Teaching Mathematical Modeling with Computing Technology:
Presentation of a Course based on Evacuations

André Greubel

andre.greubel@uni-wuerzburg.de
University of Wuerzburg
Wuerzburg, Germany

Stefan Ruzika
ruzika@mathematik.uni-kl.de
University of Kaiserslautern
Kaiserslautern, Germany

ABSTRACT

Mathematical modeling is considered a crucial skills, both in mod-
ern life and STEM education. Prior research has identified the rel-
evance of working on complex and authentic modelings problems
in education. However, up to this point, little of the courses pro-
posed in this area explicitly focus on the role of comprehensive
computing technology during mathematical modeling. We bridge
this gap by presenting a design and ready-to-use technology for an
interdisciplinary course that introduces students to mathematical
modeling of complex systems with comprehensive technology. In
the course, students are introduced to grid automatons as basic
computing model. Furthermore, they can increase their knowledge
of mathematical modeling and algorithmic thinking. In this paper,
we develop a didactic structure for such a course and present educa-
tional technology developed to support this structure. The structure
itself consists of three simulation environments and is based on
the following problem: “How can we estimate the time it takes to
evacuate our school (without an experiment)?”. We describe the
structure of the course and the simulation environments in more
details and outline potential exercises for such a course.

CCS CONCEPTS

« Computing methodologies — Simulation evaluation; « Ap-
plied computing — Interactive learning environments.

KEYWORDS
STEM Problems, Computing Technology, Digital Simulations

ACM Reference Format:

André Greubel, Hans-Stefan Siller, Stefan Ruzika, and Lynn Knippertz. 2022.
Teaching Mathematical Modeling with Computing Technology: Presenta-
tion of a Course based on Evacuations. In Proceedings of the 17th Workshop
in Primary and Secondary Computing Education (WiPSCE °22), October 31-
November 2, 2022, Morschach, Switzerland. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3556787.3556802

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

WiPSCE °22, October 31-November 2, 2022, Morschach, Switzerland

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9853-4/22/10.

https://doi.org/10.1145/3556787.3556802

Hans-Stefan Siller
hans-stefan.siller@mathematik.uni-wuerzburg.de
University of Wuerzburg
Wuerzburg, Germany

Lynn Knippertz
knippertz@mathematik.uni-kl.de
University of Kaiserslautern
Kaiserslautern, Germany

1 INTRODUCTION

Mathematical problem solving and mathematical modeling are
crucial skills for modern education [17]. A modern way to foster
these skills are “complex and authentic modelling problems”: real-
life problems used as learning experience for multiple skills that
are only little simplified for education (c.f. Section 2.1).

Because of the “necessity of treating authentic, complex mod-
elling problems interdisciplinary” [19], working on these prob-
lems frequently requires activities from other STEM fields. Be-
cause of this, “[d]esigning authentic learning scenarios is therefore
one of the key challenges in education interventions that aim for
STEM literacy” [4]. This is especially true for technology, the T in
STEM: “Usually, to get a solution, computer programmes (Excel or
more sophisticated ones) must be applied” [19].

However, while several approaches for teaching with authentic
and complex problems are published (c.f. [19, p. 291f.] for a list),
none of the approaches in this list explicitly focus on the use of
such “sophisticated” computing technologies during this processes.
Furthermore, there is little research into how to introduce such com-
prehensive technology to students. This is unfortunate, as “there
is a need to understand the implications of this technology for
all aspects of classroom practice including that of mathematical
applications and modelling.” [10].

To start bridging this gap, the central goal of this paper is to
develop and present a course designed to introduce learners to
core conceptualization of computing, as well as the application of
comprehensive computing technology while working on complex and
authentic modeling problems. More precisely, we present material®
for a course designed to introduce the students to:

(1) mathematical modeling with comprehensive computing tech-
nology based on an authentic and complex problem.

(2) cellular automatons as one important computing concept
frequently used in modeling for complex problems.

(3) certain aspects of algorithmic thinking focused on the anal-
ysis and evaluation of algorithms. (c.f. Section 2.5).

Overall, our interdisciplinary course teaches students central as-
pects of two important topics: mathematical modeling and comput-
ing. The course itself is designed for students in higher secondary
education (around years 8-10) and based on a complex real-world
problem: Estimating the time it takes to evacuate a building.

