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4.1 INTRODUCTION

Wireless networks have become more and more popular because of ease of installation,
ease of access, and support of smart terminals and gadgets on the move. Energy-ef!cient
wireless network operation is without doubt of high importance, both for infrastructure
and for ad-hoc communication.While for infrastructure networks, economic and ecolog-
ical considerations are predominant as the networking components are often connected
to the power grid, ad-hoc networks mainly rely on limited battery-powered components
and, thus, the network’s lifetime and availability is challenged. Similarly, the energy
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depletion of mobile client devices such as smartphones is a crucial challenge, as they
are the user interface to ubiquitous connectivity.

In the overall life cycle of providing green wireless technology – from production to
operation and, !nally, removal – we focus on the operation phase and summarize insights
in energy consumption of major technologies. We provide an answer to questions such
as how the energy consumption can be characterized, measured, and estimated. Further,
we introduce approaches to make wireless networks operate energy ef!ciently. A strong
focus of this chapter is set on the edge of the network, comprising network access points
(APs) and mobile user devices. Here, the energy consumption of the wireless communi-
cation modules is still considerably high; thus, there is a need for good understanding of
energy consumption and novel approaches to increase energy ef!ciency. In this setting,
we not only summarize well-known challenges but also highlight in particular novel
approaches, applications of interest, and results for the included wireless technologies
and give pointers to related literature.

Our introduction to the topic on energy-ef!cient wireless networking provides
insights in major measurement methodologies and energy-ef!cient algorithms. We
achieve this by making the following contributions:

• First, we summarize major metrics used to describe energy ef!ciency in wireless
networks. Thus, we brie"y list generally applicable metrics such as energy per
information bit and, then, focus on metrics dedicated to wireless networking in
Section 4.2.

• To measure and estimate energy consumption, internal software methods as well
as external power measurements can be followed. We discuss the advantages and
disadvantages of major methodologies and exemplify testbeds in Section 4.3.

• Then, we discuss particularities of most important wireless networking technolo-
gies: (i) wireless access networks including 3G/LTE and wireless mesh networks
(WMNs) in Section 4.4, (ii) wireless sensor networks (WSNs) in Section 4.5,
and (iii) ad-hoc and opportunistic networks in Section 4.6. Besides describing
major characteristics of these networks in terms of energy consumption and
resulting challenges, we take speci!c perspectives to approach the discussion of
energy ef!ciency, for example, the quality of experience (QoE) versus energy
consumption trade-off for access networks, energy-ef!cient medium access
control (MAC) in WSNs, and methods to establish connections among a group
of mobile devices in an energy-ef!cient and fair way.

This chapter originates from discussions and joint research work of the Focus Group on
Energy-ef!cient Wireless Networks of the European Cooperation in Science and Tech-
nology (COST) Action IC0804.
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4.2 METRICS AND TRADE-OFFS IN WIRELESS NETWORKS

This section introduces the most popular performance metrics for energy ef!ciency in
wireless networks [1, 2] in Section 4.2.1, followed by a brief discussion on energy con-
sumption versus performance trade-offs in these systems in Section 4.2.2.

4.2.1 Metrics

Energy-aware optimization techniques require metrics to evaluate the real energy sav-
ings that can be achieved with a certain solution. First, basic energy consumption metrics
are introduced, and then metrics capable of measuring the energy ef!ciency of a system
are discussed.

4.2.1.1 Power and Energy Consumption Metrics. The most obvious and
simple metric to assess any system’s and network’s energy footprint is the total energy
consumption (E) in joule (J), which can be de!ned as the product of the average power
(P) in watt (W) and the time (t), as follows:

E(J) = P(W) � t(s). (4.1)

The total energy consumption is mostly used to characterize the energy costs associated
with a certain operation, but when there is a need to study a single state, the average
power (P) can also be used as a standalone metric.

4.2.1.2 Power and Energy Efficiency Metrics. Even though the average
power and total energy consumption can describe the energy costs, it is important to cor-
relate the network energy consumption (E) with the other network-level parameters [3].
One of the most important system-level metrics, which can be employed in any net-
work system, is energy per information bit (Eb). This metric, expressed in joule per bit,
describes the relationship between the total number of bits transmitted (I) and the energy
consumed (E):

Eb[J/bit] = E[J]
I[bit] . (4.2)

While the total energy consumption, the average power, and the energy per information
bit metrics can be used in any network system, there are alsometrics specially introduced
for wireless system. These metrics usually aim to establish a correlation between the
energy or power and particular characteristics of the wireless system, such as the number
of subscribers or the covered area.

The power per area unit metric (Pau) [4] establishes a relationship between the
average power used (P) and the size of the covered area (A) and is expressed in watt per
meter square:

Pau[W�m2] = P[W]
A[m2]

. (4.3)

The power per subscriber (Ps) is a metric used to determine the correlation between
the average power used (P) and the number of subscribers present in the network (N)
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and is expressed in watt per subscriber:

Ps[W�subscriber] = P[W]
N

. (4.4)

The presented system-level metrics can be employed within distinct scenarios and
technologies; yet once real equipment is used, the results will be further related with
the employed hardware. Apart from other components, the energy consumption of
the wireless system is strongly related to the energy used by the antenna core compo-
nents [2]. The ef!ciency of an antenna (�Ant) is de!ned as the coef!cient between the
antenna-radiated power (Pradiated) and the power needed to support it during operation
(Pinput):

�Ant =
Pradiated[W]
Pinput [W] . (4.5)

Chen et al. [2] have also identi!ed the usage of antenna gain information as an alter-
native way to depict the antenna’s ef!ciency. The antenna gain (GainAnt) describes the
antenna’s capability to concentrate or direct the power transmitted in a certain direction.
It is represented in dBi (decibel relative to an isotropic radiator) and de!ned as the ratio
between the antenna radiation intensity (U) and the antenna power input (Pinput):

GainAnt[dBi] = 4� � U
Pinput

. (4.6)

The study of energy consumption behavior at multiple levels, namely, system and com-
ponent levels, will allow superior energy-aware solutions, ranging from higher (e.g.,
application) to lower level optimizations (e.g., MAC or PHY layers).

4.2.2 Energy Optimization Trade-Offs

The usage of energy optimization techniques might introduce some performance
drawbacks in the network. Chen et al. [5] have studied the most signi!cant trade-offs in
green wireless networks. Four main trade-offs were identi!ed, namely, trade-offs related
to deployment costs, spectrum ef!ciency, bandwidth management, and delay. More
recently, Zhang et al. [6] have also proposed a new metric to establish the fundamental
trade-off between QoE and energy ef!ciency.

Therefore, six important trade-offs in green wireless networks should be considered
as follows:

• Deployment Ef!ciency/Energy Ef!ciency Trade-Off. Correlating the deployment
and operation costs, namely, the capital expenditure (CapEx) and the operational
expenditure (OpEx), and its relation with the overall energy required to run the
network;

• Spectrum Ef!ciency/Energy Ef!ciency Trade-Off. Establishing a relationship
between spectrum ef!ciency, usually de!ned as the system throughput per
bandwidth unit, and the overall energy consumption needed;
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• Bandwidth/Power Trade-Off. De!nes the relationship between the available
bandwidth and the power needed to perform a transmission;

• Quality of Service (QoS)/Energy Consumption Trade-Off. Represents the relation
between the network-level performance parameters (e.g., delay and packet loss)
and the energy needed to transmit certain data;

• Quality of Experience (QoE)/Energy Consumption Trade-Off. Represents the
relation between the obtained user-perceived quality (QoE) and the energy
consumed to achieved it.

Although the use of these trade-offs is not as simple as the use of the metrics presented
previously, it is important to take them into account when proposing novel energy-aware
enhancements. By understanding and correlating the energy-aware techniques employed
and their multiple impacts on the system, it will be possible to obtain superior energy
savings while providing suf!cient and establishing better performance trade-offs net-
working performance.

4.2.3 Summary

This section presented the most relevant metrics and trade-offs to be considered when
studying the energy ef!ciency of a wireless communication system. A brief overview
about generic energy metrics (e.g., energy or power consumption) was provided together
with some wireless-speci!c metrics, namely, power per area unit and power per sub-
scriber. The introduced trade-offs showed the importance of establishing a proper rela-
tionship between the system optimization goals and the user’s requirements, because
when saving energy, there is almost always some impact on the performance to be con-
sidered. In the next section, energy measurement methodologies are presented, which
allow to evaluate real systems along the previously introduced metrics.

4.3 MEASUREMENT METHODOLOGY

The recent growth and heterogeneity of wireless technologies have enabled a high usage
of networking devices, ranging from infrastructure nodes to end user devices. While
infrastructure nodes of wireless networks are, similar to wired networking equipment,
mainly powered by the power grid, user devices in mobile settings such as portable
computers and mobile phones, and also wirelessly connected sensors, are primarily
battery powered. This particularity of wireless networks determines the focus of this
section, which is set on understanding the energy consumption of user devices and
WSNs. Yet creating mathematical models to estimate the energy consumption in a wire-
less communication system might be a complex task; with inaccuracies introduced by
the assumptions and simpli!cations required in this approach, it is important to follow
proper methodologies in order to accurately measure the energy consumption of real
life systems. Additionally, the data obtained through measurements can also be used
to improve simulation environments and to perform more detailed energy consumption
pattern estimations.
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This section gives a brief overview about the most popular empirical techniques
to measure energy consumption. First, relevant energy measurement techniques and
testbeds are introduced in Section 4.3.1, followed by a discussion concerning the usage
of energy estimation techniques in Section 4.3.2. Section 4.3.3 discusses the bene!ts
and problems of using both energy measurement and estimation techniques through an
illustrative example.

4.3.1 Energy Measurement Testbeds

We now describe four measurement methodologies for studying the energy consumption
of wireless transmission in different scenarios.

