Evaluating feature relevance XAl in network
intrusion detection

Julian Tritscher!, Maximilian Wolf?, Andreas Hotho!, and Daniel Schlor!

! University of Wiirzburg, Am Hubland, 97074 Wiirzburg, Germany
2 Coburg University of Applied Sciences, 96450 Coburg, Germany
{tritscher, m.wolf, hotho, schloer}@informatik.uni-wuerzburg.de

Abstract. As machine learning models become increasingly complex,
there is a growing need for explainability to understand and trust the
decision-making processes. In the domain of network intrusion detection,
post-hoc feature relevance explanations have been widely used to pro-
vide insight into the factors driving model decisions. However, recent
research has highlighted challenges with these methods when applied to
anomaly detection, which can vary in importance and impact depending
on the application domain. In this paper, we investigate the challenges
of post-hoc feature relevance explanations for network intrusion detec-
tion, a critical area for ensuring the security and integrity of computer
networks. To gain a deeper understanding of these challenges for the
application domain, we quantitatively and qualitatively investigate the
popular feature relevance approach SHAP when explaining different net-
work intrusion detection approaches. We conduct experiments to jointly
evaluate detection quality and explainability, and explore the impact of
replacement data, a commonly overlooked hyperparameter of post-hoc
feature relevance approaches. We find that post-hoc XAI can provide
high quality explanations, but requires a careful choice of its replace-
ment data as default settings and common choices do not transfer across
different detection models. Our study showcases the viability of post-hoc
XAI for network intrusion detection systems, but highlights the need for
rigorous evaluations of produced explanations.
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1 Introduction

Explainable artificial intelligence (XAI) is a rapidly growing research field that
has recently gained particular attention in the security-critical application do-
main of network intrusion detection [I6]. In this domain, the increasing com-
plexity of detection systems has led to a growing use of post-hoc explainability
methods that can shed light on the decision-making process of trained machine
learning models [TITOT2/T5I8I201251261323334]. Despite the widespread use of
post-hoc XAT for explaining network intrusion detection systems (NIDS), there
is a lack of quantitative evaluation of the resulting explanations, as most studies
are limited to small qualitative discussions of single data point explanations.
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Fig. 1: Experimental setup for the XAI evaluation of SHAP within NIDS. We

investigate XAI performance across multiple NIDS and across different choices
of replacement data.

As intrusion attacks are usually rare and not always known ahead of time, a
subfield of NIDS models the task as anomaly detection [3]. Within the field of
anomaly detection, however, recent research finds that the application of popu-
lar post-hoc XAls to machine learning models poses significant challenges [30].
These challenges arise from the selection of replacement data (also called ref-
erence, background or baseline data in literature), a common hyperparameter
of popular post-hoc XAls, that is used to contrast observed feature values with
alternative observations. This hyperparameter is often overlooked in applica-
tions and can have domain-specific impact on the performance of various XAI
techniques, vastly decreasing explanation quality if set inappropriately.

In this paper, we address the lack of quantitative evaluation of post-hoc XAls
when applied to NIDS by building an expert-annotated dataset. We conduct a
comprehensive quantitative and qualitative evaluation of the impact of replace-
ment data on the performance of SHAP [I4], a commonly used post-hoc XAI
method in anomaly-based NIDS [IITOJT2IT5ITRI2025126132133134]. We evaluate
SHAP across multiple NIDS and multiple established choices of replacement
Valuesﬂ Our experimental setup is illustrated in Figure Our study shows
that the choice of replacement data is critical for obtaining good explanations
and that the optimal selection strategy for replacement data not only depends
on the application domain but also on the model being explained. We further
demonstrate that commonly used replacement values do not always lead to good
explanations, making quantitative evaluations of explanations an essential step
in building new explainable NIDS.

In summary, our contributions are as follows: (1) We rigorously evaluate
the popular post-hoc XAI method SHAP when applied to NIDS both qualita-
tively and quantitatively using ground truth explanations, finding that SHAP
can indeed provide high-quality explanations for NIDS. (2) We systematically
investigate the impact of replacement data and show that common choices do
not always result in good explanations. This emphasizes the importance of this
often overlooked hyperparameter and demonstrates the need for quantitative
evaluation of XAl in practice.

