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ABSTRACT

HTTP Adaptive Streaming (HAS) is employed by more and more
video streaming services in the Internet. It allows to adapt the down-
loaded video quality to the current network conditions, and thus,
avoids stalling (i.e., playback interruptions) to the greatest possible
extend. The adaptation of video streams is done by switching be-
tween different quality representation levels, which influences the
user perceived quality of the video stream. In this work, the in-
fluence of several adaptation parameters, namely, switch amplitude
(i.e., quality level difference), switching frequency, and recency ef-
fects, on Quality of Experience (QoE) is investigated. Therefore,
crowdsourcing experiments were conducted in order to collect sub-
jective ratings for different adaptation-related test conditions. The
results of these subjective studies indicate the influence of the adap-
tation parameters, and based on these findings a simplified QoE
model for HAS is presented, which only relies on the switch am-
plitude and the playback time of each layer.

1. INTRODUCTION

Video streaming has evolved to the dominating application in the
current Internet and its share is expected to grow even further within
the near future [1]. Over-the-top (OTT) video distribution networks
like YouTube, Hulu, or Netflix typically use a HTTP/TCP progres-
sive streaming approach. This allows for the use of the advantages
of HTTP, i.e., the HTTP delivery structure, an easy network address
translation (NAT) and firewall traversal, as well as the advantages
of TCP, i.e., congestion control and guaranteed packet delivery. The
buffering of content at the client’s end further allows to overcome
limitations of network resources on short time scales and to assure a
continuous play out of the video content. If this is not possible, e.g.,
in case of live video streaming, limited network resources may lead
to buffer underruns and the interruption of the playback.

To overcome this problem and to allow for a flexible adaptation
of the video quality to the available network resources and device
capabilities, HTTP Adaptive Streaming (HAS) has been designed.
The video content is available in multiple bit rates, i.e., quality lev-
els, and split into small segments each containing a few seconds of
playtime. The client measures the current bandwidth and/or buffer
status and requests the next part of the video in an appropriate bit
rate, such that stalling is avoided and the available bandwidth is best
possibly utilized. Hence, the control intelligence which segment to
stream has moved from the servers to the clients. The HAS stream-
ing technology is adopted by a wide range of applications and video
content providers [2] and is standardized in ISO/IEC 23009-1 [3].

Much research in the HAS area tries to find the best downloading
strategy in order to maximize the user perceived quality. Influence
parameters, which are typically investigated, are the initial delay,
stalling delays and frequencies, the played back video quality as well
as the time on a video quality and the switching frequency. Based on
the current network conditions, the video characteristics, different
video codecs, and other monitored parameters, the HAS adaptation
algorithm tries to maximize the user’s QoE. Several download al-
gorithms for HAS have been proposed recently, both for single layer
and multi layer codecs. These algorithms either tend to be optimistic,
i.e., they quickly switch to the best possible video quality and ac-
cept oscillations, or to be conservative, i.e., they stick to a low video
quality and avoid oscillations. The impact of these effects on the
user-perceived quality is not fully understood yet, and a user-centric
comparison of the different algorithms is missing.

The contribution of this paper is a subjective investigation of the
influence of several adaptation parameters, namely, switch ampli-
tude (i.e., quality level difference), switching frequency, and recency
effects on Quality of Experience (QoE). Therefore, we conducted
crowdsourcing experiments to collect subjective ratings for different
adaptation-related test conditions. The results of the conducted stud-
ies allow a quantification of the adaptation parameters. Based on the
findings, we present a simplified QoE model for HAS, which relies
on the switch amplitude and the playback time of each layer.

The remainder of this paper is structured as follows. Section 2
discusses the dimensions of QoE for HAS and presents related work.
Detailed information on the experimental setup as well as on the con-
ducted user surveys is highlighted in Section 3. Section 4 presents
the results and a simplified QoE model is derived. The paper is con-
cluded in Section 5.

2. DIMENSIONS OF HTTP ADAPTIVE STREAMING QOE

Most frameworks and definitions (e.g., [4,5]) highlight that some di-
mensions are especially important for QoE in general. These levels,
namely context, user, system, and content, will be covered in this
work on the HAS QoE and are presented shortly next.