4.3.1.1 Generic Measurement for USB Wireless Interfaces. This !rst
methodology proposes a generic approach that is able to measure energy consumption
in any multiple wireless access network such as WiFi, WiMAX, or LTE [7]. In order to
ful!ll the assessment requirements, two major design requirements are de!ned:

• High Precision Measurements. To guarantee a good accuracy of testbed energy
measurements, it is vital to use ameasurement hardware capable to support multi-
ple samples per second, because energy in small devices (i.e., network interfaces)
tends to have slight variations along the observation time.

• Independent Network Interface Evaluation. To better understand how the energy
consumption is impacted by the network interface, it is essential to measure
exclusively the network interface, namely, by assessing the energy utilization in
MAC and PHY layers.

The energy measurement testbed was designed to meet the requirements mentioned ear-
lier and to minimize the changes needed in the network interface hardware. The !rst
option was to use an external Universal Serial Bus (USB) network interface, because it
is possible to accurately measure the energy consumed solely by the interface, as desired.
One of the main issues already reported in previous energy measurement works is the
need to provide a stable and continuous voltage to the system [8, 9]. The impact on the
voltage drawn when connecting the USB network interface directly to a user device was
noticeable in !rst tests. To overcome this limitation, the USB network interface was con-
nected to an external alternating current (AC)-powered USB hub, which is able to give
stable power to the system. The analysis regarding the voltage drawn when employing
the external USB hub has shown that voltage drops are always lower than 1% of the total
employed voltage, which is negligible in the overall system analysis.

Figure 4.1a depicts the energy measurement testbed setup. Besides the user device,
the measurement con!guration includes a controller and a high precision digital
multimeter. The digital multimeter is a Rigol DM3061 with a maximum sampling rate
of 50K samples/s and a test resolution of 6 1/2 digits. The multimeter is capable of
receiving Standard Commands for Programmable Instruments (SCPI) (de!ned by IEEE
488.2 [10]) and implements the Universal Serial Bus Test and Measurement Class
(USBTMC) speci!cation standard interface. By using SCPI commands and USBTMC,
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Figure 4.1. Energy measurement setup. Adapted from [7].

the controller is able to control and manage the digital multimeter, which enables
accurate and repeatable tests. The controller is also connected to the user device. This
entity controls the experiments to be performed in a fast and reliable way and collects
all the results from the digital multimeter. As the voltage is stable, all the measurements
concerning energy are done by collecting the current values only. The USB cable was
intercepted in the common-collector voltage (VCC) cable (i.e., +5 VDC), as illustrated
in Figure 4.1b.

In short, the proposed methodology enables the measurement of the energy con-
sumption of a single network interface by employing high precision measurement hard-
ware. By using this methodology, it is possible to study multiple network technologies,
which makes it possible to compare and study the behavior of distinct access technolo-
gies under different scenarios and conditions. Furthermore, the data collected during the
assessments might also be used to support more accurate software-based energy mod-
els, namely, for emerging wireless access technologies, as the developed methodology
is fully technology independent.

4.3.1.2 Development Boards and Kits. Development equipment allows to
isolate the energy consumed for transmission from the consumption of the rest of the sys-
tem [e.g., central processing unit (CPU) or screen]. Development kits typically expose
interfaces to measure the power consumption of, for example, the broadband module or
modem under test.

Figure 4.2 shows an example of a measurement setup composed by an Ericsson
KRY 901 214/01 development kit provided and a 2G/3G/GPS broadband module (Eric-
sson F3307). The power consumption ismeasured using a current probe ormeasuring the
voltage drop over a precision shunt resistor (0.1�). In the example, the voltage drop is
measured with a data acquisition unit (National Instruments myDAQ). The development
kit is connected to a test computer using a USB cable appearing as a normal interface.
The modem can be further operated with AT commands to access the low layer informa-
tion such as the radio state. This measurement setup presents high accuracy and details
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Figure 4.2. A measurement setup based on a development kit.

low layer information, which is useful to understand the impact of the commanding
software on the transmission energy (e.g., operating system) [11].

4.3.1.3 Intercepting Battery Terminals. As the software running on the
devices drastically impacts the energy consumption, directly measuring the power of
the mobile device is a common approach. Measurement platforms for mobile devices
typically intercept battery terminals to measure the power consumption. These provide
aggregated powermeasurements of network interfaces and other components (e.g., CPU,
screen, or sensors). The devices used to acquire the measurements range from laboratory
bench multimeters to USB data acquisition units. A widely used power measurement
device is theMonsoon PowerMonitor [12]. The following aspects need to be considered
when employing this measurement technique:

• Battery Terminal Interception. A copper tape (or a similar conductor) is placed
between the device terminals (V+ and V�) and the battery terminals. The voltage
is directly measured from the battery, whereas a shunt resistor is typically used
to measure the current. Mobile devices have battery monitoring terminals (e.g.,
temperature and a communication line), which need to be connected or themobile
device will not switch on.

• Shunt Resistor Size. Adding a shunt resistor introduces additional resistance into
the measured circuit. However, if the resistor is too small, the drop in voltage is
too small for the input offset voltage of the analog conditioning circuit. This can
compromise the measurement accuracy. Typical resistors used for these measure-
ments range from 0.01 to 0.1 � with a low tolerance.

• Power Source.While the battery discharges, the voltage decreases and the current
increases. Both the voltage and the current need to be measured if a battery power
source is used. Instead, the voltage can be !xed using an external direct current
(DC) power supply allowing only measuring the current.

• Isolating Transmission Energy. Ideally, one would like to only measure the
transmission energy (i.e., the energy spent by the peripheral hardware for
transmission). As the operating system running in mobile devices is typically
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Figure 4.3. The schematic of a mobile device measurement setup that intercepts the battery
terminals.

preemptively multitasking, different processes are waking up and consuming
resources such as CPU. In order to stabilize the power trace and isolate the
transmissions from the rest of the system, the CPU frequency may be !xed and
a low priority background process is run in a busy loop [8]. The CPU creates
an almost constant power consumption, which enables the isolation of the
transmission energy by simply subtracting it. The drawback of this technique
is that we cannot distinguish between the CPU load created by the test and the
background load.

Figure 4.3 shows an example of a measurement setup used to measure energy consump-
tion in mobile devices. The setup is composed by a low side sensing circuit with a
precision shunt resistor (R1 = 0.1�), an isolating ampli!er with maximum transmission
error of 0.4% (Phoenix Contact MINI MCR-SL-SHUNT-UI), and the data acquisition
unit. We added an R2 (33 k�) in order to allow the device to switch on.

4.3.1.4 Built-In Sensors and Smart Battery Interfaces. Some
vendor-speci!c development devices are shipped with internal power manage-
ment integrated circuits that enable power consumption pro!ling. These allow to
separately measure the power consumption of the network interfaces as well as CPU
energy consumption. Qualcomm’s Trepn Pro!ler for the Snapdragon processors is an
example of such a system [13]. Smart battery interfaces are available in some mobile
devices, which provide aggregate current values (e.g., Nokia Energy Pro!ler [14] or
CurrentWidget for Android [15]). The accuracy of these measurements is de!ned by
the battery sensor, which is less than using external physical power measurements [16].

4.3.1.5 Sensors External Measurement Units. Hergenroder et al. [17]
proposed an external unit, named Sensor Node Management Device (SNMD), speci!-
cally designed to accurately measure the current and voltage of a sensor node with a
sampling resolution of up to 20 kHz or even up to 500 kHz in the so-called buffered
mode. The SNMD !rmware corrects each sampled measurement by an error term,
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which is obtained in advance. This method reduces the measurement error introduced by
the measurement circuit to below 0.5% for any current in the range of 0–100mA [18],
an accuracy range that is de!nitely suf!cient to rely on by any experimental and
comparative analyses of sensor network mechanisms. Even though SNMDs are very
precise, they represent a high cost hardware-based solution.

4.3.2 Energy Estimation Techniques

While physical power measurements certainly support the evaluation of a system’s
energy ef!ciency, performing the measurements is a non-trivial task, which requires
some speci!c knowledge as described in the previous section. Designing and setting
up tests, performing the measurements, and analyzing the results is a laborious and
time-consuming task. The high cost of the measurement solutions and time limitations
(e.g., time to market of applications) stops software developers from investing in these
solutions. Thus, applications and system software are often not designed or tested with
energy consumption in mind.

Physical power measurements allow device-dependent studies only. As the hard-
ware change between generations can substantially make the energy consumption differ
from previous generation devices, the measurements become obsolete quickly. Thus,
physical measurements are useful to provide insight and observations, but there is a need
for tools and solutions that can complement physical power measurements and enable
ef!cient studies to minimize the energy consumption. This section describes some com-
plementary approaches to physical power measurements for mobile devices and wireless
sensor nodes.

4.3.2.1 Measurement-Based Estimation. Energy models abstract the real
behavior of the devices by characterizing the mechanisms that consume energy. Some
works concentrate on speci!c mechanisms, whereas others attempt to model the total
energy consumption. Here, the focus is on energy models derived from physical mea-
surements used to estimate wireless transmission energy. Yet, theoretical models exist
as well [19, 20], which typically investigate the behavior of a speci!c mechanism of a
wireless interface and often suggest guidelines to select parameters for optimizations.

Measurement-based models can be seen as bottom-up approaches, which can be
speci!c to the measured data or generic, depending on the model development approach.
The complexity of measurement-based models varies greatly and ranges from simple
models characterizing the energy consumption based on some statistical representation
of the measurement data (e.g., linear regression) to more complex models employing a
!nite-state machine (FSM), as described in the following.

Data !tting approaches are often built in two stages. First, the system to be modeled
is exercised in a certain manner while collecting physical measurements, and then the
collected data is used to create the model. An example is the work by Balasubramanian
et al. [21], which models the transmission energy consumption for GSM, 3G, and WiFi.
Theymeasure the energy spent to perform bulk data transmissions for different data sizes
and build a linear model out of the data. Given the amount of data to be sent in a burst,
their model calculates the energy consumed. The data !tting approach is simple, and it
results in device- and measurement-speci!c energy estimation. Yet the proposed model
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only captures the operation of the system under the conditions that were given during
the measurements.