The remainder of this paper is structured as follows. In Section [2, we first
outline related work in terms of explainable NIDS. We then describe the method-
ology in Section [3] covering the dataset and preprocessing, anomaly detection

3 Code and annotations are available under https://professor-x.de/xai-nids!
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and XATI methodology, as well as our evaluation protocol. In Section[d] we outline
our experimental setup and report and discuss intrusion detection performance,
as well as XAl performance qualitatively and quantitatively before we conclude
this work in Section Bl

2 Related work

The majority of research literature, as well as commercial NIDS, is based on two
main approaches: misuse detection, and anomaly detection. Misuse detection is
typically modeled as supervised classification task that detects known threats
based on predefined patterns, making it the most commonly used approach in
NIDS [4]. In contrast, anomaly detection-based NIDS is an unsupervised or semi-
supervised task that identifies anomalies which deviate from a well-defined nor-
mal behavior.

A survey of current methods, challenges, and opportunities for explainable
intrusion detection systems (X-IDS) has been conducted by Neupane et al. [I6],
providing a comprehensive overview of the state-of-the-art in a variety of differ-
ent modeling approaches with respect to explainability technique and machine
learning methodology. When developing X-IDS, a black-box approach is often
recommended [16]. This is reflected in the significant amount of research that
incorporates SHapley Additive exPlanations (SHAP) [14] in NIDS, allowing to
explain arbitrary black-box models [TITOT2ITHITRI2Z012512632/33134]. All of these
approaches include SHAP as post-hoc XATI approach to generate explanations for
misuse detection, which are then exemplarily discussed with respect to the spe-
cific features that the authors would expect to explain different types of attacks.
In addition to these distinct interpretations of selected examples, none of these
studies investigates the quality of explanations from a quantitative perspective.

The study by Dang [5] stands out as one of the few that quantitatively evalu-
ates explainability for intrusion detection. It applies partial dependence plots and
SHAP and compares pre- and post-explainability-based feature selection. In con-
trast, our work models NIDS as anomaly detection task and incorporates ground
truth annotations to directly evaluate explainability of a specific model, instead
of relying on an indirect evaluation that assesses whether relevant features give
sufficient prediction quality with a new model. Although misuse detection models
are common in studies on explainable NIDS, only few proposed works focus on
explainability of anomaly detection-based NIDS. The Gradient-based Explain-
able Variational Autoencoder (GEE) [I7] is a framework to detect and explain
anomalies in network traffic, which analyzes the gradients contributed by each
feature of the data point to explain anomalies. However, their evaluation of
these gradient fingerprints as explanation is limited to a discussion of examples
and their clustering. The most similar related work to our study is presented by
Antwarg et al. [2]. In their study, an Autoencoder is used together with SHAP for
explainable anomaly detection. They investigate the quality of explanations on
an artificial dataset quantitatively, whereas the evaluation on real-world datasets
is limited to the surrogate task of reducing anomality similar to [5] and expert

3 - preprint -



J. Tritscher et al.
3. METHODOLOGY

interviews. Additionally, they highlight the potential influence of replacement
data on explanation quality but leave evaluations as future work.

With our study, we extend the existing work in two aspects. First, in absence
of an “application-grounded evaluation” with real humans and the real task [g],
we collect ground truth explanations from three domain experts in the domain of
network intrusion detection for quantitative evaluation. Second, we address the
issue of replacement data as raised by Antwarg et al. [2] and systematically eval-
uate several approaches to select these replacement data for different anomaly
detection models applied to the CIDDS-001 dataset [23] in a quantitative and
qualitative evaluation.

3 Methodology

To study the performance of post-hoc feature relevance explanations in NIDS,
we first obtain ground truth explanations through an annotation process with
three domain experts. We train multiple machine learning models in an anomaly
detection setting through a hyperparameter study, and apply post-hoc feature
relevance explanations to the resulting best performing models. The ground truth
explanations allow us to then follow the experimental setting of [31] for XAI
evaluation. In the following, we present the used data, pre-processing steps,
machine learning models, XAl approach, and XAI evaluation setup.