Context Level. The context level considers aspects like the en-
vironment where the user is consuming the service, the social and
cultural background, or the purpose of using the service like time
killing or information retrieval. Therefore, the quality of a video is
perceived differently whether a user desperately wants to watch a
specific clip or whether he is simply browsing videos [6]. In this
study, we use a crowdsourcing setup for the subjective quality test.



This means, the participants are non-expert users with diverse de-
mographics and background which conduct the test in their typical
environment. As the test execution is unsupervised, other influence
factors (e.g., the reliability of the participants) have to be monitored
during the test and evaluated afterwards [7].

User Level. The subjective perception of adaptive video streaming
is most dominated by the user himself. The user level includes psy-
chological factors like expectations of the user, memory and recency
effects, or the usage history of the application. In this study, we in-
vestigate recency effects like the last quality level of a clip and the
recency time, i.e., the time since the last quality adaptation.

System Level. The system dimension is an abstraction level for
the technical parameters of video streaming. They cover influences
of the transmission network, the devices and screens, but also of
the implementation of the application itself like video buffering and
adaptation strategies. In this study, we abstract network disturbances
and application behavior into quality switching patterns based on
real-world measurements from a mobile scenario [8].

Content Level. Although the content level is not explicitly men-
tioned in [5], several works (e.g., [9, 10]) found that the content (es-
pecially spatial/temporal information) plays an important role how
adaptation is perceived. The content level addresses the video codec,
format, resolution, but also duration, contents of the video, type of
video, and its motion patterns. In this study, we use a single con-
tent, i.e., a 14 seconds video clip from the open-source short movie
“Tears of Steel” and three quality levels. As with all studies, no ab-
solute results can be presented because for different videos there are
different content influences. Nevertheless, the focus of this study is
the identification of general, qualitative influence factors and their
effects on QoE of adaptive video streaming.

Related Work. [11] investigated rapid alternation of high and low
quality levels in adaptive video streaming to mobile devices. They
found three important effects, namely adaptation frequency, quality
level amplitude, and content. In [12], the quantization parameter
of H.264 video streams was changed during the playback. The au-
thors found that QoE decreases slowly when the quantization param-
eter (QP) starts to increase, i.e., the video bit rate decreases and the
image quality gets worse. However, when a certain threshold was
reached, a small increase of the QP parameter resulted in a strong
decrease of the perceived quality. [13] found that the adaptation fre-
quency should be kept as small as possible. If adaptation cannot be
prevented, its amplitude should be kept as small as possible. Thus,
a stepwise decrease of image quality is preferred to one abrupt drop.
Although several works already investigated particular aspects of
Quality of Experience of HTTP adaptive streaming, a holistic model
is still missing. This work aims at providing the foundations for such
a model by investigating the influence of different QoE dimensions:
amplitude, recency, adaptation frequency, and time on highest layer.

3. EXPERIMENTAL SETUP AND SUBJECTIVE STUDIES

Crowdsourcing Framework and its Implementation. Previous
studies foreshadowed that the playback quality and quality level
switching frequency may have a significant impact on the perceived
QOoE of the user. In the following, we introduce the methodology of
the studies we designed to substantiate and extend the previous find-
ings. The crowdsourcing experiment was designed in cooperation

with microworkers.com, a provider of crowdsourcing services with
international reach and large user base. Workers and task creators
both register with microworkers.com and can browse the avail-
able tasks or create tasks, respectively. For each fulfilled task, the
anonymous workers receive a monetary compensation from the task
creator. The payment process is handled by the crowdsourcing plat-
form. We utilized the web-based QualityCrowd2 framework [14]
for our QoE tests and followed the best practices for QoE tests in-
troduced in [15] to increase the accuracy of the results in the face
of remote participants. To obtain the results presented in this paper,
we conducted multiple user studies with approximately 710 unique
microworkers (based on the microworkers.com account ID).

Each test subject had to complete a short demographic survey
before the experiment. We asked two questions. First, What is your
main reason for using the Internet? and second Which continent do
you live on?. As answers we offered Professional (at work) and For
fun at home for the former, and the 6 continents for the later. The
results show that the majority of the users accessed the campaign’s
web-site from Asia (70%) and from Europe (26%) and that the test
subjects primarily access the Internet from work (64% at work, 36%
at home).