The !nite-state machine (FSM) approach is a general approach to model energy
consumption used to derive the operational states of a system that consume signi!cantly
different amounts of power. For example, even if a common wireless interface can be in
active or sleepmode, the fact that transmission power substantially increases when trans-
mitting at high data rates can be modeled as an additional state. Power measurements
are employed in the modeling phase to select the relevant states, de!ne the transitions
between the states, and collect data for the different parameters (e.g., power levels). We
illustrate the FSM approach with an example, the EnergyBox [22].

EnergyBox is rooted on wireless interface operation knowledge and measurement
data. The tool enables accurate studies of 3G andWiFi transmission energy consumption
at the device end. The FSMs built for EnergyBox characterize the 3G network param-
eters that impact energy consumption and the adaptive power saving mode mechanism
speci!ed at the handset driver for WiFi. EnergyBox is focused on studying the impact
of the transmission data pattern on energy consumption, thus uses real traf!c traces as
input. The tool performs trace-based iterative packet-driven simulation: given a packet
trace and the con!guration parameters, EnergyBox outputs the device states over time.
Next, some design decisions are described in the context of EnergyBox.

• States and Power Values. In EnergyBox, the states abstract the hardware
dependency of measurement-based studies by modeling the mechanisms and
interactions that impact the energy consumption. Selecting a reduced number
of representative states reduces the model complexity. The FSM states of
EnergyBox are derived from the knowledge of the interface operation and a
wide range of measurements. The total energy consumption is calculated by
associating these states with power levels. Device-speci!c power-level values
are obtained through the measurement platforms. EnergyBox employs !xed
power values, which are a convenient simpli!cation in order to feed the model
with device-speci!c measurement data. However, variable power levels are also
possible based on some input such as data rate.

• State Transitions. State transitions need to model the mechanisms that make a
system to change its power consumption. The state transitions are determinis-
tic or stochastic. EnergyBox employs mostly deterministic transitions, which
are parameterized allowing the simulation of different interface con!gurations.
Examples of such transitions are the inactivity timeouts used by cellular operators
or the adaptive power saving mode timeout to switch between active and sleep
states. Stochastic variables can also be used to model the uncertainty of a certain
transition, based on the distribution of measurement data, for example.

• Accuracy Evaluation. The accuracy of an estimation technique is an important
factor to consider, and thus the validation of the model is required. A common
approach is to compare the model against physical power measurements. Ener-
gyBox is validated comparing its accuracy against physical power measurements
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Figure 4.4. EnergyBox compared to physical measurements.

over a set of real application packet traces. Figure 4.4 shows the accuracy of Ener-
gyBox for a sample Web trace sent via 3G. The accuracy in the example is 99%
in terms of energy.

Next we detail energy estimation techniques in the context of WSNs and describe the
impact of the estimation model on the resulting estimation accuracy.

4.3.2.2 Energy Estimation for Wireless Sensor Networks. The develop-
ment and operation of energy-ef!cient WSNs requires to measure or at least to estimate
the energy consumption of a sensor node. A simple but expensive approach would be to
deploy special measurement devices at each sensor node to measure its energy consump-
tion. This might be too expensive in terms of equipment and deployment costs for large
sensor networks. Another approach is to estimate the energy consumption by identify-
ing the states of a sensor node considering the activity of its components. By knowing
how long a sensor is in a certain state and what the energy consumption is in each state,
for example, by experiments before deployment and operation, it is possible to roughly
estimate the energy consumption of a node during its lifetime. This can be done com-
pletely by appropriate software recording states and their durations. Simple state-based
energy estimation models have already been used in the prominent studies on the com-
mon media access control protocols S-MAC [23] and B-MAC [24], yet they have not
been evaluated in terms of accuracy of their energy estimation model. We discuss now
how such software-based energy consumption estimation mechanisms must be designed
to achieve the highest accuracy applied to energy-ef!cient MAC protocols.

Three States Model (TSM). The Three States Model (TSM) is the most fre-
quently used model to date for estimating a node’s energy consumption as a function
of the three states of the radio transceiver, namely, receive/idle listening, transmit, and
sleep, cf. [23–25]. The Contiki OS’ energy estimation mechanism models the radio’s
power consumption using this model, but separately tries to keep track of the CPU power
consumption, which can vary depending on the low power mode (LPM) it is currently
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Figure 4.5. Current draw of node B.

50

40

30

20

10

0
50 100 150 200 250 300

C
ur

re
nt

 (
m

A
)

SLEEP SLEEP

Three States Model (RECV/TRANSMIT/SLEEP)

RECV RECV RECV

TRANSMIT TRANSMIT

0

Time (ms) 

Figure 4.6. Current modeled by the Three States Model (4.7).

operating in. The ScatterWeb2 OS used in this study put the CPU to LPM as soon as all
events have been processed, where the node’s current is approximately 1.8mA, given
that the radio is turned off. With the CPU active and the radio off, the node current is
roughly 3.5mA. As energy-ef!cient MAC protocols generally do not incur intensive
computations, we neglected to account for the CPU costs separately and considered the
CPU’s power consumption to be integrated within the three states of the transceiver.

We, henceforth, employ a model of the energy consumption of major MAC protocol
implementations, namely, S-MAC, T-MAC, WiseMAC, and CSMA using the TSM. We
let the nodes keep track of the time differences between the transceiver switches, in order
to determine how much time has been spent in each state. Figure 4.5 depicts the current
draw during the active interval of an S-MAC frame containing an RTS/CTS handshake
and a subsequent data packet transmission. Figure 4.6 illustrates how this current draw is
approximated by the TSM. The total energy consumed (E) corresponds to the area below
the current draw, multiplied by the supply voltage, which is assumed to be constant in
the model. Analytically, the TSM can be formulated as equation (4.7). The consumed
energy E is calculated as the power level of the node in the receive state Prcv multiplied
by the total time spent in this state Trcv and the respective terms for the transmit and sleep
states (PslpTslp and PtxTtx). This approach is identical to the one applied in [23–25].

E = PrcvTrcv + PtxTtx + PslpTslp = IrcvVrcvTrcv + ItxVtxTtx + IslpVslpTslp. (4.7)

Major studies [23–26] calibrate the parameters of their energy model by measuring the
currents the nodes draw in the different states and multiplying it with the supply voltage
to obtain Prcv, Ptx, and Pslp. They do so by using either oscilloscopes or high precision
multimeters and by measuring the current in each state over a certain timespan. In the
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Figure 4.7. Measured versus estimated energy consumption.

!rst attempt, we pursued exactly the same approach and determined the mean values of
Ircv, Itx, and Islp by measuring each state of the measurement node using the SNMD for
a couple of seconds. The stable mean values were determined to be 23.54, 37.49, and
2.15mA for Ircv, Itx, and Islp, respectively. We further set the voltage according to the
supply voltage of the SNMD to Vrcv = Vtx = Vslp = 4.06V.

Figure 4.7 depicts the mean values of the energy measurements and the estimations
for MSB430 sensor nodes being computed with the TSM – using the parameters for
Prcv, Ptx, and Pslp measured in the sample trace. One can clearly see that the estimations
!t quite well for low traf!c rates but that the gaps between mean estimations and
mean measurements become larger with higher rates of packets being sent. For most
protocols – especially S-MAC and T-MAC – the energy estimation overestimates the
energy consumed by the node with increasing load. This increasing overestimation
stems from the fact that the TSM does not account for the transceiver switches. As one
can clearly see by comparing Figure 4.5 with Figure 4.6, the current draw decreases to
roughly 4mA when the transceiver is switched to receive or transmit – hence, drawing
less current than estimated with the TSM. By de!ning parameters through example
measurement, the impact of the applied traf!c load and the frequent transceiver switches
as well as the particularities of the MAC protocol are not being taken into account at all.
Extrapolating from a short example measurement of a node, hence, leads to suboptimal
parameters for the TSM, even when using the same node for parameter calibration and
the evaluation of the accuracy.

ParameterDefinition throughOrdinaryLeast Squares (OLS). Being able
to physically measure the current draw of a sensor node and, at the same time, obtain
the software-based estimation calculated by the node itself offers the opportunity to
relate the estimations to the real-world measurements. Using the plethora of experi-
mental data gained in the experiments (in total over 12GB of measurement data), we
re"ect upon a method to determine more resilient parameters for the unknown variables
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Prcv, Ptx, and Pslp of the TSM. Ideally, the software-based energy estimation running on
the node should neither rely on the particularities of a speci!c MAC protocol nor on the
shape or intensity of the traf!c.Ordinary least squares (OLS) regression analysis yielded
the most suitable technique to determine the unknown variables for a linear estimation
model with multiple unknown variables. OLS !nds the model parameters that minimize
the sum of squared errors between the estimations and observations (i.e., the real-world
energymeasurements captured by the SNMDdevices).We formulate amultivariate OLS
regression model with explanatory variables Trcv, Ttx, and Tslp, as well as the physically
measured dependent variable E obtained using the SNMD device. The resulting estima-
tion Equation (4.8), hence, simply comprises Equation (4.7) and the error term � for the
residuals. More details can be found in [27].

E = PrcvTrcv + PtxTtx + PslpTslp + �. (4.8)

Estimation Accuracy of the Three StatesModel. In order to determine the
accuracy of the OLS-calibrated model, a cross-validation with totally new experimental
data is inevitable to omit over!tting effects, cf. Draper and Smith [28]. The determina-
tion of the parametersPrcv,Ptx, andPslp usingOLS regression is achieved based on a !rst
set of experiment runs, the so-called training set. The estimation accuracy results are then
gained with a new set of experimental data, the validation set. Figure 4.10 shows that for
each traf!c rate, the estimation error using the OLS estimator parameters is 4.2–35.9%
lower than the corresponding error when using the model parameters de!ned through
example measurement. Across all measurements, the mean absolute estimation error
and standard deviation (denoted as � ± �) of the TSM with the parameters de!ned by
example measurement equals 3.77 ± 3.17%. When determining the parameters by OLS,
we obtain 3.00 ± 2.55% – hence, achieving an overall reduction of the mean absolute
error (MEA) by 21% only by altering the calibration technique.