3.1 Data and Labeling Process

To validate explanations within multiple NIDS, we use the established CIDDS-
001 dataset [24], which we additionally augment with ground truth explanations
of attacks. CIDDS-001 features network traffic of a simulated computer network
of virtual machines, where clients interact within the network via scripted nor-
mal actions or in different attack scenarios. Attacks included within the dataset
are denial-of-service (dos) attacks that target available services within the local
network, port scans that test for open ports of nodes within the local network,
ping scans that sweep the local network to discover IP addresses in use, and brute
force attacks that attempt to establish a password-protected ssh connection to
an internal node by repeatedly trying passwords using a brute force algorithm.

The total dataset consists of 4 weeks of traffic, with attacks included in week
1 and week 2. In our experiments we use anomaly-based NIDS that train on the
exclusively normal data of week 3 and 4 (train), validating hyperparameters on
week 2 (valid) and testing on week 1 (test).

For the XAI evaluation, 20 attacks are sampled randomly from each of the
available dos, port scan, ping scan, and brute force attacks within the test set,
obtaining 80 attack data points in total. To gain ground truth explanations, we
conduct an annotation process with three intrusion detection experts. All three
experts are given a brief introduction to the data, and are then tasked to inde-
pendently annotate the 80 attacks. Annotations are created on a per-data basis,
where experts assess each feature of a given attack data point regarding whether
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it is indicative of the underlying attack. Experts are tasked with marking all
indicative features within the attack, creating a binary ground truth of relevant
features. Overall, the three experts achieved an inter-annotation agreement of
88%, based on Krippendorff’s alpha coefficient [I1]. Differences in annotation
were then discussed among the experts and unified to obtain the ground truth.

3.2 Pre-processing

Network data processed by NIDS commonly consists of both numerical (e.g.
packet sizes) and categorical features (e.g. IP addresses and ports) [7].

Categorical features with small numbers of observed combinations, such as
the type of network traffic, are commonly encoded using a one-hot representa-
tion. For categorical features such as IP addresses or ports, that may contain
large numbers of observed values, direct one-hot encoding is undesirable to pre-
vent an explosion in feature space. Common representations are one-hot encoding
after replacing specific value groups with dummy tokens to reduce feature space
(e.g., modeling all external IP addresses through one token [29]), modeling IP ad-
dresses and ports as numerical variables, bit-wise encoding, or learning of vector
representations [22]. In this work, we utilize one-hot encoding for all categorical
variables, using aggregation for IP addresses and ports to retain the categorical
nature of these features while limiting the increase in feature space that would
result from direct one-hot encoding. For IP addresses, we aggregate external IPs
into one token as the CIDDS-001 dataset is focused on internal private network
traffic. For ports, we focus on standardized ports, aggregating all ports above
1024 into one token, and additionally grouping all ports that occur less than 10
times within the training data.

Numerical features are commonly standardized to prevent machine learning
models from showing sensitivity to feature value ranges. Possible standardiza-
tion techniques include min-max scaling, z-score scaling, or quantization. In our
experiments, we follow [3I] by using quantization for all numerical features. We
create buckets with equal value frequency according to the training data, and
additionally limit the out-most buckets to only 1% of the data to capture outlier
values and highlight them for the machine learning models.

Since we investigate anomaly-based NIDS that cannot model sequential de-
pendencies within the data, we further add an additional feature that aggregates
the number of flows that were registered within the last 10 minutes for a specific
IP address and port combination, which is a common preprocessing approach [7].
Aggregating this information for source and destination IPs/ports gives detec-
tion systems access to a simple representation of usual traffic frequencies when
learning the normal network behavior.

3.3 Intrusion Detection

In our evaluation we focus on anomaly-based NIDS, evaluating the explanation
process of attacks detected by three well-established anomaly detection models
that have been successfully used as NIDS [T7T9/29].