After the test subject completed the survey, an introduction in
simple English and illustrated with pictures was presented to the
participant. The introduction explained how to use the provided
web-interface to watch and rate the test sequences. Following the
introduction, the test sequences were presented to the participant in
sequential order. To prevent any abuse (e.g., fast skipping through
the sequences) or problems related to insufficient bandwidth (e.g.,
stallings), the test sequences were first downloaded to the browser
cache and the user had to watch and rate the current sequence before
being able to go to the next one. After the playback of the video
sequence, the user was asked Did you notice any changes in quality
during playback? If yes, did you feel annoyed by them? and was
presented a 5-point ACR slider with the options Imperceptible (did
not notice any), Perceptible but not annoying (did notice, but did not
care), Slightly annoying, Annoying, and Very annoying.

Video Contents and User Rating. As known from literature, con-
tent plays a key role in QoE. Additional HAS QoE influence factors
considered in related work are often switching amplitude, switch-
ing frequency and recency effects, while the time on high layer is
often neglected. Therefore, we focus especially on the time on high-
est layer, while the combined investigation of different contents and
time on highest layer remains for future work.

As test sequence a 14 second (336 frames, starting from time-
stamp 00:00:25) video from the movie “Tears of Steel”, an open-
source short movie produced and published by the Blender Founda-
tion, was used. The scene depicts two persons standing on a small
bridge and contains a low level of detail and motion (SI: 8.5, TI:
5.37). We encoded the test sequence using H.264/AVC (libx264)
with QP=24 and 24 frames per second into three quality levels by
downscaling the source material to 640x360, 320x180, and 160x90.
The audio channel was copied from the source video. The encoded
videos with audio as used in the crowdsourcing user studies had
an average bitrate between 0.64 Mbps and 0.75Mbps, i.e., about
1.1 MB to 1.3 MB per video. Note that in the browser of the user, the
three quality levels were all upscaled and downscaled, respectively,
to a size of 640x360. More technical details on the implementation
and the video test sequencesl can be found in [16].

IThe scripts for generating the test video sequences are available at
http://git.io/hfCazZg.



The crowdsourcing experiment was designed to evaluate five
possible QoE influence factors of HAS as shown in Table 1. For
each effect we created multiple test sequences with different switch-
ing patterns (e.g., number of switches: 1, 2, 3, 4, 5, 6, 8 and 14
switches). Each pattern was reliably rated by at least 82 users and on
average over all user studies by 106 participants. Each subject rated
between 7-9 test sequences, cf. [17] for detailed information.

We also created three test sequences (i.e., one for each quality
level) with no quality switches and included them in the conducted
user studies as reference for the evaluation of the results. The results
show an average MOS value of 4.14 (95 % confidence interval 4.09
to 4.18) for the highest layer based on the ratings of the 710 partici-
pants in all user studies. For the lowest layer test sequence included
in some of the studies we observed an average MOS value of 2.51
(95% confidence interval of 2.37 to 2.66) based on 267 user ratings.
The quality layer in between received a MOS rating of 3.52 (95%
confidence interval of 3.42 to 3.62) out of 310 user ratings.

Filtering of Data and Unreliable User Ratings. In order to ob-
tain reliable results despite the lack of control over the anonymous
workers, methods were designed and deployed to counteract cheat-
ing and unreliable test subjects as suggested in [15]. A number of
anti-cheating mechanisms were already built into the QualityCrowd2
framework. For example, the test subjects have to watch the whole
sequence and move the rating slider to be able to proceed to the next
test sequence. In addition to the built-in mechanisms, we showed the
participants one simple content questions during the experiment. We
asked Where did the protagonists stand on? and oftered A building,
A large field, A small bridge and Riding on an elephant. Test partic-
ipants failing that content questions were discarded from the results.
Over all user studies, we observed that 11% of the participants failed
the simple content question.