Three States Model with State Transitions (TSMwST). With the mean
absolute estimation error still in the range of 3% or more, further means to improve
the estimation accuracy are required. As Figure 4.8 exhibits, the current draw temporar-
ily drops to approximately 4mA during the state switches. These state switches remain
unaccounted for in the OLS regression model speci!ed in equation (4.8).

The approach of simply counting the transceiver switches and integrating them into
the OLS regression model leads to a signi!cant improvement in the estimation accuracy.
The number of transceiver switches (from an arbitrary state) to the receive, transmit, or
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sleep state was accounted for with the additional regressands srcv, stx, and sslp.We refer to
this model as Three StatesModel with state transitions (TSMwST) hereafter, as speci!ed
in equation (4.9). Figure 4.9 illustrates the model’s concept of a node’s current draw.

E = PrcvTrcv + PtxTtx + PslpTslp + �srcv + �stx + �sslp. (4.9)

According to this enhanced model, the energy consumed by a node is a function of the
total time its radio transceiver is in one of the three different states (Trcv, Ttx, and Tslp) and
the three adjustment terms �srcv, �stx, and �sslp. The parameters �, �, and � compensate
for the transceiver switches to the states receive, transmit, and sleep.

EstimationAccuracy of theThree StatesModelwith StateTransitions.
We calibrated the OLS estimators for the parameters of the second model with the
training set and examined the resulting estimation accuracy on the validation set.
Across all measurements, the MEA and standard deviation (denoted as � ± �) of the
software-based estimations using the TSMwSM (and the parameters determined by
OLS) compared to the physically measured values equals 1.13 ± 1.15%. Comparing
this result with the 3.00 ± 2.55% obtained with the pure TSM (and the parameters
determined by OLS), our proposed model enhancement leads to an overall reduction of
the MEA by remarkable 62.3%, as also illustrated in Figure 4.10.

Different wireless sensor node instances often exhibit a slightly different behav-
ior with respect to their power consumption levels in the different transceiver states, as
quanti!ed for our MSB430 platform and observed in previous studies [25, 29]. We have
encountered node pairs of the same node type that differed bymore than 4% in their phys-
ically measured energy consumption. Hence, even the best node-generic software-based
energy estimation mechanism can be more than 4%, if its underlying model parameters
were not calibrated on a per-node basis. Hence, either hardware-dependent deviations
have to be tolerated or time-intensive calibration per-node has to be performed, ide-
ally with different MAC protocols and different traf!c rates. However, calibrating on a
per-node basis means that every single node needs to be physically measured (e.g., with
an SNMD or a high resolution multimeter) ideally with differentMAC protocols and dif-
ferent traf!c rates. Only this time-intensive calibration leads to the set of per-node but
protocol-generic estimation model parameters to reduce the mean absolute estimation
error (� ± �) to 1.13± 1.15%. To increase the accuracy further, we propose per-protocol
calibration as an even more accurate estimation approach, which might be useful if
researchers know exactly what protocol they intend to use on the MAC layer in advance.
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The combined approach of per-node and per-protocol calibration obviously leads to the
highest accuracy. Across all four protocols and traf!c rates, we obtained a mean estima-
tion error and standard deviation (� ± �) of only 0.42 ± 0.72%. Figure 4.10 illustrates
the different estimation errors when applying the per-node and protocol-generic or the
per-node and per-protocol calibration approach. Yet, the combined calibration approach
has multiplicative impact on the overhead before network deployment, as all nodes need
to be equipped with tailor-made estimation model parameters for each protocol.

4.3.3 Energy Measurements versus Estimation

Power consumption measurements on mobile handheld devices have trade-offs between
intrusiveness and accuracy. For instance, a software tool can obtain measurements with-
out in"uencing the actual usage behavior of amobile device; however, it might not obtain
accurate measurements. This section provides the comparison between a physical mea-
surement tool and a measurement-based estimation tool as an illustrative example.

We analyze two tools introduced at the beginning of this section (Monsoon [12]
as a hardware tool and PowerTutor [30] as an internal software tool) and compare the
pros and cons of each one. During power measurements, choosing the “right” sampling
rate is necessary in a way that the tool collects enough data for the purpose, without
in"uencing the behavior of the system [31]. Therefore, the power measurement process
needs to minimize the impact on the battery life during the measurement process as
the energy consumption is one of the most in"uential factors on the end-user-perceived
quality in the smartphone [32].

The Monsoon power monitor device contains the power monitor hardware and the
power tool software, running onWindows XP and Seven, which can provide robust mea-
surements on any device that uses a single lithium (Li) battery. The measurements are
obtained and can be saved with a sampling rate of 5 kHz. The tool supplies the power to
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the device, thus the device battery is bypassed. TheMonsoon external power-monitoring
device is typically used for ground-truth measurements [33].

PowerTutor is a smartphone application, developed by a collaboration of academic
and industrial institutions, which displays the power consumed by a set of system com-
ponents such as CPU, network interface, display, GPS, and other applications. The aim of
its development was to make the power measurements transparent to the app developers
as well as to the users, so that they can take appropriate action to minimize their smart-
phones’ power consumption. PowerTutor receives the current values in milliamperes
from the driver and then multiplies the value by the voltage that is basically the phone
battery (typically 3.7 or 4.5V depending on the phone type). PowerTutor estimates the
energy consumption of applications and services based on the processing times and is
only available for speci!c phone types. Although these software tools provide the over-
all picture of the power and energy consumption of the applications being running on
the smartphone, the interfaces, CPU, display, and o on, they do not provide ground-truth
measurements on all type of devices, but only can provide estimations. We modi!ed
the PowerTutor in such a way that it writes the obtained measurements directly to the
smartphone’s internal storagewith a sample rate of 1Hz. This way, we perform statistical
tests.

Comparison ofMonsoon and PowerTutor. The choice of the power measure-
ment tool depends on the application to be measured, as the sampling rate of the tools
need to be kept limited if they are running on the battery-powered devices as a separate
application in the background. We describe now measurements of power consumption
during video streaming on the mobile terminals with Monsoon Solutions and obtain
ground-truth measurements [34, 35]. We conducted further tests to identify a set of dif-
ferences between PowerTutor and Monsoon. We installed PowerTutor on the HTC G1,
as it is recommended particularly for the Google phones, and in parallel, we connected
the Monsoon power-monitoring tool directly to the power supply of the smartphone.
This way, we were able to conduct simultaneous measurements and observed the differ-
ences between the two approaches. We have found slight inconsistencies between the
obtained measurements through Monsoon and PowerTutor. We observed that PowerTu-
tor power measurement values can drop down to zero occasionally as depicted in Figure
4.11. On the other hand, the power consumption values obtained viaMonsoon are within
the robust 1600–2200mW range as shown in Figure 4.11. Next, we streamed video (with
three different bitrates: 150, 300, and 500 kbit/s) to the device with and without the Pow-
erTutor. In both the scenarios, we recorded the power consumption measurements via
Monsoon. We conclude that PowerTutor has consumed extra power within the range
23–59mW. The descriptive statistics are presented in Table 4.1 for both the scenarios,
that is, with and without PowerTutor. Monsoon can provide highly accurate power mea-
surements, yet thesemeasurements are highly obtrusive and cannot be used, for example,
in user studies. On the other hand, PowerTutor is minimally intrusive and can provide
power models based on the device usage, but it relies on power measurements that are
not as accurate as Monsoon because of factors such as unavailability of reliable sensors
or low sampling rate. Hence, the measurement tool should be carefully chosen depend-
ing on the purpose of the study, and the limits should be reported in any discussion of
the results.
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Figure 4.11. Measurements obtained via Monsoon and PowerTutor during video streaming.

TABLE 4.1. Power Measurements Obtained Through Monsoon and PowerTutor in
Milliwatts

Rate (kbit/s) Tool Max Min
Standard
deviation Mean Median Data Points

With PowerTutor

150 Monsoon 2449.3 1351.2 94.0 1786.2 1772.3 4425001
150 PowerTutor 2278.0 0 517.5 2078.8 2227.0 958
300 Monsoon 2404.0 1489.9 94.2 1762.5 1745.0 4375001
300 PowerTutor 2287.0 0 562.3 2047.6 2231.0 453
500 Monsoon 2423.4 1499.1 90.8 1793.6 1776.4 4425001
500 PowerTutor 2278.0 0 649.8 1993.8 2238.0 442

Without PowerTutor

150 Monsoon 2198.8 1486.2 110.4 1727.4 1719.6 4425001
300 Monsoon 2170.1 1490.1 107.6 1739.0 1730.0 4425001
500 Monsoon 2201.9 1482.5 99.6 1753.1 1739.7 4425001

4.3.4 Summary

Measuring the energy consumption and deriving the energy ef!ciency of wireless
network components and protocols is a crucial !rst step toward energy-ef!cient
wireless networking. In this section, we discussed measurements and estimation
methodologies based on external and internal measurements. The testbeds presented
range from USB interfaces and mobile-battery-powered devices to WSNs. For impor-
tant sample wireless systems, we detailed the important precautions for measurement
and power modeling, such as sampling considerations and achievable accuracy.
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The decision between (hardware) power measurement and energy estimation
techniques depends on a manifold of considerations. Energy estimation enables simple
and fast energy calculations (online and of"ine) and overcomes some of the major
limitations of physical measurements, such as cost, time-intensive setup, and hardware
dependency. Moreover, energy estimation techniques provide means to ef!ciently
perform large-scale studies, for example, analyze the energy consumption of a large
user trace dataset and can be used in user studies. However, the accuracy of the
estimation technique is commonly less when compared to power measurements. This
needs to be considered at the time of analyzing the results, and there is a need to
consider the energy consumed by the measurement estimation itself. Thus, depending
on the requirements of the energy study, either one methodology can followed or
different physical measurement methodologies and energy estimation techniques can
be used together to complement each other.