) - preprint -
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Autoencoders (AEs) [9] are under-complete neural networks that learn a
simplified data representation of normal behavior by reproducing their inputs at
the output layer. Isolation Forests (IFs) [I3] are ensemble-based models that use
the concept of isolation to identify anomalies using multiple decision trees. One-
class Support Vector Machines (OC-SVMs) [27] are maximum margin classifiers
that detect anomalies by constructing a hyperplane which separates the given
data from the origin in the feature space. For computational efficiency, the used
OC-SVM is trained on a random slice of 0.1% of the available training data.

We evaluate the suitability of these methods through a parameter study,
and report our results on multiple random seeds during our experiments to
capture the statistical variation in the non-deterministic IF and AE, as well as
the random training data sampling for the OC-SVM. Results are reported on
the established area under the precision recall curve (PR) and area under the
receiver operator characteristic curve (ROC) scores. We report all results on
both metrics, but rely on the PR score to select hyperparameters, as it is known
to be more suited to unbalanced settings such as anomaly detection [6].

3.4 XAI: SHAP

Kernel SHapley Additive exPlanations (SHAP) [14] is a model-agnostic post-
hoc X AT approach, that assigns each feature a score which represents how much
it contributed to a single model decision. These feature relevance explanations
are obtained by repeatedly removing feature combinations from the input and
monitoring the model output. Since many machine learning models can not
handle missing feature values, SHAP instead replaces values using replacement
data that may be chosen as hyperparameter.

For this replacement data, multiple choices exist in literature. Next to SHAP’s
default implementation using cluster center points of k-means clustering from
training data, and the use of the zero-vector or overall mean of training data es-
tablished in classification settings, replacements that are conditional on the data
point to explain can be used in anomaly detection [30]. The latter replacement
option may be chosen to prevent the creation of new anomalies when placing nor-
mal replacement values into the potentially unfitting context of the data point
to explain. Possible options are the use of nearest neighbors (NN) from normal
data, or gradient-based optimization procedures (opt) that generate a normal
data point in the proximity of the point to explain [28].

While the choice of replacement values was found to have great influence
on the explanations of anomaly detection models [30], current works that em-
ploy SHAP in NIDS currently either do not mention replacement values at all
[LUTOIT2ITH200251261132) or use SHAP’s default implementation [I8], which moti-
vates the investigation of replacement values for explaining NIDS.

3.5 XAI evaluation

For qualitative inspection of their explanations, SHAP provides visualizations
that show the contribution of features to a model decision. While applica-
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tions of SHAP in NIDS perform brief qualitative inspections using these plots
[LITOT2T5/TRI20125126132], they do not conduct a rigorous quantitative evalua-
tion, which proves difficult due to the lack of ground truth explanations.

Using the binary ground truth obtained through our expert labeling process
described in Section we are able to evaluate SHAP explanations with estab-
lished metrics. This evaluation is based on the observation that well performing
NIDS systems need to rely on features that are indicative of an attack to suc-
cessfully separate attacks from normal behavior. Since the binary ground truth
marks features that are indicative of an attack and detection performance can be
assessed prior to explanation quality, established metrics can be used to assess
whether indicative features are rated as more relevant than other features [31].
Following [31], we use two metrics to compare the feature relevance scores of a
single data point with the ground truth explanations. ROC scores favor correctly
identifying anomalous features within the highest ranking results over identify-
ing all anomalies with decent scores. Cosine similarity (COS), on the other hand,
favors a complete match of the entire ground truth explanation, showing how
well the XAI highlighted all anomalous features. We report both metrics, but
focus our evaluation on ROC scores, as machine learning models do not need to
find all suspicious features to identify an attack.

Finally, we also conduct the consistency evaluation of [3T] that aims to dis-
cover whether similar attacks are detected and explained in a consistent way.
This may, for example, be used in practice to generate attack fingerprints based
on common explanation patterns, as illustrated in [I7]. To showcase the similar-
ity of explanations, we remove all features with an impact of less than 25% of the
most influencing feature to remove noise and calculate the Hamming distance
between all fraudulent samples. The resulting distances may be visualized as a
heatmap, where data points are ordered by their attack type.

4 Experiments

In this section, we discuss the anomaly detection results, as well as the results
from an XAI perspective.