!The development of the material was funded by Deutsche Telekom Stiftung.

https://doi.org/10.1145/3556787.3556802
https://doi.org/10.1145/3556787.3556802

WIiPSCE 22, October 31-November 2, 2022, Morschach, Switzerland

Situation Mathematical Computer
Transiali model isyniad model
i
Real Mathematical ! Technology
World World ! World
Y
Real oot Mathematical T Computer
result result result

Figure 1: Technology Enhanced Modeling Process [33].

2 EDUCATIONAL BACKGROUND
2.1 Complex and Authentic Problems

Complex and authentic problems are considered to be of high im-
portance for STEM education [19, 23].

In this regard, problems are considered authentic, if there is an
“alignment of student learning experiences with the world for which
they are being prepared” [26]. Such problems “shall articulate the
relevance of mathematics in daily life, environment and sciences
and impart competencies to apply mathematics in daily life, envi-
ronment and sciences” [19]. With them, learners can “practice the
skills and knowledge that are relevant and real to workplace situa-
tions and learn it at the same time” [16]. Furthermore, problems are
characterized as complex, if they are real-world problems that are
“only little simplified” [19], and if they require consistent work over
a longer period of time (at least multiple hours). In such problems,
learners “have to carry out the whole modelling cycle on their own,
only supported by tutors or their teachers, sometimes they even
have to carry out the modelling cycle several times, going back and
forth quite often in so-called mini-cycles.” [19].

Notably, these characteristics bring such problems “into sharp
contrast to many other modelling activities usual at school”. [19].
Most importantly, they do not focus on only one single skill or
subject but are interdisciplinary in nature. As such, such problems
are frequently included as parts of project weeks (c.f. [19, 31]).
However, it should be noted that “[t]he strong plea of the students
for the inclusion of these kinds of examples in usual mathematics
lessons support our position that it is appropriate to include these
kinds of problems in ordinary mathematics lessons.” [19].

2.2 Modeling with Computing Technology

To solve complex and authentic problems, students frequently need
to utilize mathematical modeling, a central goal of which is the pro-
motion of modeling competencies, i.e., the ability and the volition
to work out real-world problems with mathematical means [18, 25].
One established way to describe the inclusion of computing
technology in mathematical modeling is the technology enhanced
modeling process, as described by [33] and depicted in Figure 1.
This process focuses on the explicit translations between the
mathematical and computer world, e.g., by implementing an algo-
rithm with a programming language or using a simulation. Note that
this explicit translation is not universally accepted as the only way
to include computing technology into modeling tasks (c.f. [7, 13])
and different models are available (e.g., [11, 12]). However, it is well
suited for our course as we also utilize a direct translation of results.

André Greubel et al.

When using computing technology in mathematical modeling,
there should be a technological surplus value. This means that the
technology should not be included as a mean to itself. Instead, the
key benefits of including the computing technology should be ap-
parent to both students and teachers. In our course, this surplus
value lies within the automated execution of the simulation algo-
rithm: Given that the manual execution of scenarios with a grid
automaton is very time-consuming (even execution of single rooms
can easily take more than one hour), it is not only beneficial but
necessary to introduce automation to work on authentic problems.

2.3 Cellular Automata as Computing Models

A cellular automaton is one of the oldest computing models, dating
back to von Neumann [21]. It consists of cells with neighbours
that change their state according to specified rules (the program-
ming of the automaton). A sub-type of a cellular automata is a grid
automaton which uses a two-dimensional grid of rectangular cells.
For complex real-world problems, cellular automata are fre-
quently used as computing model. For example, they can be used
while modeling climate change [2], urban growth [3], traffic flow [27],
kinetic phenomena [22], or the spread of HIV viruses in cells [8].
In computer science education, they are a frequent object of anal-
ysis in theoretical computer science [1]. They are are also sometimes
used as computing model, e.g., for teaching about parallel comput-
ing [35], to assess programming skills [34], or to introduce low-level
programming [6]. However, more flexible register-machines are
frequently used instead, often in combination with textual or visual
high-level programming languages like Python or Scratch [20].
As such, while cellular automata are currently not widespread
as computing model in computer science education, they are fre-
quently used as computing model for modeling real-world problems,
making them a sensible choice for interdisciplinary courses.