4.4 ENERGY EFFICIENCY AND QoE IN WIRELESS ACCESS
NETWORKS

Thewidespread of wireless devices entails an ever-increasing plethora ofwireless access
networks of different kinds. Being wirelessly connected is in the !rst hand for the ben-
e!t of the users. As discussed previously, the convenience comes at the price of limited
battery power. In addition, the ever-growing wireless infrastructures consume increasing
amounts of energy. Thus, energy saving is of importance for both users and providers,
but it may not come at any price: if the quality of experience (QoE) gets too low because
of energy saving measures, it may entail user churn. For these reasons, energy ef!ciency
must be traded off well against potential quality losses, which is the main point of con-
cern in this section.

Section 4.4.1 provides an overview of recent approaches to increase energy ef!-
ciency of mobile long-term evolution (LTE) systems. In particular, several mechanisms
that allow an ef!cient adaptation of the power consumption to the required network
resources are summarized. Section 4.4.2 discusses the trade-off between energy con-
sumption, the number of users, and their QoE in a mesh access network. Section 4.4.3
highlights possible energy savings at the user device with a modi!ed resource schedul-
ing. Seen from the perspective of the end user, Section 4.4.4 reveals particular rela-
tionships between energy consumption and speci!c QoE issues for streaming video. A
speci!c-purpose network is targeted in Section 4.4.5. Here, an outlook on environmental
access networks is given.

4.4.1 Energy Issues in Cellular Networks

Mobile wireless access networks are increasingly contributing to global energy
consumption. Future mobile wireless access, such as LTE networks are no exception.
The EARTH (Energy Aware Radio and neTworking tecHnologies) project tackles
the important issue of reducing CO2 emissions by enhancing the energy ef!ciency
of future cellular mobile networks with particular focus on LTE systems. EARTH
is a holistic approach to develop a new generation of energy-ef!cient products,
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components, deployment strategies, and energy-aware network management solutions
in LTE networks. At component level, the various units, including antennas, RF (radio
frequency) transceivers, baseband processor, and power ampli!ers, are improved to
provide envisioned gains for the mobile core and radio access network (RAN) as
illustrated in Table 4.2.

Numerical results [42] reveal that for current network design and operation, the
power consumption is mostly independent of the traf!c load. This highlights the vast
potential for energy savings by improving the energy ef!ciency of cellular networks at
low load. Accordingly, techniques and algorithms developed within the EARTH project
mainly aim at reducing the power consumption of 4G cellular access networks in low
and middle load scenarios. In total, energy savings of 40–60% are possible [43]. Further
energy savings can be achieved by combining the proposed methods with other tech-
nologies such as DTX, dynamic bandwidth management, and adaptability on system
dynamics. However, a well-directed control of the presented mechanisms is required
to achieve a reduction of the energy consumption without affecting the user-perceived
quality. Controlling the mechanisms is crucial and depends on factors such as network
design, user behavior, and technology speci!cs, both for LTE and for other wireless
networks. In the next section, we demonstrated the challenges and potential of such
mechanisms for WMNs.

4.4.2 Energy Efficiency and QoE in Wireless Mesh Networks

In the following, we focus on energy ef!ciency andQoE issues inWMNs.We discuss the
trade-off between QoE and energy ef!ciency in cityWMNs as illustrated in Figure 4.12.
The evaluation is based on a summary of previous work [44].

4.4.2.1 Evaluation of the Trade-off between QoE and Energy Effi-
ciency in City WMNs. Even though WMN nodes in cites are usually connected to the
power grid, network providers still try to minimize the energy consumption and reduce
their costs. At the same time, they want to guarantee a good user-perceived quality of
the networked services. Accordingly, the QoE of the end user should not be harmed
by any reduction of the resources of the WMN. In general, this can be achieved either
by controlling the network resources, for example, increasing the number of available
mesh gateways, or by controlling the applications, for example, adapting the transmitted
content [45]. The implementation of such mechanisms in a wireless mesh environment
is rather complicated. On the one hand, !xed bandwidth guarantees are hard to realize
because fading or attenuation effects result in a highly variable bandwidth. On the other
hand, interference problemsmay occur when addingmore wireless resources whichmay
in the end lead to a decreased network performance.

To demonstrate this challenge, we investigate the trade-off between energy con-
sumption, which depends on the available network resources, the number of supported
users, and the perceived application quality. To that end, we conduct measurements in a
small wireless mesh network consisting of four mesh nodes, as illustrated in Figure 4.12.
The uplink capacity of one relay node to the Internet is regarded as a bottleneck. Hence,
adding additional relay nodes (gateways) increases the overall uplink capacity and also
the energy consumption. As an application for all users, we consider Web traf!c and
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TABLE 4.2. Mechanisms Enhancing Energy Efficiency in Cellular Networks

Component Technology Technical Approach
Implications and Impact
on Energy Ef!ciency

Antenna
[36, 37]

MIMO • Concurrent
transmission on
physical layer

• Spatial multiplexing

• Higher spectral ef!ciency
• Reduction of error rate/increased

capacity
• More ef!cient transmission

reduces energy consumption
• System supports trade-off

between energy ef!ciency and
spectral ef!ciency

Beam forming • Target-oriented
antenna arrays

• Spatial selectivity
• Interference reduction
• Less signal power required

R/F
trans-ceiver
[36, 38, 39]

Redesign of
architecture

• Circuitry and
transceiver system
level

• Power adaptation

• Chips support trade-off between
power and performance

• Signi!cant reduction of energy
consumption for low load
situations

Baseband [40] Micro/pico base
stations

• Design of new
signal processing
algorithms

• Algorithms support trade-off
power versus performance

• Signi!cant reduce of energy
consumption for low load
situations

Ampli!ers
[36, 38, 39]

Operation point
adjustments

• Approach
speci!cation

• Ampli!ers can adapt their
operation area

• Less power consumption due to
more ef!cient ampli!ers

User device
[41]

Discontinuous
transmission
(DTX)

• Deactivation of
unused radio
components

• Micro/short/long
timescales

• Less power consumption in idle
mode

• Signi!cant energy savings in
case of low loads

• Further savings possible due to
not transmitting CRS in short
DTX

Mobile core
and RAN

Scalability of
power
consumption

• Bandwidth
adaptation

• Energy-ef!cient
resource allocation

• BS sleep mode

• Improved system ef!ciency
• Improved energy ef!ciency, in

particular for low loads
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Figure 4.12. City wireless mesh network, multi-hop scenario.

approximate the QoE with the bandwidth/QoE mapping function introduced in [45]:

QoEweb(bw) = max
�
1, 5 + 1.5 ln

� bw
8Mbps

��
. (4.10)

The QoE of a Web user is supposed to be in logarithmic relation to the available band-
width and that a bandwidth of at least bw = 8 Mbps is needed to reach a maximal user
QoE of QoEweb(bw) = 5.

The reference measurements conducted revealed the following issues. First, the
power consumption increases linearly with the increasing number of active gateways.
Second, the available capacity between the mesh nodes is subject to large variations.
An increase of the available resources by increasing the number of gateways from one
to three reduced the average available capacity per gateway from 19.15 to 14.58Mbps.
This depends on the placement of the gateway nodes; however, it means that doubling
the number of gateways does not necessarily lead to a doubling of the available resources
in terms of capacity. In addition, the higher interference leads to higher variations of the
available capacity per gateway. In our scenario, the relative gap between the average
capacity and the 5% quantile was increased from 14% for the one-gateway case to 42%
for the three-gateway case, respectively.

If the available capacity is subject to variations, the resulting QoE will retain this
behavior. Hence, we investigate the average QoE and the gap between the average QoE
and the 5% quantile of the resulting QoE distribution. Figure 4.13 illustrates the QoE
gap for the multi-hop scenario with three gateways. The QoE gap is 0.8186, that is, in
5% of the time, the current opinion score (OS) of a given user can be more than 0.8
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Figure 4.14. Relation between QoE, power consumption, and number of supported users.

worse than the mean opinion score (MOS) of that user. This might be acceptable for an
MOS value of 5 and a resulting worst case MOS value of approximately 4.2. However,
for an MOS value of 3, this results in a worst case of approximately 2.2, which indicates
a higher number of dissatis!ed users.

The increased bandwidth "uctuations in multi-gateway scenarios also have a nega-
tive impact on the number of supported users with a certain QoE. To study this effect, we
!rst investigate the QoE based on the number of users and the number of used gateways.
The results are illustrated in Figure 4.14(a). The bold solid lines represent the case when
the average bandwidth in each scenario is regarded, the thin dashed lines represents the
5% percentile case.

As long as the fraction of bandwidth each user obtains is higher than 8Mbps, the
average MOS of the users is 5. For an increasing number of users, the QoE starts to
decrease when a certain threshold is reached. From this point, doubling the number
of users approximately results in a reduction of the average QoE by 1. Although the
decrease can be avoided by adding additional gateways, a lot of resources are wasted
because the mentioned interferences lead to a nonlinear relationship between number of
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gateways and supported users. In particular, this results in a lower minimum quality for
three gateways as for two gateways, as illustrated by the 5% quantiles.

Besides the QoE for different numbers of users and gateways, we highlight the num-
ber of supported users for a given QoE level and the power consumption of the wireless
mesh network. In detail, Figure 4.14(b) illustrates the number of supported users with a
certain MOS of 3, 4, or 5 for a given number of gateways and the corresponding power
consumption. The power consumption raises almost linearly with the number of gate-
ways and does not depend on the number of users. This is mainly due to the fact that for
the access nodes, the energy consumption of the wireless interfaces is negligible com-
pared to the consumption of the overall system. However, the number of users does not
increase in the same order of magnitude as the number of gateways. This can be mapped
to the following: paying twice the price for power consumption does not necessarily
mean to be able to satisfy twice the number of users.

Another important issue besides the application quality is the energy consumption
of mobile devices when accessing the network. Current smartphones consume a huge
amount of energy while sending and receiving data over the network. Hence, it may be
bene!cial to reduce the transmission time itself, as investigated in the following.