4.1 Anomaly detection results

To ensure that explanations are generated for models that are capable of detect-
ing intrusion attacks, we conduct a parameter study through grid search. The
investigated parameter sets are reported in Table[l] The best models are chosen
through PR score on the ewval split, and performance is reported on both eval
and the independent test split in Table [2] All models score highly on attacks
within the test dataset on both PR and ROC score, with little statistical fluc-
tuation across different random seeds. This shows that the models are suited to
detect attacks within the netflow data, and allows us to use a model with these
hyperparameter settings for generating explanations.

7 - preprint -
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Table 1: Hyperparameter grid with tested parameter sets for investigated NIDS.

approach  parameters

OC-SVM  kernel € [rbf], v € [1e3, 1e2, lel, 10, le-1, 1le-2, 1e-3], v € [0.2, 0.4, 0.6, 0.8]
AE neurons € {[32, 16, 8, 16, 32], [64, 32, 16, 32, 64], [128, 64, 32, 64, 128],
64, 32, 16, 8, 16, 32, 64], [128, 64, 32, 16, 32, 64, 128],
(256, 128, 64, 32, 64, 128, 256], [128, 64, 32, 16, 8, 16, 32, 64, 128],
(256, 128, 64, 32, 16, 32, 64, 128, 256], [512, 256, 128, 64, 32, 64, 128, 256, 512|},
learning rate € [le-2, le-3, le-4], batch size € [2048]
IF trees € [16, 32, 64, 128], max samples € [0.4, 0.6, 0.8, 1.0],
max features € [0.4, 0.6, 0.8]

4.2 XAI results

For our explanation evaluation, we run SHAP on all anomaly detection mod-
els, explaining the 80 attack data points labeled as described in Section (3.1
To capture the impact of different replacement data choices within SHAP, we
use SHAP with the replacement options discussed in Section [3.4] namely the
zero-vector, k-means cluster centers, overall mean, NN, and opt. All replacement
methods that require data were fitted only on the training data. We additionally
use the gradient-based optimization process to explain AE, as it is the only dif-
ferentiable architecture. To contrast SHAP’s XAl results, we calculate baseline
explanations. As baselines we report the explanation scores of uniform random
noise sampled from [—1, 1], as well as random noise multiplied with the input
anomaly (noisexinput). Further, for AE we report the scores obtained through
using the reconstruction error of individual features as explanation, which is
another option to extract explanations from AE [21].

Quantitative results. XAl results are reported through ROC and COS scores
for each individual attack, as discussed in Section [3.5] We report the mean and
standard deviation of these scores across all 80 labeled attacks for our baselines
in Table [3] and for the SHAP explanations in Table @ While almost all com-
binations of detection models and replacement values are able to surpass the
random baselines, we observe large variation across models and replacements.
The highest explanation scores both in ROC and COS are similar for all models,
suggesting that explaining NIDS through SHAP is feasible. However, we ob-
serve that no coherent best replacement choice exists across anomaly detection
models. Additionally, we find that NN replacements perform poorly across all

Table 2: Best results of each approach on evaluation and test set, reporting mean
and standard deviation of scores across 10 random seeds.

model PReval PRtest ROCeval ROCtest
OC-SVM 98.6+£0.2 99.5+0.1 99.9+0.0 99.9+0.0
AE 98.4+1.1 99.240.5 99.84+0.1 99.9+0.0
IF 98.0+14 99.34+0.5 99.74+0.2 99.94+0.1
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Table 3: Baselines for quantitative explanation scores.

Baseline ROCxar COSxar
uniform noise 49.4+21.7 —1.7+38.1
noise X input 49.84+19.2 —0.2+26.4

AE reconstruction 87.9+10.3 72.7 +14.8

models, which may be caused by its use of proximity. When replacement fea-
tures are identical to the features they are replacing, by construction, SHAP
assigns a feature relevance score of zero. Since NN selects data points that are
close to the anomaly, and may therefore share feature values with the anomaly,
these features can not be recognized by SHAP. In application scenarios where
anomalies are not easily identified through simple distance measures, this can
introduce a bias into SHAP explanations, leading to poor performance.