2.4 Evacuations with Grid Automatons

Based on prior research, we use building evacuation as context for
our course. This context allows for interesting, real-world modeling
problems, complex exercises, and meaningful inclusion of com-
puting technology — while not being too reliant on sophisticated
inner-mathematical methods or domain knowledge [14, 15, 30, 31].
To simulate building evacuations, grid automatons with agents
are frequently used [24]. In the implementation of such an automa-
ton, each cells can be either empty, full, blocked, or safe. While full
cells contain (exactly one) agent, empty cells do not. Blocked cells
neither do nor can contain an agent. They represent walls in the
building. Finally, safe cells remove each agent moving on it from
the simulation. They represent the destinations in a scenario.
During each Simulation Step, each agent can move to a neigh-
bouring cell - either in four (neumann neighbourhood) or in eight
directions (moore neighbourhood). Whether or how the agents move
is described by the fleeing algorithm. A simple fleeing algorithm
might instruct each agent to move to the cell next on the shortest
path of unblocked cells to the nearest safe cell, if this cell is empty.

2.5 Computational and Algorithmic Thinking

Computational thinking is one of the cornerstones of computing
education and can be defined as “the thought processes involved

Teaching Mathematical Modeling with Computing Technology

EEEERERE T
DIC Imacunag
[Gl g
gk (a8
SS DEpooas non. ﬂ
= Dooaoon R *
L R
*

[l [o] o]

] g
 [EERE LT
[EElEs Al s ol

| DENED0EDDDDEs

T i
DEN0DONOnONE0
20E00N0DODO0E
D@00 DNEDD0DEE

2o

i1

Figure 2: Excerpt of some of the photographed simulation
steps (manual execution).

in formulating problems and their solutions so that the solutions
are represented in a form that can be effectively carried out by an
information-processing agent.” [36].

One important sub-skill of computational thinking is algorith-
mic thinking [32], defined as the ability to “to think in terms of
sequences and rules as a way of solving problems” [5]. Algorithmic
Thinking is based on a firm understanding of the concept of an
algorithm and its key properties (like determinism, performance,
correctness, and validity). It requires activities like stepping through
algorithms step-by-step to work out what they do [5], “assessing
that an [algorithm] is fit for purpose” [5], and “the ability to think
about all possible special and normal cases of a problem” [9].

In our introductory course, algorithmic thinking activities focus
on such evaluating activities and the introduction of key properties
of algorithms - rather than the design of new algorithms. As object
of analysis, the fleeing algorithm of the grid automaton is used.

3 PRESENTATION OF THE SIMULATION
ENVIRONMENTS

In this section, we introduce high-level idea of our course which is
based on a real-world problem: Estimating the time it takes to evac-
uate a building - like a school - without a real-world experiment.
It utilizes one analog and two digital simulation environments de-
veloped for this course that consecutively get more comprehensive.

3.1 First Learning Environment: Manual
Execution of a Simulation on Paper

The first environment utilizes a playful, hands-on approach. A grid
template with objects depicted on the cell structure is made out of
paper. Agents are placed on the grid in the form of playing figures.
All figures are labeled for a proper distinction between each other.

3.1.1 Execution of the Simulation. To execute a simulation step,
agents are moved in a random order within a selected neighborhood
such that they shorten their distance to the nearest goal. In doing so,
they can only occupy empty cells. If none exists, the agent chooses
not to move. If a goal is reached, the agent is removed from the
field. After every agent had the chance to move, the simulation step
is completed and the next one begins. The simulation stops once
the last agent reached a goal. In order to determine the agent that
may move, a picture (or label) of every agent can be depicted on
a playing card. Shuffling these cards and drawing them one after
another enables an intuitive, lightweight use of randomness. After
completion of a simulation step, the cellular space with the agents
is photographed. Such images, exemplary shown in in Figure 2, can
then be played as a stop-motion film sequence.

W iPSCE ’22, October 31-November 2, 2022, Morschach, Switzerland

A B C D E F G H J K L M N o} P Q R

Random Numbers

w
N
w
IS
o
~
©
0
o
s
S

IS
o
~
w
Iy
o)
o
~
©
o
o
@

o
o
~
w
Iy
o)
o
~
©
©
o
re
&

Figure 3: Example of a scenario in the second environment
(Excel Screenshot).

3.1.2 Didactic Goals of this Environment. This first environment
introduces students the concept and basic idea of simulating room
evacuations with a grid automaton. Learners get a first, hands-on
experience with the domain, approach, and the computing model.
The environment clearly pictures the underlying grid automaton
and their counterparts of real-world entities (persons, walls, exits)
in the simulation. Furthermore, the different time steps (single move
and a full movement of all entities) are associated with clear events
(drawing a card or finishing the deck of cards). Simple research
questions such as "What influence do different numbers of people
have on evacuation time?" can already be answered within this
learning environment, This visual and enactive approach leads
to an easy memorable model that is especially suitable for young
learners.