4.4.3 Reducing Energy Consumption of the End User Device

Huge efforts are currently undertaken to save energy at the mobile end devices. This is
re"ected by the decreasing power consumption and increasing performance per watt [46]
of new devices. Taking the energy consumption pro!le of smartphones into account,
most energy is consumed while sending and receiving data over the network. Thus,
mechanisms that reduce the energy consumption of mobile terminals are required. One
such amechanism is DTX, cf. Section 4.4.1. Here, the network determines time intervals
where no data is sent to a smartphone and thus allows the smartphone to enter a power
saving state while no data is transmitted. This can be combined with data scheduling
mechanisms as presented in [47]. The authors propose to adjust resource allocation in
multiple user scenarios to avoid long parallel downloads and to allow consecutive short
downloads with high data rate [47]. This, however, comes at the cost of additional wait-
ing times before being served. The concept is exemplary illustrated for three users in
Figure 4.15. If no additional delays are introduced, the link is utilized similarly for both
cases. However, for the second case, the individual downloading durations are reduced.

Without resource scheduling, the available resources are shared fairly among all
downloads. As a consequence, the downloading duration per user is increased, because
of the reduced resources. On the other hand, a download scheduling on a !rst come !rst
serve (FCFS) basis might reduce the download duration per task and also might intro-
duce additional waiting times. Hence, the question arises, whether the overall power
consumption is reduced compared to the case without scheduling, and whether the over-
all download duration, which also includes possible waiting times, is increased. We will
now study the impact of the scheduling strategy in detail.

4.4.3.1 Evaluation Setup and Performance Metrics. The study is carried
out in a WMN. The WMN consists of one wireless AP granting access for the mobile
user devices and one mesh node connecting the AP to the WMN’s Internet gateway. The
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Figure 4.16. Power model for 3G, LTE, and WiFi [48].

mobile users are requesting !les with equal or different sizes from a server located in
the Internet. On the basis of the order of the requests, a resource algorithm schedules the
speci!c network "ows. To determine the energy consumption of the downloads also for
other technologies such as LTE, 3G, and WiFi, the model provided by Huang et al. [48]
is used.

Figure 4.16 shows the power needed (in mW) depending on the data rate (in Mbps)
of the uplink and the downlink for all technologies. A mobile device already consumes
a signi!cant amount of energy when 3G or LTE is turned on. In general, LTE provides
the highest data rate that is necessary for the emerging high quality applications. Yet it
also consumes the most power compared to 3G and WiFi.

4.4.3.2 Performance Results of the Proposed Mechanism. First,
we investigate the impact of the FCFS resource allocation algorithm on perceived
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downloading times for two scenarios. We evaluate a scenario with !ve users that
simultaneously try to download the same 5-MB !le from a server. Then, we focus on a
scenario with a higher statistical variation. The interarrival time for all !ve download
users are distributed exponentially with a mean of 5 s. Further, the users download
!les with a size of 3 or 6MB. The available wireless network capacity of the WMN is
limited to 3Mbps. To get statistical signi!cance, the experiments were conducted 100
times. The aggregated results are depicted in Figure 4.17. The results are illustrated as
CDF for the download times d. In case of an FCFS scheduling, the download times
can be reduced. This is mainly due to less competition between the TCP "ows than
in the case of “no RM” (no resource management, i.e., without particular scheduling
strategy).

A convenient approach for saving energy at the end device is to temporarily suspend
their transmissions. Therefore, we consider theoretically how high the savings in energy
are if the mobile phone is able to go idle. We compare the results with the energy con-
sumption for terminals that cannot go idle for the cases with andwithout explicit resource
management. The energy consumption per terminal in case of an LTE network are illus-
trated in Figure 4.18. Again, the results for the static case are depicted in Figure 4.18a,
whereas the results for the more varying scenario are illustrated in Figure 4.18b. It can be
seen that the FCFS mechanisms with an enabled idle option outperform both the FCFS
and the No RMmechanisms. Here, the mobile devices are only activated as long as they
are downloading a !le. In the lower !gure, we can see the effect of different !le sizes.
The step behavior is the result of energy consumed by the mobile devices for the 3-MB
and the 6-MB !les.
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As shown in this section, appropriate resource schedulingmechanismsmight reduce
the energy consumption of end devices by reducing transmission time. The energy saving
potential, however, highly depends on the type of application. During a download, the
user typically performs other tasks or does not interact with the device at all. As other
components such as the device screen do not depend on the download progress, no addi-
tional energy is wasted. Thismay change by taking other applications such as progressive
video streaming into account, as discussed in the following.

4.4.4 Energy Measurements Revealing Video QoE Issues

During the playout of a video, the stream often gets interrupted because of starvation
of the playback buffer that is caused by bandwidth and delay variations, affecting the
BDP (bandwidth–delay product) and RTT (round trip time). Those short or long pauses
during the video stream are referred to as freezes or stalling events that in"uence the
end user perceived QoE. During a stalling event, typically, no data is transmitted, which
on the one hand might result in a reduced power consumption. On the other hand, other
components such as the screen consume power leading to an intrinsic need to reduce
stalling times and therewith the waste of battery power.

In the following, we investigate whether it is possible to identify video stalling
based on the energy consumption of the smartphone using anomaly detection techniques
[34, 35]. As detailed in Section 4.3.3, power measurements can be conducted using
software internal tools such as PowerTutor or external power-monitoring tools such as
Monsoon. More details, as well as a comparison of both tools, can be found in [35]. To
achieve a good accuracy of the stalling event estimation, a high sampling rate of power
measurements is necessary in order to detect anomalies. If the measurement sampling
rate is too low, it might miss the anomalies and thus does not identify stalling. How-
ever, oversampling might cause unnecessary high energy consumption because of the
excessive amount of system calls to fetch the information on the current drain.

The instantaneous total power consumption during video streaming on the smart-
phone is given in Figure 4.19. The power consumption values are categorized in to two
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Figure 4.20. Simultaneous interpicture time and power consumption measurements.

parts: Phase 1 and Phase 2. Before Phase 1, the smartphone is in idle state. Phase 1 starts
when the user presses the play button and the player requests the video content from the
server. Phase 1 duration contains the signaling duration, and it depends on the condition
of the link in between the smartphone client and the streaming server. The increases in
initial delay extends the duration of Phase 1 and eventually the total energy consumption
of the video player. After Phase 1, the instantaneous power consumption values follow
a steady-state region in Phase 2, and this second phase continues until the end of the
video session. However, in Phase 2, the steady-state behavior of instantaneous power
consumption might be impacted by the occasional freezes during the video playout,
and we identi!ed these regions as “freeze regions?” We smoothed the high frequency
power consumption values obtained via Monsoon with simple moving average (SMA)
with varying window sizes (W), whereW = 10, 000 represents a 2 second-long window
size. There are two evidences in the power consumption pattern at Phase 2 where the
smoothed power consumption values drop down from approximately 2000 to approx-
imately 1500mW. In parallel, the interpicture times, that is, the time gap in between
two consecutively displayed pictures, are obtained via our VLQoE tool [49]. Then,
one-to-one mappings between the two parameters (interpicture time and instantaneous
power consumption) are obtained using an optimizedwindow size,W = 7500 (1.5 s) that
yields the highest correlation between those two parameters as shown in Figure 4.20.

The correct choice of internal software-based power measurement tools with mini-
mally obtrusive highly accurate power measurement tool on a mobile device can detect
the stalling events through energymeasurements. Accordingly, the QoE can be estimated
by the device, and appropriate actions to reduce the energy consumption might be per-
formed. The introduced methods have the potential to provide a more energy-ef!cient
QoE monitoring framework that relies on energy measurements instead of a complex
instrumentation of network stack and user interfaces.

Until now, we discussed the wireless access networks that are connected to a con-
tinuous energy source and the issues related to energy ef!ciency, and the QoS and QoE
for access networks and end device. Next, an outlook on environmental WMNs used to
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connect weather or climate monitoring stations is given. A main concern these networks
face is that they are not connected to the power grid, but are supplied with batteries and
have no stable energy supply.

4.4.5 Energy Issues in Environmental WMNs

While environmental WMNs take advantage of wireless communications, they face the
challenge of energy supply. In environmental monitoring, in particular, the mesh nodes
generally cannot count on energy supplies close by. Thus, they need to be equipped
with batteries and will be able to communicate only as long as there is enough charge
left. Self-suf!cient energy supply means leverage local energy sourcing, for example,
through the use of solar panels or windmills. It, furthermore, implies the need to
carefully handle power consumption and resource allocation such that communication
outages owing to discharged batteries are avoided [50, 51]. The latter has shown to
be a QoE issue that is taken very seriously by users [32]. Countermeasures have been
proposed, such as a context-aware energy management system for network nodes that
are energy self-suf!cient [52], a battery-aware scheme for energy-ef!cient coverage
and routing [53], and an energy model for network coding-enabled WMNs based on
IEEE 802.11 [54]. In [55], an investigation of the energy consumption behavior from
the perspective of a wireless network interface in an ad-hoc networking environment
is detailed.

The challenges stated in the works above have recently been studied in an
environmental mesh network deployed in the Valais region of the Swiss Alps for
hydrometeorological monitoring [56]. The environmental conditions are challeng-
ing and changing, comprising highly varying sunlight conditions and lots of snow
throughout the year. This A4-Mesh network [57] provides researchers quasi-permanent
near-real-time remote control of sensors and access to (quite large volumes of) sensor
data. Thus, data loss should be avoided by all means. Figure 4.21 shows the network
setup, with the distance of each wireless link and the locations of the connected
environmental monitoring stations. Energy measurements, in particular, load of the
mesh node and charge of the battery (both in Ah), were taken over two periods of
several weeks each, one in summer and the other in winter.

Figure 4.22 displays the daily battery load (charge) together with daily usage (dis-
charge) for an arbitrary week in summer and winter. Themeasurements concern a central
node in the wireless mesh network, node 8, and node 3, which is at the edge of the net-
work and acts as gateway for some speci!c sensors, cf. Figure 4.21. In both the !gures,
at !rst sight, it seems that there is lacking data for the battery charge. As the battery day
load denotes the battery charging by the solar panel module, we can expect activity only
when the panel actually generates charge, which explains the lack of recorded data at the
beginning and end of each day when sunlight stops hitting the panel. The case is more
extreme in winter because of the shorter period of daytime. Moreover, it is interesting
to note that the battery day load registers large differences from one day to the next,
indicating that depending on weather conditions, the amount of sunlight reaching the
panel varies considerably. Although sunny days can be used to bring back the battery
to full charge and compensate for periods (days) with poor sunlight, one should always
consider daylight statistics of potential deployment locations.
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Figure 4.21. Wireless mesh network deployed for support to environmental research.