4. NUMERICAL RESULTS

Due to the crowdsourcing setting, user studies were split into several
smaller crowdsourcing tasks, as the task duration of crowdsourced
QoE evaluation should be in the order of minutes [18]. Therefore,
the influence factor analysis and the result presentation is decoupled
from the crowdsourced user studies. [17] provides detailed informa-
tion on all crowdsourcing campaigns and the test video sequences.
A summary of the crowdsourcing experiments is given in Table 1.

Table 1: Summary of crowdsourcing experiments for HAS QoE.

Effect Test design

Amplitude Switch amplitude high or low and dif-
ferent number of switches

Last Quality Level End on high or low quality level for

different number of switches

Different recency times for different
number of switches

Recency Time

Frequency Different number of switches for con-
stant time on high layer
Time on Highest Layer  Different time on highest layer for dif-

ferent number of switches

4.1. Amplitude Effect

In order to investigate the effect of switching amplitude, i.e., the
quality level difference, on adaptive video streaming, two different
amplitudes were compared. Five switching patterns (from N=1 to 8
switches) were tested both with low and high amplitude switches. To
be more precise, each video started at the highest quality and at each
switching event the quality oscillated between the highest quality
and a medium quality level (low amplitude) or a poor quality level
(high amplitude). Figure 1 shows the results of this experiment. On
the x-axis the number of switches, and on the y-axis the mean opin-
ion scores (MOS) and the 95% confidence intervals are displayed.
The dark bars indicate a low amplitude, i.e., an oscillation between
highest and medium quality, whereas the light bars represent a high
amplitude, i.e., an oscillation between highest and lowest quality. It
can be seen that for all switching patterns, a low amplitude clearly
outperforms a high amplitude. Low amplitude patterns always reach
a 0.5-1 point higher MOS rating than the corresponding high ampli-
tude patterns without overlapping confidence intervals. This means,
the effect of amplitude is significant and has to be taken into account
for the QoE of adaptive video streaming. In the following, we will
use conditions which contain a high amplitude.

4.2. Recency Effect

Second, the influence of recency on adaptive video streaming is eval-
uated. Recency refers to the human brain’s preference to attach
higher importance to recent stimuli. Thus, the content duration has
an influence on the occurrence of recency effects. However, the main
intention of this study is to draw conclusions how to design proper
adaptation algorithms. Therefore, we only consider the short video
sequences without analyzing the influence of content duration on the
occurrence of recency effects.

In particular, it was investigated if the video is perceived differ-
ently when it ends with high or low quality. Three switching patterns
(N=1, 3, 5 switches) ending at high quality and their mirrored pat-
terns ending at low quality were displayed to the test users. Figure 2
shows the comparison of the test videos. Again the MOS and 95%
confidence intervals are plotted over the number of switches. Dark
bars indicate a low quality ending, light bars a high quality ending.
For three or five switches, the confidence intervals overlap and no
impact of the video ending can be found. If the video contains only
one switch, the high end condition is perceived slightly better than
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Fig. 1: Amplitude Effect is main effect (see Table 2). Two-sample
t-test shows significant differences (p = 0) between groups (low vs.
high amplitude) with an effect size in terms of Cohen’s d = 0.7006.
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Fig. 2: Recency Effect: Low vs High Quality Ending. Two-sample
t-test does not reveal significant differences (p = 0.2258) between
groups (ending low vs. high quality) with Cohen’s d = 0.1037.
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Fig. 3: Recency Time Effect is not significant (see Table 2). Two-
sample t-test does not reveal significant differences (p = 0.3376)
between groups (N = 2 vs. N = 4) with Cohen’s d = 0.0693.

the low end condition. However, this might be due to the specific
characteristic of this pattern which strictly separates high and low
quality, containing 7.5s of low quality and afterwards 7.5s of high
quality, or vice versa. Hence, it seems that the oscillation between
high and low qualities removes the impact of the recency effect. In
the following, we will focus on conditions with two or more switches
that always end on the high quality level.