3.1.3 Limitations of this Environment. On the contrary, the move-
ments of the agents require time which limits the number of agents
and the size of the rooms to be evacuated. Because of this, the scope
of possible exercises is limited: It is not yet possible to study exten-
sive, real-world evacuation scenarios, such as the evacuation of an
entire building. Furthermore, the environment involves a material
cost and preparation time, as game figures and associated cards
have to be purchased, the cellular automaton has to be created on
paper and cards, pens and glue dots are needed to mark the figures.

3.2 Second Environment: Semi-Automated
Simulation with Excel

The second environment is implemented as an Excel file and in-
troduces automation to the simulation process. The students first
need to implement the automaton into this Excel file by setting
the background color of cells. This Excel file is seemingly empty:
The only content visible at first are step-by-step instructions to
create the evacuation scenario: Walls can be filled in with black
background, different background colors can be used for agents.
Additionally, cells can be marked as safe by filling them with a
zero. If at least one cell contains a zero, the sheet automatically
updates: Each cell denotes the distance to the nearest safe cell. This
information is inserted by a VBA script.

WIiPSCE 22, October 31-November 2, 2022, Morschach, Switzerland

3.2.1 Execution of the Simulation. This script also contains func-
tions to semi-automatically execute the simulation. All functions
available are assigned to a key combination. Once this key combi-
nation is pressed in the Excel sheet, the corresponding function is
called. The most important functions are: 1) assigning a random
number to each person, 2) letting the person with the lowest ran-
dom number move one step, 3) let all persons move one step. These
functions can be used to decrease the amount of manual labor and,
as such, increase the possible scope of exercises.

Similarly to the first environment, images of the steps can be col-
lected and played as a stop-motion movie, e.g. by using a Screenshot-
Tool and PowerPoint.

3.2.2 Didactic Goals of this Environment. The second environment
utilizes automation to reduce the overhead of the manual execution
method. Hence, it is now possible to shift the focus from learning
about the simulation towards working with technology and solving
more complex problems with it. For example, it is now possible
to build more sophisticated scenarios and analyze aspects of the
results that depend on executing the simulation multiple times.

Still, its technological overhead remains very limited. Most im-
portantly, every automation steps corresponds to exactly one step
previously executed manually. This highlights that all results are
an inherent property of the algorithm - rather than the method of
execution.

3.2.3 Limitations of this Environment. As Excel was not specifi-
cally designed to support such tasks, it cannot solve some of the
problems of the first environment. In particular, some aspects, such
as running multiple, similar scenarios, still require a huge manual
overhead. Additionally, the scenario can be implemented only in
an area specifically designed for it. While the size of this area can
be configured by the creator of the Excel file, it cannot be changed
afterwards. As such, switching to more and more complex scenar-
ios is unpractical as it requires the preparation of files enabling
different scenario sizes. Furthermore, some aspects of the simula-
tion, like the neighbourhood-function, cannot be changed easily in
this environment. Both aspects still limit the possible scope of the
scenarios and thus also the possible problems to be investigated.

3.24 Access to additional material. All Excel files, alongside a de-
tailed description, are available at https://dbtools.mathematik.uni-
kl.de/evakuierung/index.html. The material is freely accessible.
Files for different building sizes are available.

3.3 Third Environment: Automated Simulation
with a comprehensive Web Application

The third environment is implemented as comprehensive, customiz-
able web applications. This significantly increases both the complex-
ity of the environment, as well as the possible scope of exercises.

The WebApp provides a scenario editor that can be used to
build scenarios by inserting different kind of tiles (e.g., containing
persons, walls, or safe zones) into the scenario. Furthermore, sce-
narios can also be stored and loaded as a base-64 text, enabling easy
transmission of scenarios between students and learning places,
e.g., via e-mail or chat messenger. Multiple example scenarios (that
are used in the course) are also directly available from within the
environment via the press of a button.

André Greubel et al.

Qe
oe 28 -3 Qe
-3
o8 o0 ee ke s |
[] [} [w
f 2 4 =
ee (X} ee \ W
8
LN £ 3%] Qe LK 3
LK 3

Figure 4: Two scenarios with different sizes and aesthetics in
the third environment (web app screenshots).