Comparing the energy usage of the two mesh nodes shows that the central node 8
needs more energy (�17Ah in a day) compared to what node 3 consumes (�12Ah in
a day). The measured data indisputably points out that the mesh node 8 is involved in
more intensive internode communication using in that way more energy. The impact of
the length of the communication link on the required transmit power should also not be
neglected, mainly because of higher per-link transmission power. Hence, the design of a
wireless mesh network relying on solar energy for its sustainable operation should take
into account the role of each individual node in the overall mesh network as well as the
node’s location, which affects communication distances, and also the amount of usable
sunlight in the region.

31



30

25

20

15

10

5

0

30
25
20
15
10
5
0

E
le

ct
ric

 c
ha

rg
e 

(A
h)

E
le

ct
ric

 c
ha

rg
e 

(A
h)

30/06 01/07 02/07 03/07 04/07 05/07 06/07 07/07

03/11 04/11 05/11 06/11 07/11 08/11 09/11 10/11

Day load from solar panel to battery (node 8)
Day usage by mesh node (node 8)

Day load from solar panel to battery (node 3)
Day usage by mesh node (node 3)
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period of 1 week in summer/winter.

4.4.6 Summary

This section discussed the trade-off between QoS and QoE as well as the energy ef!-
ciency of access network structures and user devices, starting with summarizing ideas
and mechanisms to scale cellular network resources better to the number of users. We
found that the power consumption of 4G (LTE) cellular access networks for low andmid-
dle load scenarios can be reduced by deploying energy-ef!cient technologies resulting
in energy savings of 40–60%.

We demonstrated the trade-off between QoE and energy consumption of a WMN
for an exemplary use case, web browsing. The results illustrate the relationship between
the number of customers, their QoE, and the energy consumption of the access network
and reveal possible energy savings. Beside energy consumption of the access network,
energy savings at the mobile devices is also an important issue. Therefore, resource
scheduling mechanisms are candidate technologies for reducing the energy consump-
tion of data transmissions by reducing the download times. In combination with tech-
niques such as discontinuous transmission, which allows to deactivate unused radio
components on different timescales, energy consumption for occurring waiting times
can be signi!cantly reduced. This, however, changes for applications such as progres-
sive video streaming. Here, the components such as CPU and screen might remain
active regardless of the state of the video playback, for example, stalled or smooth play-
out [58].

Last but not least, environmental wireless access networks that are not connected
to the power grid have been discussed. In such a scenario, access nodes are equipped
with batteries and solar panels to allow energy harvesting. This type of access network
requires a much more sophisticated network design to provide suf!cient resources for
the supported networking services. Accordingly, various parameters such as length of
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the communication links, role of the individual nodes, their locations, as well as the
amount of usable sunlight have to be taken into account.

4.5 ENERGY-EFFICIENT MEDIUM ACCESS IN WIRELESS SENSOR
NETWORKS

Energy ef!ciency is of highest concern in WSNs. Developed protocols have considered
energy ef!ciency from the beginning, because usually sensor nodes are battery powered
and are expected to have long lifetime. Mechanisms developed inWSNs have thus in"u-
enced protocols and mechanisms in other (wireless) network environments. The MAC
layer is the most important one concerning energy ef!ciency, because it depends mainly
on the MAC protocol when a sensor’s transceiver can go to sleep state. The transceiver
is the component of a sensor consuming most of its energy, and putting a transceiver into
sleep state is by far more effective than adjusting the transmit power.

Many energy-ef!cient MAC protocols for WSNs have been developed. However,
most of those protocols and mechanisms trade energy ef!ciency for network perfor-
mance (delay, throughput) and are not able to support varying traf!c patterns. This
section presents work on energy-ef!cient WSN MAC protocols (cf. Section 4.5.1), in
particular, MaxMAC, which is able to adapt to varying traf!c patterns. Measurement in
real WSN testbeds demonstrates that it is possible to design both energy-ef!cient and
traf!c-adaptive MAC protocols for WSNs (cf. Section 4.5.2).

4.5.1 MaxMAC – An Energy-Efficient MAC Protocol

MaxMAC is an energy-ef!cient MAC approach, which takes advantage of the substan-
tial work carried out on energy-ef!cient MAC (E2-MAC) protocols in the past decade,
especially the asynchronous contention-based protocols B-MAC [24], WiseMAC [59],
and X-MAC [26].

4.5.1.1 Preamble Sampling. With preamble sampling (also referred to as low
power listening) introduced in B-MAC and WiseMAC, nodes keep their radios off for
most of the time and only wake up for brief periodic duty cycles to poll the channel for
a preamble signal once every Base Interval T (cf. Figure 4.23). ContikiMAC [60] also
applies the WiseMAC preamble minimization to reduce the transmission overhead.

The preamble sampling technique of WiseMAC is already quite ef!cient in avoid-
ing costly overhearing. However, with sparse traf!c, chances are high that the wake-ups
of nontargeted receivers do not coincide with those of the targeted receivers. However,
with higher traf!c and transmissions of queued packet trains, overhearing of preambles
and frames can also become an increasing source of energy waste. MaxMAC mini-
mizes overhearing by enriching preambles with target ID information, as illustrated in
Figure 4.23. Target nodes turn their radio transceivers on and sense the carrier for their
particular preamble to receive preamble and frame. Nontarget nodes turn their radios on,
extract the target information in the ongoing preamble transmission, notice that they are
not targeted, and immediately turn the radio off again. This concept has been applied in
X-MAC [26], where nodes send preamble strobes in between which receiver nodes can
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Figure 4.23. Preamble sampling with embedded target address in MaxMAC.

signal reception readiness with the so-called Early-ACK. MaxMAC is the !rst protocol
that merges this concept of integrating a target address identi!er into the preamble in
order to reduce overhearing with the highly ef!cient preamble minimization technique
of WiseMAC.

4.5.1.2 Run-Time Traffic-AdaptationMechanisms. In contrast to most of
today’s E2-MAC protocols, which operate with rather static parameter settings, Max-
MAC introduces traf!c-adaptation features to instantly react to changing load condi-
tions by altering its behavior at run-time. Similarly as in dynamic frequency/voltage
scaling, where the CPU reacts to higher computation load with an increase of the fre-
quency/voltage, a traf!c-adaptive E2-MAC protocol should react to changing load by
correspondingly tuning the radio: turning it on more frequently when more traf!c has to
be handled, keeping it permanently on during load peaks, and turning it off again when
the load level permits it.

With E2-MAC protocols alternating between statically con!gured sleep in each
interval, given that no traf!c-adaptation mechanisms are integrated. Latency typically
increases sharply, as forwarding nodes need to buffer incoming frames and wait for the
next wake-up of their intermediate gateway node, which often sums up to several sec-
onds in multi-hop scenarios. In MaxMAC, nodes change their state and, hence, their
behavior, and allocate the so-called extra wake-ups when the rate of incoming packets
reaches prede!ned threshold values and release them when the traf!c rate drops below
these thresholds again, falling back to their initial channel sampling behavior.

Figure 4.24 illustrates the state-based adaptivity mechanism with a source node
(SRC) sending packets to a receiver node (DST) with increasing rate. Nodes operate
in the base interval state per default, polling the channel periodically each base inter-
val T . They alter their state (and behavior) by switching to states S1 and S2 when the
corresponding thresholds T1 and T2 are reached. Thresholds T1 and T2 are set to 2 and 6
packets/s in Figure 4.24 but only serve to illustrate the basic concept. Each node keeps
estimating the rate of incoming packets, using a sliding window of 1 s (cf. rate estimation
graph of DST in Figure 4.24). In case of increasing load, it schedules extra wake-ups in
between each base interval, effectively doubling the amount of duty cycles over time.
The receiver nodeDST communicates its increased wake-up frequency in the ACK. SRC
receives this announcement and marks the increased wake-up frequency of node DST in
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Figure 4.24. Rate estimation, extra wake-ups, and CSMA mode in MaxMAC.

its schedule offset table. With the noti!cation sent by DST in the ACK, DST promises
to remain in the new state and keep its increased wake-up frequency for a prede!ned
timespan S1_LEASE. For each state in MaxMAC, the LEASE timespans (S1_LEASE,
S2_LEASE, CSMA_LEASE) de!ne how long a node promises to remain in the new
state when announcing the state change in the ACK. LEASE timespans can be extended
in any new ACK transmission. By remaining in a higher state for at least the LEASE
duration, fast oscillation between the different states can be mitigated.

With the rate of incoming packets reaching the threshold T2, DST changes to state
S2, doubles the frequency of wake-ups again, and announces its state change in the ACK
(cf. Figure 4.24). As soon as these timespans expire, nodes having received prior state
change announcements will assume that the corresponding node has fallen back to its
default behavior, polling the channel with the base interval T , which prevents them from
transmitting when the target is not awake.

Most E2-MAC protocols have been designed under the assumption of sparse low
rate traf!c and, hence, take into account a severe degradation of the maximum through-
put compared to non-duty-cycled MACs. They only reach a fraction of that of CSMA.
MaxMAC has been speci!cally designed to achieve a throughput similar as CSMA in
situations of increased network activity, which can be seen as best case for the class of
contention-based random-accessMACprotocols.While the allocation of extra wake-ups
helps to achieve a somewhat increased throughput and reduces the latency, the character-
istics of CSMA can still not be reached. MaxMAC thus carries the concept of changing
the behavior one step further: when the rate of incoming packets reaches a further thresh-
old TCSMA (with TCSMA > T2 > T1), MaxMAC switches to energy-unconstrained CSMA
and announces this state change to the sender node (and potentially overhearing nodes)
in the ACK. Figure 4.24 illustrates node DST measuring the rate of incoming packets to
reach TCSMA = 10 packets/s in the right part of the !gure. DST, hence, switches to the
CSMA state, announcing the state change to SRC in the ACK and promising to remain
in the CSMA state for at least the prede!ned timespan CSMA_LEASE. Within this
timespan, SRC can transmit packets without having to wait for a wake-up of DST, as it
knows that DST keeps its transceiver on for at least the timespan CSMA_LEASE. With
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CSMA_LEASE expiring, all nodes having received the prior state change announce-
ment of DST assume that DST has fallen back to the base interval state, which prevents
them from transmitting at times when DST is asleep.