Another parameter of the recency effect is the recency time, i.e.,
the time how long high quality is played out after the last quality
switch. Two switching patterns (N=2 and 4 switches) were cho-
sen and shifted within the video, resulting in different recency times
while preserving all other characteristics of the adaptation pattern.
Figure 3 shows the MOS and 95% confidence intervals over differ-
ent recency times in seconds. It can be seen that for both switching
patterns (N=2 dark bars, N=4 light bars), the recency time does not
influence the perceived quality. All MOS values range around 3 and
the confidence intervals overlap. Thus, no significant effect of re-
cency time could be observed.

4.3. Frequency vs. Time on Highest Layer

Several works (e.g., [11, 19]) suggested an influence of the switch-
ing frequency, i.e., the number of switches, on the QoE of adaptive
video streams. [20] showed that multiple quality switches are pre-
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Fig. 4: Frequency and time on highest layer changed simultaneously.
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Fig. 5: Impact of Switching Frequency. One-way ANOVA for this
experiment returns the following p-values: a. p = 0.0129 for all
conditions and b. p = 0.7190 for switches only, i.e. N > 0.

ferred over fewer switches, if the subject is able to view the high
quality video for longer duration. However, in the results presented
above (cf. Figures 1-3) the frequency effect seems negligible. There-
fore, we revisited our experiments and found that not only the num-
ber of switches but also the corresponding time on the highest layer
could be responsible for the observed effects.

In Figure 4a and 4b, the MOS and confidence intervals are plot-
ted over the number of switches (a) and the corresponding time on
the highest layer (b). Both parameters seem to have a significant ef-
fect on the perceived quality. Therefore, they have to be investigated
separately in more detail towards a comprehensive QoE model.

For that, we designed two new experiments. First, the number
of quality switches was varied whereas the time on the highest layer
was kept constant. Figure 5 shows the MOS and 95% confidence
intervals for different numbers of switches. The condition without
switches reaches a MOS around 4. As soon as quality switches are
present, it can be seen clearly that the number of switches has no
significant impact on the QoE. For any number of switches the MOS
ranges slightly below 3 and the confidence intervals overlap.

In the second experiment the time on high layer was varied for
two different numbers of switches (N=2 and 4). The results are plot-
ted in Figure 6. The x-axis shows the time on the highest layer in
percent and the y-axis shows the MOS and 95% confidence inter-
vals. Again, the condition without switches (100% time on highest
layer) reaches a MOS around 4. It can be observed for each pair of
bars (N=2 dark, N=4 light) that the number of switches has no im-
pact as the confidence intervals overlap. However, here an effect of
the time on the highest layer is visible. The MOS decreases when
the time on the highest layer decreases.



Table 2: Quantification of main effects based on one-way ANOVA.

All configurations

Configurations with quality switches only

rs F p n f? s F p 1, f?

Amplitude -0.266  63.101 < 0.001 0.013 0.011 -0.302  66.350 < 0.001 0.017 0.015
Last Quality Level 0.103  5.500 0.004 0.002  0.002 0.018  2.508 0.082 0.001  0.001
Recency Time 0.109  0.900 0.480 0.001  0.001 0.100  0.635 0.638 0.001  0.001
Switches -0.221  1.736 0.139 0.001  0.001 -0.088  1.750 0.136 0.002  0.002
Time on Highest Layer  0.295  17.742 < 0.001  0.043  0.037 0.143  7.799 ©0.001  0.022 0.020

5 The results from the previous investigations yield implications

I N=2 for a new simplified QoE model. The proposed model is depicted

45 En=4) in Figure 7 and takes into account the two main effects, amplitude

4 i and time on highest layer. The vertical coordinate is the MOS value

35 prediction based on the time on highest layer, which is plotted on

» the x-axis. To account for the amplitude effect, the MOS value is

g 3 bounded by quality yz = f(1) on highest layer and y;, = f(0)

2.5 on lowest layer, respectively. The gray bounds correspond to the

5 mean value and 95% confidence intervals of the ratings of the video

clip with constant high ([4.09;4.18]) or low ([2.37;2.66]) quality and

18 were obtained in a separate experiment. The black data points corre-

100 86 71 36
time on high layer (%)

Fig. 6: Time on Highest Layer is a main influence factor. One-way
ANOVA for this experiment returns p = 5.44e — 037. Two-sample
t-test does not reveal significant differences (p = 0.1055) between
groups (N = 2 vs. N = 4) with Cohens’ d = 0.1398.