3.3.1 Execution of the Simulation. Before the execution, the fleeing
algorithm used for the execution, the neighbourhood function, and
the graphical design can be customized. After starting the execu-
tion of a scenario with a click on a button, the scenario is executed
automatically. Then, central statistical information about the simu-
lation (necessary steps, total movements, and used configuration)
are shown. Additionally, it is still possible to visualize the execution
of the simulation step-by-step or movement-by-movement by using
buttons to navigate the current state of the simulation (e.g., one
movement ahead, or one step ahead). It is also possible to highlight
the path to a safe cell a person took by hovering over that person.

3.3.2 Didactic Goals of this Environment. The third environment
removes the last overhead that remained in the second environment,
offers a vastly extended functionality, and has many quality-of-
life features for smooth working. It enables the rapid execution
of different scenarios and configurations: The execution of the
large university building on the bottom of Figure 4 (consisting of
180 X 86 tiles and 600 persons with a total of over 20.000 individual
movements) takes around 10s (+ 10s) on typical school laptops.
This reduction in manual labor enables sophisticated exercises, as
well as a meaningful analysis and comparison of the mathematical
model and the algorithms used in the simulations.

3.3.3 Limitations of this Environment. However, while powerful,
the main focus of this environment is to appeal to non-specialized
learners interested in comprehensive mathematical modeling.

First, it is not optimized to achieve extremely accurate results.
Instead, it provides a reasonable result and performance only for up
to middle-sized buildings, like schools with around 100 classrooms.
For scientifically valid results, or bigger buildings and building
complexes, professional software is necessary.

Second, the standard choices of some parameters are suitable for
common, but not all, scenarios. In some edge cases, they need to be

https://dbtools.mathematik.uni-kl.de/evakuierung/index.html
https://dbtools.mathematik.uni-kl.de/evakuierung/index.html

Teaching Mathematical Modeling with Computing Technology

understood and customized, requiring a deeper understanding of
the environment in order to achieve good results.

Third, it is not (yet) possible to fully customize the environment.
All options have to be selected from a list and no custom fleeing al-
gorithms can be implemented (yet). It is also not possible to simulate
individual behavior of agents like accidents or stubbornness.

3.3.4 Additional Material. The simulation itself, alongside a de-
tailed description of the environment (including user handbooks,
and technical details like the available algorithms and their most
important properties) is freely available at https://evadid.it/eva2.

4 PHASES FOR THE IMPLEMENTATION OF A
COURSE

In this section, we describe multiple phases that can be used to
guide working during the course. The phases build on each other
and either introduce skills necessary for the following phases, or
work towards one of the course goals (c.f. Section 1). Thus, all
phases form a structure that accounts for all necessary learning
requirements and achieves all goals of the course. For each phase,
we will outline the central goal, why it was chosen, and the activities
done by the students to achieve this goal.

4.1 Phase 1: Introducing Preliminaries

The central goal of the first phase is the introduction of the grid
automaton as computing concept and the modeling process (sec-
ond goal). As such, this phase introduces the preliminaries for the
following phases. This explicit phase is reasonable as neither the
modeling process, the grid automaton, nor the execution of the
simulation are straight-forward to understand. Thus, they should
be taught explicitly to enable a low floor by reducing cognitive
load (c.f. Plass et al. [28], Resnick et al. [29]).

Student activity at this point focuses on the comprehension of
the model, rather than the quality of solutions. Thus, exercises
should motivate students and require the proposed model and the
modeling process to be solved. A suitable leading question can
be stated as “How long does it take to evacuate the classroom
we are sitting in?” This question has two main benefits. First, it is
unlikely that students can solve this problem without either a model
and a formalized modeling process, or an experiment. Second, the
question incorporates the surroundings of the students and, as such,
is likely to be meaningful and motivating to them.

4.2 Phase 2: Introducing Automation

Once students understand the model and modeling process, more
complex problems can be stated. For example, it is possible to extend
the question not only to the room, but the building the teaching
takes place. This naturally leads to the problem of scalability, as
the manual execution is very time consuming. The second phase
tackles this problem by demonstrating how computing technology
can be included sensibly into mathematical modeling. As such, this
phase primarily focuses on the first central goal of the course.

