clustering for many relevant tasks while leaving many possibilities (e.g., weighting,
disambiguation) for further probable improvements.

7 Related Work

While we do not know of any research that exploits background knowledge for text docu-
ment clustering, there are a number of related uses.

Wordnet has mostly been used in information retrieval and in supervised learning
scenarios up to now (but to our knowledge not for clustering): In information retrieval,
Voorhees [28] as well as Moldovan and Mihalcea [18] have explored the possibility to use
Wordnet for retrieving documents by keyword search. It has already become clear by their
work that particular care must be taken in order to improve precision and recall.

Buenaga Rodrı́guez et. al. [6] and Ureña Lóez et. al. [27] show a successful integration
of the Wordnet resource for a document categorization task. They use the Reuters cor-
pus for evaluation and improve the classification results of the Rocchio and Widrow-Hoff
algorithms by 20 points. In [9], Wordnet is used for word sense disambiguation. Gon-
zalo et. al. show in an information retrieval setting the improvement of the disambiguated
synset model over the term vector model. In contrast to our approach, [6], [27], and [9]
apply Wordnet to a supervised scenario (and not to an unsupervised one as in our applica-
tion), do not make use of Wordnet relations such as hypernyms, and build the term vectors
manually.
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Approaches like term clustering [12], LSI [5] or PLSI [10] use statistic methods to
compute a kind of “concepts”. These concepts are rather different to our definitions of
ontology concepts and formal concepts. They are not able to indicate the meaning of the
concepts and there exists no understandable mapping to lexical entries. A generalization of
their “concepts” is not possible. We do not know of actual comparisons that relate KMeans
or Bi-Section-KMeans with LSI or PLSI using the same dataset for clustering.

We have built our numerical comparisons on Bi-Section-KMeans which has proved to
be very robust in a wide variety of experiments [24]. Also to our experience it performed
as good as other algorithms that we tested informally. Its standard parameter settings eval-
uated as good as other ones (e. g., bi–secting based on variance instead of cardinality; cf.
[24]).

Our extraction of descriptions for the text clusters has been inspired by [12]. There,
Karypis and Han show that cluster centroids can be used to summarize the content of a
cluster. They state that the most important terms in a cluster centroid are the terms with
the highest weight. This observation underlies our approach in Section 5.2, where we use
only the highly weighted terms to describe the content of the cluster. They differ from our
approach in that they select the ten best terms while we consider all terms above a given
threshold. We additionally make use of Wordnet.

Conceptual clustering with Formal Concept Analysis has been discussed in [25,4,16,26].
Another approach to Conceptual Clustering is for instance discussed in [14]. Formal Con-
cept Analysis differs from them in that it does not make use of any heuristics (including
arbitrary start settings) and allows for overlapping clusters. Compared to non-conceptual
clustering approaches, all conceptual clustering approaches have in common less compu-
tational efficiency. Our paper is an approach to overcome this drawback.

8 Conclusion

In this paper, we have discussed a way of combining the efficiency of a partitional clus-
tering technique, the expressivity of background knowledge, and the explanatory power
provided by a conceptual clustering approach. We first changed the text document repre-
sentation to accomodate background knowledge, then we clustered the documents using
Bi-Section-KMeans, and eventually we performed conceptual clustering with Formal Con-
cept Analysis.

Our empirical evaluation showed the benefit of using background knowledge. It also
showed that the combination of efficient partitional clustering with expressive conceptual
clustering techniques allows to exploit the advantages of both approaches.
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