The results of related works might not be contradictory, as a
quality switch typically implies a change of time on each layer. If
quality switches are too frequent (i.e., user perceives only flickering),
this might be worse than low video quality [11]. If quality switches
are normally frequent, they will only point the user to a perceivable
degradation/improvement. Once the user is aware of the degrada-
tion/improvement, again the duration matters. Thus, the impact of
frequency is less than the impact of time on each layer. Similar-
ily, [20] assumes that ’long low-quality video segments preceded by
much higher quality segments evoke a strong negative response.’

4.4. Simplified QoE Model and its Consequences

In order to consistently revisit all investigated influence factors, sta-
tistical analyses of effects were conducted. Table 2 shows the effect
sizes both for all configurations and for the configurations which
contain quality switches only. The table shows in each row one of the
investigated influence factors and its effect on the subjective quality
ratings. The Spearman correlation coefficient r; indicates how much
the influence factor and the subjective quality ratings are associated.
It can be seen that there is no high correlation for all factors. Second,
a one-way analysis of variance (ANOVA) was conducted and the F-
test statistic and the corresponding p-value are shown in the second
and third column. The p-value indicates that both amplitude and
time on highest layer are significant. Moreover, partial Eta-squared
(772) and Cohen’s f? were computed. The nz values indicate that
there is a small effect for both amplitude and time on highest layer,
which has also a small effect according to f2. Having conducted
these extensive statistical analyses, no effect can be observed for last
quality level, recency time, and number of switches.

spond to the subjective ratings (mean and 95% confidence intervals)
of the time on highest layer experiment (cf. Figure 6). Then, the
relationship between MOS and time ¢ on highest layer (%) follows
the IQX hypothesis [21] f(t) = ae® + . The data points fit the
exponential model very well which is indicated by a high coefficient
of determination R? = 0.98.

As the model only indicates the QoE for adaptation between two
layer content, further subjective studies with more layers are needed
in order to generalize the model. Following the above findings, these
studies need to consider especially the amplitude and time on each
individual layer, and have to investigate these influence factors in
detail.

By having a QoE model which depends on amplitude and time
on individual layer only, QoE monitoring becomes much easier.
Both objective or subjective metrics can be used to assess the quality
of each layer, and depending on the time on each layer, an exponen-
tial decay can be applied to obtain a QoE prediction. In a similar
fashion, [22] reported a decent behavior of simple temporal pooling
approaches, which showed a high correlation to subjective ratings
of adaptive video streams. Here, a reduction of the monitoring com-
plexity could be achieved by taking into account objective quality
values per layer (cf. amplitude factor) and aggregating them over the
time on each specific layer (cf. time on individual layer factor).

Moreover, the knowledge of a simple QoE function can be used
to model the optimal QoE. The approach presented in [23] can be
adapted to incorporate a value function that takes amplitudes and
times on individual layers into account. Thereby, optimal solutions
for given network conditions can be obtained.

Finally, this lays the foundations for novel HAS algorithms
which incorporate QoE management. The results of this work al-
ready provide the implication that the number of switches needs not
be optimized in first place in future adaptation strategies. Instead,
up-switching should be done as early as possible because it increases
the time on highest layer. However, more research is needed in order
to develop technical solutions which reach the optimal adaptation
strategy.
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Fig. 7: Simplified QoE model for two layers.

5. CONCLUSIONS AND FUTURE WORK

In this paper, the influence factors of the adaptation parameters for
HTTP adaptive streaming were investigated and evaluated using sub-
jective tests conducted in a crowdsourcing platform. As used test
material we rely on a video clip of 14 seconds. The results clearly
demonstrate the high impact of the switching amplitude between
two played back representations, and that recency effects can be ne-
glected if more than two switches occur. Further, it turned out, that
the time on highest video quality layer has a significant impact on
the QoE, and that the number of quality switches can be neglected.
Based on these results, a simplified QoE model for adaptive stream-
ing was derived. Further evaluations and surveys have to be con-
ducted to fortify the findings and to allow the creation of a generally
accepted QoE model for HTTP adaptive streaming.
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