For OC-SVM, all replacement values beside NN work comparably well, with
highest scores achieved through mean replacement. For AE, k-means and opt
show high explanation scores, while mean performs decently. The zero-vector
replacements, on the other hand, show problematic behavior. The zero-vector
itself obtains higher anomaly scores for AE than attacks within the dataset.
This causes issues, as SHAP constructs its explanations relative to the model
prediction obtained on the replacement data. When the replacement is rated as
more anomalous than the data point to explain, SHAP scores highlight features
that change the model output away from the anomalous replacement values,
as opposed to showing the desired features that move the model output away
from normal behavior. As a consequence, the resulting explanations are entirely
unsuitable for identifying anomalous feature values, as reflected in the obtained
ROC and COS scores. Low performance on mean can be explained by the same
observation in a weakened form, as the mean data point obtains similar anomaly
scores to those of the attacks within the test set. The replacements drawn from
the multiple k-means cluster centers, however, appear to stabilize this behavior,
being scored by AE as less abnormal than attacks and producing high expla-
nation scores. IF exhibits similar behavior on different replacements, obtaining
poor explanations when using k-means, mean, and NN replacements. Again, we
find that these replacements obtain anomaly scores from IF that are in the same

Table 4: Quantitative explanation scores using different reference values.

OC-SVM AE IF
Replacement ROCxar COSxar ROCxar COSxar ROCxar COSxar
k-means 88.1+ 8.7 68.6+12.6 91.3+ 87 71.8+159 735+19.3 52.8+23.1
Zeros 85.2+ 9.2 48.1+139 51.9+11.7 —20.7+16.6 87.2+ 8.7 65.9+13.2
mean 90.1+ 7.5 71.0+129 82.6+12.7 57.4+196 658+18.7 33.4+257
k-NN 71.3+11.9 56.4+18.1 75.4+11.6 61.1+15.7 688+ 11.7 43.8+22.7
opt N/A N/A 885+ 87 6894143 N/A N/A
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Fig.2: SHAP explanations for each NIDS with best performing replacement val-
ues on a single non-cherry-picked dos attack. Bar width corresponds to feature
influence, and features that are indicative of an attack (green) or non-indicative
(red) are highlighted according to ground truth. OC-SVM distributes relevance
to many different features. AE and IF highlight relevant features well, while IF
additionally highlights irrelevant packet size.

value range as the attacks within the dataset. IF only achieves good explanation
performance using the zero-vector as replacement, which for IF obtains smaller
anomaly scores compared to the attacks.

Qualitative results. To gain a more in-depth understanding of the observed
explanation behavior, we investigate the individual explanations obtained by
different models and replacement values in detail. We utilize SHAP plots to
visualize and closely inspect the annotated explanations. Exemplary SHAP plots
for different NIDS on a dos attack can be seen in Figure

Across all replacement options we make the following observations. We find
that for dos attacks OC-SVM correctly identifies high connection frequencies of
unusual IP addresses, but also highlights flow duration. Port scans are mainly
detected over suspicious IPs and ports, with anomalously high connection fre-
quencies of the attacker also highlighted in some data points. In ping scans, the
atypical ICMP protocol in combination with the two IP addresses is found, but
not without highlighting some irrelevant packet size related features. Finally,
brute force attacks are explained through the anomalous combination of the
port used by ssh, together with the IP addresses, as well as through frequent
connections to the ssh port. Overall, we find OC-SVM explanations to assign
relevance to many different features, a similar behavior to that observed in [31].

- preprint - 10
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While OC-SVM assigns a large amount of relevance to truly anomalous features,
this also produces a lot of noise, since many irrelevant features obtain a smaller
but not negligible amount of relevance.

AE reliably highlights dos attacks through high connection frequencies and
corresponding IP address and port of the attack victim. Port scans are detected
mainly through the unusual combination of IP addresses and the victim’s port.
On ping scans, explanations successfully highlight uncommon ICMP traffic, but
do not highlight further indicative features. Brute force attacks are identified by
the atypical combination of ssh port and IP addresses, but also contain some
noise with highlighted irrelevant TCP flags.

