
A. Filter Intensities and their Respective Parameters
In Section 4.1 we introduce abstract levels of intensities for each filter we apply to an image. We now map each intensity

to actual parameters passed to editing libraries to achieve the given filter intensity.

Distortion Intensity Actual Parameters

Te
ch

ni
ca

l

JPEG compression [0, . . . +4, +5]

The editing library accepts the technical intensities as is.

Defocus blur [0, . . . +4, +5]
Motion blur [0, . . . +4, +5]
Pixelate [0, . . . +4, +5]
Gaussian noise [0, . . . +4, +5]
Impulse noise [0, . . . +4, +5]

St
yl

e

Brightness [-5, -4, . . . , +4, +5] [−1.0, −0.8, . . . , 0.8, 1.0]
Contrast [-5, -4, . . . , +4, +5] [−1.0, −0.8, . . . , 0.8, 1.0]
Saturation [-5, -4, . . . , +4, +5] [−1.0, −0.8, . . . , 0.8, 1.0]
Exposure [-5, -4, . . . , +4, +5] [−3.0, −2.4, . . . , 2.4, 3.0]
Shadows [-5, -4, . . . , +2, +3] [−100, −60, −20, 20, 40, 50, 60, 80,100]
Highlights [-3, -2, . . . , +4, +5] [−100, −80, −60, −50, −40, −20, 20, 60,100]
Temperature [-4, -3, . . . , +4, +5] [2000, 3000, 5000, 6000, 6500, 7000, 8000, 10 000, 14 000, 18 000]
Tint [-5, -4, . . . , +4, +5] [0.75, 0.8, . . . , 1.2,1.25]
Vibrance [-2, -1, . . . , +3, +4] [0, 20, 25, 40, 60, 80, 100]

C
om

po
si

tio
n Rotation [-5, -4, . . . , +4, +5] [10◦ 	, 8◦ 	, . . . , 8◦ �, 10◦ �]

Horizontal crop [-5, -4, . . . , +4, +5] We resize the image to 336px and then crop patches of size 224px from the
resulting image. Intensity 0 is a centercrop, while a |intensity| == 5 results
in a crop from the images’ border.

Vertical crop [-5, -4, . . . , +4, +5]
Left Diagonal crop [-5, -4, . . . , +4, +5]
Right Diagonal crop [-5, -4, . . . , +4, +5]
Image Ratio [-5, -4, . . . , +4, +5] [stretch along y-axis 100%, y80%, . . . , x80%, stretch along x-axis 100%]

Table 3. Actual parameters and implementation specifics for each distortion and intensity level. Technical parameters are passed to
imagenet-c [12] and style parameters to darktable [37] while compositional distortions are implemented by us.

B. Dataset Content Analysis
To show that the images of our dataset (Section 4.2) contain a large variety of contents, we apply a pretrained

DenseNet121 [16] for image classification and RetinaNet [25] for object detection on our newly introduced dataset. We
find that the images of our dataset spread across many different classes and contain a wide variety of objects and subjects.

most common classes most common objects

class count object count

seashore 3554 person 44301
alp 2568 car 3186
lakeside 2446 cup 2880
fountain 2265 bird 2788
valley 2011 cell phone 1749
miniskirt 1455 boat 1618
gown 1430 dog 1581
bikini 1176 potted plant 1580
. . . . . . . . . . . .
sloth bear 2 refrigerator 31
affenpinscher 2 snowboard 25
patas 1 skis 23
Sealyham terrier 1 hair dryer 7
Japanese spaniel 1 toaster 7

Table 4. Most commonly detected classes and objects in the images of our dataset.
Full list: https://github.com/janpf/self-supervised-multi-task-aesthetic-pretraining

https://github.com/janpf/self-supervised-multi-task-aesthetic-pretraining


C. Baseline Implementation Details
In the following, we give implementation details on the self-supervised baseline methods we use in our experiments. To

allow for a fair comparison, we use the same MobileNetV2 [33] architecture for all methods. Each model is initialized with
ImageNet weights. Additionally, all algorithms are applied to our collected highly aesthetic dataset to make sure that all
methods have access to the same images while pretraining. Fine-tuning on AVA [29] stays the same for all pretrained models.

C.1. RotNet

For RotNet [22], we use the implementation from https : / / github . com / gidariss /
FeatureLearningRotNet, which is the official code from the paper. We follow the same procedure as in the
original paper and only change the given network architecture and dataset.

C.2. SimCLR

For this baseline [2], we take the implementation from https://github.com/Spijkervet/SimCLR. While this
is not the official implementation, the authors were able to reproduce the results from the paper. The code provides the
choice between the Adam optimizer and the LARS optimizer [2]. For our experiments we selected the latter with a Cosine
annealing learning rate schedule as in the original paper. We are therefore positive that this is comparable to the original
implementation.

D. Accuracy of Classification Multi-Task
We found that the accuracy of the classification layer predicting the applied distortion vastly differs between the different

aesthetic aspects, as discussed in Section 5.

ACC technical style composition

ranking+classification 0.445 0.127 0.257
random 0.167 0.111 0.167

Table 5. Prediction accuracy for the correct distortion by the classification layer. Included is a random baseline guessing a random distortion.

https://github.com/gidariss/FeatureLearningRotNet
https://github.com/gidariss/FeatureLearningRotNet
https://github.com/Spijkervet/SimCLR