To do so, one should first introduce the core activity of the
technology enhanced modeling process: the translation between
mathematical and computer world. Switching to the second en-
vironment resolves the scalability problem without introducing
additional overhead, as model and algorithm are already known.

W iPSCE ’22, October 31-November 2, 2022, Morschach, Switzerland

While demonstrating this translation, it is important to note that
the results are dependent only on the mathematical model, rather
than the method of execution. This can be verified by comparing
the execution of both environments step-by-step. Understanding
this aspect is relevant to recognize that modeling with and without
computing technology are not fundamentally different things - but
rather alternatives that have to be balanced depending on the scope
and resources of the project.

4.3 Phase 3: Optimizing the Modeling Quality

This third phase increases the knowledge of mathematical modeling
in complex problems (first goal). At this point, the quality of the
answer (rather than the process) becomes the main focus of the
course. More precisely, students should be made aware about what
properties of the modeling process are relevant for a good solution.
For example, results can be presented as number, as range, or as
distribution and be interpreted as exact result, good estimate, rough
approximation, or order of magnitude.

Exercises can be phrased as “what-if”-scenarios that encour-
age execution and comparison of multiple, similar scenarios. Thus,
questions might include “What if we want to evacuate the whole
building?”, “What if the random number generator chose different
people to move?”, “what if there were double as many people in a
certain room?”, “What if the doors were smaller?”, ...

4.4 Phase 4: Optimizing the Model Quality

In this phase, the focus remains on the quality of the answers
to exercises (first goal). However, in this phase, a different sub-
question is central: What properties of the model and algorithms
are relevant for a good solution? Specially crafted exercises can be
used to highlight edge cases or unrealistic behavior of the basic
model.

For example, movement takes unrealistically long in diagonal
hallways, if one uses the Neumann neighbourhood. Furthermore,
it would be more realistic to let agents switch to another safe desti-
nation if their way to the nearest one is congested. Notably, this
behavior is only shown in certain algorithms (e.g.,multiple goals
but not closest goal).

For such tasks, it is beneficial to switch to the third environment
to account for these results and improve the quality of the modeling
results by using different configurations.

4.5 Phase 5: The need for Algorithm Evaluation

This phase should demonstrate the necessity to evaluate algorithms
in more details (third goal). This necessity can be shown by demon-
strating the impact of the configuration changes on the simulation
result. For example, allowing for diagonal movement lowers the
simulation steps in the left scenario depicted in Figure 4 by 50%.
Using a different fleeing algorithm raises them by 50%.

Exercises can include the deliberate construction of edge-case
scenarios that lead to results that deviate from reality as far as
possible. Furthermore, students can be asked to identify proper-
ties the scenario must fulfill for suitable results of the algorithms.
Additionally, it is possible to compare the quality of results with real-
world evacuations - e.g., with data collected from regular training
evacuations from the school.

https://evadid.it/eva2

W iPSCE ’22, October 31-November 2, 2022, Morschach, Switzerland

4.6 Optional Phase 6: Evaluating and
Improving

Optionally, one can then continue to explicitly show not only why
an evaluation is necessary, but also how such an evaluation would
be performed. To do so, one needs to introduce additional tech-
niques, such as statistical or in-depth analysis of algorithms. Fur-
thermore, students can be asked to design novel algorithms that
perform well for the concrete buildings they are working with.
Notably, depending on the underlying computer science and math-
ematics curricula, these techniques might not be known to the
students at that point. However, such exercises demonstrate that
this context enables a high ceiling (c.f. [29]) for such a course both
for teaching mathematical modeling and computational thinking.

5 CONCLUSION

In this paper, we presented a course to introduce modeling with
computing technology to students. It is based on a motivating real-
world problem (building evacuation) that has been verified to be
interesting in prior research. In the course, students work with three
different simulation environments — two of which utilize freely-
available and ready-to-use digital simulations. These environments
are utilized in different phases of the course that introduce the
desired knowledge step-by-step, frequently in an enactive way.

While working with these environment and the problems pre-
sented in the course, students get first-hand experience with grid
automatons as an example of an important computing model for
simulating scenarios. They get first experiences with algorithms
and their key properties and learn about the inclusion of comput-
ing technology in problem-solving. Furthermore, they can improve
their modeling competences and learn about both the need and
basic approaches to verifying algorithms during modeling.