IF finds the anomalous combination of high connection frequency and IP ad-
dress for the dos victim, but also highlights some irrelevant TCP flags and packet
sizes. It successfully identifies port scans through high usage frequency of the
attacker’s port in combination with the corresponding attacker IP, but also high-
lights packet sizes. Ping scans are detected through identifying unusual ICMP
traffic between attacker and victim IPs and ports. Finally, it identifies brute force
attacks through the combination of ssh port and IP addresses, while also high-
lighting few TCP flags. Overall, IF using zero-vector replacement successfully
identifies many relevant attack characteristics, and shows a slight preference for
highlighting irrelevant TCP flags and packet sizes. Other replacements result in
highlighting many irrelevant TCP flags and irrelevant IP address entries.

Consistency results. As a final step in our evaluation, we investigate whether
the obtained SHAP explanations show consistent patterns across specific attack
scenarios, which might allow for pattern matching and detection of common
attack scenarios through explanations. We construct heatmaps as described in
Section [3:5] for each anomaly detection model using their best performing re-
placement values, and visualize the heatmaps in Figure 8] OC-SVM consistently
highlights similar features across ping scan attacks, with some clear patterns
showing on dos attacks. On port scans and brute force attacks, patterns are less
pronounced with multiple points showing very low similarity of their most rel-
evant features. Compared to the other models, OC-SVM’s similarities are also
lower across all groups of attacks, which again highlights OC-SVM’s behavior
to split relevance between many individual features, causing noisy explanations.

0.6 ] 0.6
dos dos 0.4 dos
port 04 port port 04
. 0.2
ping # 0. bing ping 0.2
brute B ; brute M brute
. — 0.0 " 0.0
dos port ping brute dos port ping brute dos port ping brute
(a) OC-SVM mean (b) AE k-means (¢c) IF zero-vector

Fig. 3: Heatmaps showing the similarity of feature relevance explanations.
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Both AE and IF explanations show similar patterns with clear similarity between
dos, port scan, and brute force attacks, with highlighted features varying more
on port scans and IF explanations being slightly more consistent throughout.
Discussion. Overall, we observe that the direct application of SHAP to pop-
ular anomaly detection techniques can indeed provide strong explanations within
NIDS, validating the popular use of SHAP within this domain. However, we find
that the selection of replacement values within SHAP is critical for explanation
quality, and there is no apparent replacement that consistently performs well
across models. This highlights the need for incorporating quantitative XAI eval-
uations into the development of explainable NIDS, as the use of common default
values for SHAP replacement data does not guarantee high quality explanations.

5 Conclusion

In this paper we constructed ground truth explanations for multiple attack sce-
narios within an established network intrusion detection dataset through expert
annotation. We used these annotations to conduct an in-depth quantitative eval-
uation of multiple anomaly-based approaches for NIDS when explained by the
popular SHAP post-hoc XAT approach and specifically investigated the impact
of choosing different replacement strategies.

Our findings indicate that SHAP can produce high-quality explanations for
all investigated detection models, but the choice of replacement values signifi-
cantly impacts the quality of the resulting explanations. Our findings also em-
phasize the importance of considering the selection of replacement values during
the design of explainable NIDS, as well as the systematic evaluation of post-hoc
XAIT techniques used in the pipeline, since we have demonstrated that SHAP’s
default replacement choice may not always produce satisfactory explanations for
all models.

While this paper yields a positive result for the use of SHAP in NIDS, it
is subject to several limitations that provide potential opportunities for future
work. Beyond the investigation of XAI quality across multiple NIDS and replace-
ment data, evaluations could be extended to investigate the impact of data pre-
processing schemes and different XAl approaches. Additionally, while we quan-
titatively validate that SHAP successfully identifies anomalous features within
NIDS attacks when using appropriate replacement data, the benefit of SHAP
from a user perspective is also worthy of investigation. Finally, our work high-
lights that a consistent choice for replacement values is desirable for anomaly-
based NIDS, marking the construction of model-invariant replacement values as
relevant future work.
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