The next important step for this project is an empirical verifi-
cation of the course quality. This includes design-based research
(into the quality of material like handbooks for the environments),
qualitative analysis (into the working behavior of students), and
quantitative verification (of learning outcomes). However, the de-
sign and ready-to-use technology presented in this practice paper
can already be used by practitioners in classes.

Overall, we hope that this papers motivates practitioners to use
our design and technology in modeling classes and lays the ground-
work for empirical research into the role of computing technology
in problem solving with authentic and complex problems.

REFERENCES

[1] Michal Armoni, Susan Rodger, Moshe Vardi, and Rakesh Verma. 2006. automata
theory: its relevance to computer science students and course contents. In Pro-
ceedings of the 37th SIGCSE technical symposium on Computer science education.

[2] PD Carey. 1996. DISPERSE: a cellular automaton for predicting the distribution
of species in a changed climate. Global Ecology and Biogeography Letters (1996).

[3] Yimin Chen, Xia Li, Xiaoping Liu, Hu Huang, and Shifa Ma. 2019. Simulating
urban growth boundaries using a patch-based cellular automaton with economic
and ecological constraints. International Journal of Geographical Information
Science 33, 1 (2019), 55-80.

[4] Lucian Ciolan and Laura Elena Ciolan. 2014. Two perspectives, same reality?
How authentic is learning for students and for their teachers. Procedia-Social
and Behavioral Sciences 142 (2014), 24-28.

[5] Andrew Csizmadia, Paul Curzon, Mark Dorling, Simon Humphreys, Thomas Ng,
Cynthia Selby, and John Woollard. 2015. Computational thinking-A guide for
teachers. (2015).

—_
o

[12

(13]

(14]

[15]

(16

(17]

[18

[19

[20

~
£,

IS
3

[29]

[30

(31]

[32

(33]

&
=)

[35

[36

André Greubel et al.

Gabriele Di Stefano and Alfredo Navarra. 2012. Scintillae: How to Approach
Computing Systems by Means of Cellular Automata. In Cellular Automata.
Helen M Doerr, Jonas B Arlebéck, and Morten Misfeldt. 2017. Representations of
modelling in mathematics education. In Mathematical modelling and applications.
Rita Maria Zorzenon Dos Santos and Sérgio Coutinho. 2001. Dynamics of HIV
infection: A cellular automata approach. Physical review letters 87, 16 (2001).
Gerald Futschek. 2006. Algorithmic thinking: the key for understanding computer
science. In International conference on informatics in secondary schools-evolution
and perspectives. Springer, 159-168.

Vince Geiger. 2011. Factors affecting teachers’” adoption of innovative practices
with technology and mathematical modelling. Trends in teaching and learning of
mathematical modelling (2011), 305-314.

Gilbert Greefrath, Corinna Hertleif, and Hans-Stefan Siller. 2018. Mathemati-
cal modelling with digital tools—a quantitative study on mathematising with
dynamic geometry software. ZDM 50, 1 (2018), 233-244.

Gilbert Greefrath, Hans-Stefan Siller, and Jens Weitendorf. 2011. Modelling
considering the influence of technology. Trends in teaching and learning of
mathematical modelling (2011), 315-329.

André Greubel and Hans-Stefan Siller. 2022. Learning about black-boxes: A
mathematical-technological model. In Twelfth Congress of the European Society
for Research in Mathematics Education (CERME12).

Andre Greubel, Hans-Stefan Siller, and Martin Hennecke. 2020. Teaching Simula-
tion Literacy with Evacuations. In European Conference on Technology Enhanced
Learning. Springer, 200-214.

Andre Greubel, Hans-Stefan Siller, and Martin Hennecke. 2021. EvaWeb: A Web
App for Simulating the Evacuation of Buildings with a Grid Automaton. European
Conference on Technology Enhanced Learning (2021).

Lam Bick Har. 2013. Authentic learning. The Active Classroom The Hong Kong
Institute of Education (2013).

Hyewon Jang. 2016. Identifying 21st century STEM competencies using work-
place data. Journal of science education and technology 25, 2 (2016), 284-301.
Gabriele Kaiser. 2014. Mathematical Modelling and Applications in Education.
Springer Netherlands, Dordrecht, 396-404.

Gabriele Kaiser, Martin Bracke, Simone Géttlich, and Christine Kaland. 2013. Au-
thentic Complex Modelling Problems in Mathematics Education. Springer Interna-
tional Publishing, Cham, 287-297. https://doi.org/10.1007/978-3-319-02270-3_29
Kanika, Shampa Chakraverty, and Pinaki Chakraborty. 2020. Tools and techniques
for teaching computer programming: A review. Journal of Educational Technology
Systems 49, 2 (2020), 170-198.

Jarkko Kari. 2005. Theory of cellular automata: A survey. Theoretical computer
science 334, 1-3 (2005), 3-33.

Lemont B Kier, Paul G Seybold, and Chao-Kun Cheng. 2005. Modeling chemical
systems using cellular automata. Springer Science & Business Media.

Richard Lesh and Guershon Harel. 2003. Problem solving, modeling, and local
conceptual development. Mathematical thinking and learning (2003).

Yang Li, Maoyin Chen, Zhan Dou, Xiaoping Zheng, Yuan Cheng, and Ahmed
Mebarki. 2019. A review of cellular automata models for crowd evacuation.
Physica A: Statistical Mechanics and its Applications 526 (2019), 120752.

Katja Maaf3. 2006. What are modelling competencies? ZDM 38, 2 (2006), 113-142.
Anthony D McKenzie, Christopher K Morgan, Kerry W Cochrane, Geoff K Wat-
son, and David W Roberts. 2002. Authentic learning. In Proceedings of the 25th
HERDSA Annual Conference. Citeseer, 426-433.

Kai Nagel and Michael Schreckenberg. 1992. A cellular automaton model for
freeway traffic. Journal de physique I 2,12 (1992), 2221-2229.

Jan L Plass, Roxana Moreno, and Roland Briinken. 2010. Cognitive load theory.
Cambridge university press.

Mitchel Resnick, Brad Myers, Kumiyo Nakakoji, Ben Shneiderman, Randy Pausch,
Ted Selker, and Mike Eisenberg. 2005. Design principles for tools to support
creative thinking. (2005).

Stefan Ruzika, Lynn Knippertz, and Eva Rexigel. 2019. Simulation von Evakuierun-
gen auf Grundlage zelluldrer Automaten. Technical Report. Uni. of Kaiserslautern.
Stefan Ruzika, Hans-Stefan Siller, and Martin Bracke. 2017. Evakuierungsszenar-
ien in Modellierungswochen. In Neue Materialien fiir einen realititsbezogenen
Mathematikunterricht 3. Springer, 181-190.

Cynthia Selby and John Woollard. 2013. Computational thinking: the developing
definition. (2013).

Hans-Stefan Siller and Gilbert Greefrath. 2010. Mathematical modelling in class
regarding to technology. In Proceedings of the sixth congress of the European
Society for Research in Mathematics Education. 2136-2145.

Thomas Staubitz, Ralf Teusner, Christoph Meinel, and Nishanth Prakash. 2016.
Cellular Automata as basis for programming exercises in a MOOC on Test Driven
Development. In 2016 IEEE International Conference on Teaching, Assessment, and
Learning for Engineering (TALE). https://doi.org/10.1109/TALE.2016.7851824
Antonio J. Tomeu Hardasmal and Alberto G. Salguero. 2020. Teaching Paral-
lelism With Gamification in Cellular Automaton Environments. IEEE Revista
Iberoamericana de Tecnologias del Aprendizaje 15, 1 (2020), 34-42.

Jeanette Wing. 2011. Research notebook: Computational thinking—What and
why. The link magazine 6 (2011), 20-23.

https://doi.org/10.1007/978-3-319-02270-3_29
https://doi.org/10.1109/TALE.2016.7851824

	Abstract
	1 Introduction
	2 Educational Background
	2.1 Complex and Authentic Problems
	2.2 Modeling with Computing Technology
	2.3 Cellular Automata as Computing Models
	2.4 Evacuations with Grid Automatons
	2.5 Computational and Algorithmic Thinking

	3 Presentation of the Simulation Environments
	3.1 First Learning Environment: Manual Execution of a Simulation on Paper
	3.2 Second Environment: Semi-Automated Simulation with Excel
	3.3 Third Environment: Automated Simulation with a comprehensive Web Application

	4 Phases for the Implementation of a Course
	4.1 Phase 1: Introducing Preliminaries
	4.2 Phase 2: Introducing Automation
	4.3 Phase 3: Optimizing the Modeling Quality
	4.4 Phase 4: Optimizing the Model Quality
	4.5 Phase 5: The need for Algorithm Evaluation
	4.6 Optional Phase 6: Evaluating and Improving

	5 Conclusion
	References