4.5.2 Real-World Testbed Experiments with MaxMAC

Our real-world testbed evaluation scenario is inspired by recent work on arti!cial-
intelligence and neural-network-based intrusion detection and of!ce monitoring
systems. Figure 4.25 illustrates our application-oriented scenario: the !gure displays
the testbed with the V-shaped network topology. The nodes in the testbed network are
assumed to be part of a distributed of!ce monitoring and intrusion detection system.
Each node is assumed to generate sensing information originating from a small CMOS
camera and an infrared sensor. On the basis of its sensor values and prior calibration, it
detects anomalous behavior as proposed in [61]. The sink node D is again located in
the top right corner and is assumed to be connected to the Internet to contact the facility
management staff. The events we emulate are described in the following.

All nodes except for the sink are generating status messages each 20 s to inform
the sink about their alive status (background traf!c). In each experiment run, the ini-
tial idle period lasts for 100 s. At t = 100 s after experiment start, an intruder enters the
building in the ground "oor and enters the of!ce of node SA, as displayed in Figure 4.25.
Node SA notices the intruder and generates an image, which is split into 100 packets and
sent toward the sink. The node is con!gured to send two packets per second, hence, the
process takes roughly 50 s. The intruder moves up the stairs into the !rst "oor, where
he breaks into the of!ce of node IA1, exactly 40 s after visiting the !rst of!ce. Node
IA1 notices the intruder and also sends an image toward the sin. After another 40 s, the
intruder breaks into the room of node SB located on the same "oor, where the same
procedure is triggered. Again, 40 s later, the intruder breaks into the room of node IB1
located in the second "oor triggering image sending. Finally, the intruder leaves the
building. Every node, after transmitting its image data, falls back to its default behavior,
generating status messages every 20 s and sending them toward the sink.
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Figure 4.26. Offered load from nodes SA, IA1, SB, and IB1.
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Figure 4.27. Packet reception rate at sink node D.

Figure 4.26 illustrates the shape of the offered load generated by the four sensor
nodes in the different rooms of the building over experiment time. Each node starts
transmitting its series of packets when the intruder is in its of!ce. There are overlaps
of duration of 10 s where two nodes are concurrently attempting to send their packets
toward the sink, as illustrated in the aggregated offered load curve.

Figure 4.27 depicts the rate of received packets by the sink node D. The rates were
calculated using a central moving average !lter of 1 s and computing the average across
the results of the 20 experiment runs. In general, WiseMAC obviously manages well to
deliver its periodic alive status messages to the sink. However, it suffers from major
packet loss when the nodes have to transmit the 100 payload messages at a rate of
2 packets/s. With the wake-up interval T = 500ms, each node only wakes up twice per
second. As packets have to be forwarded across multiple hops, the rather limited channel
contentionmechanism and the hidden node problem lead to high packet losses. These are
most likely caused by collisions and buffer over"ows after failed transmission attempts.
The rate of successfully delivered packets from the nodes SA, IA1, SB, and IB1 during
the image transmission period does not exceed 1 packet/s on an average, with the major
share of packets being lost. After the triggered events, the periodic alive status packets
sent for every 20 s are again received at the sink without major losses.
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Figure 4.28. CSMA: packet reception rate from nodes SA, IA1,SB and IB1.
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Figure 4.29. MaxMAC: packet reception rate from nodes SA, IA1,SB, and IB1.
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Figure 4.30. WiseMAC: packet reception rate from nodes SA, IA1,SB, and IB1.

In contrast to WiseMAC, CSMA and MaxMAC succeed in delivering the periodic
alive status messages, and also the major share of the 100 packets which are triggered
by the intruder. The small time periods where two nodes are delivering their series of
packets at the same time is managed best by CSMA.MaxMAC’s rate of received packets
reaches a slightly lower maximum throughput and also tends to drop some packets when
only one event is being handled.

Figures 4.28–4.30 depict the share of packets from each originating node SA, IA1,SB,
and IB1 coming in at the sink node D. Figure 4.28 conveys the superior performance of
CSMA with respect to the achieved packet delivery ratio (PDR) (96%). MaxMAC is
able to deliver the major portion of packets (89%) but suffers some losses during the
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Figure 4.31. Ad-hoc and opportunistic networks and typical technologies.

load peaks, cf. Figure 4.29. WiseMAC suffers heavily from congestion during the load
peaks. The rate of 2 packets/s across a couple of hops is not manageable by the protocol
and results in buffer over"ows and collisions. Nevertheless, it succeeds equally well as
MaxMAC or CSMA in delivering the major portion of the periodic alive messages.

4.5.3 Summary

This section described the state of the art of energy-ef!cient and adaptiveMAC protocols
for WSNs. We have discussed MaxMAC as adaptive and energy-ef!cient MAC protocol
and applied it in a real of!ce scenario testbed for intrusion detection. The results show
that it is possible to combine energy-ef!cient and traf!c-adaptive protocol operation.

4.6 ENERGY-EFFICIENT CONNECTIVITY IN AD-HOC AND
OPPORTUNISTIC NETWORKS

In today’s world of information exchange anywhere at any time, heterogeneous
infrastructure networks based on a manifold of radio technologies are available. Yet,
the ever-increasing need for bandwidth and connectivity asks for the integration of
alternative networking technologies in addition to traditional, infrastructure-based ones.
Such need is stated by large amounts of traf!c because of, for example, multimedia
services leveraged by the evolution of smartphones and other smart devices. As a
consequence of these demands, of"oading the infrastructure by alternative technologies
is considered. Additionally, connectivity is still a problem in rural regions of developing
countries and when infrastructure networks are destroyed during natural or man-made
disasters. Here, ad-hoc and opportunistic networks establish connectivity provided
by equal peers, that is, mainly mobile devices. Figure 4.31 visualizes major types of
infrastructureless networks that have been introduced in the past. Starting with general
ad-hoc networks mainly based on WiFi and concerned with establishing connectivity
and ef!cient routing in the early years, different use cases demanded special solutions.
For example, the IEEE 802.11p amendment has been adopted for vehicular ad-hoc
networks (VANETs). Other new approaches originating from early ad-hoc networking
research are opportunistic networks leveraging Bluetooth- or WiFi-based networking
options for device-to-device communication. Recently, aerial networks have been
introduced, which establish ad-hoc network connections between "ying unmanned
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aerial vehicles (UAVs) ("ying robots), for example, supported by WiFi ad-hoc and long
range technologies for control traf!c such as XBeePro.

As end user devices are in these settings often concerned with providing network
functions such as relaying of packets and network maintenance, energy-ef!cient oper-
ation of these devices is required to assure a suf!ciently long lifetime of the network.
Thus, we will ask the question whether the networking technologies are mature enough
to cope with this problem and discuss the trade-offs that have to be considered to achieve
energy-ef!cient connection provisioning. Thus, we introduce major technologies, their
energy footprint, andmethods to increase energy ef!ciency, as well as typical application
!elds of ad-hoc (cf. Section 4.6.1) and opportunistic networks (cf. Section 4.6.2).

4.6.1 Ad-Hoc Networking

The original appeal of ad-hoc networking is due to the lack of reliance on an infrastruc-
ture, for example, in times of disasters, and the self-organizing nature of the network
in a distributed fashion. Research in the area during the past 15 years has, therefore,
attempted to show the viability of the ideas in terms of connectivity and message deliv-
ery ratio as a function of network capacity (node density and sparseness as a function of
mobility). Less research has targeted the important question of energy consumption in
ad-hoc networks. One major technology used is WiFi IEEE 802.11a/g/n – operating in
infrastructure and ad-hoc mode. Civil use cases of ad-hoc networking based on 802.11
are VANETs, and recently aerial networks of micro UAVs.

A major insight from early studies [62–65] is that ad-hoc networking protocols
should target the reduction of energy consumption by avoiding staying too long in an
idle listening mode. For example, studies on Symbian and Android phones (N97 and
Magic 1, respectively) show that the base consumption for staying connected in the
ad-hoc mode of WiFi is considerably high, for example, 0.7W on the Nokia N97. This
is on a par with the amount of energy consumed by the screen. A similar !nding is
presented in [66], where Nexus One phones are analyzed with respect to their energy
consumption during scanning and service set identi!er (SSID) beaconing in ad-hoc
mode. While the scanning operation is the least energy consuming network operation
(4.8% in 24 h), beaconing causes draining of the battery within less than a day.

Another way to save energy is to reduce the number of transmissions and use a way
of overhearing communication by many, for example, by using broadcasting or multi-
casting. The work of Asplund and Nadjm-Tehrani [62] introduces a manycast algorithm
termed Random Walk Gossip (RWG), which keeps the number of active transmissions
to a minimum, thereby saving energy. This protocol was successfully implemented on
real devices as well as studied on simulation platforms [63–65]. Implementations of the
protocol run on smart phones using the Android as well as Symbian phone platforms.

A major drawback of real implementations of these concepts is that they have to be
ported multiple times to new emerging platforms and adapted because of the new energy
footprints of networking operations. For example, while it was possible to operate in true
WiFi ad-hoc mode with former mobile phones, recent (unrooted and not jail-broken)
smartphones do not support this mode any more. We discuss new modes of spontaneous
connection establishment in Section 4.6.2. In the following, we summarize major con-
cerns of energy-ef!cient ad-hoc networking in the use cases disaster and rescuemissions.
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4.6.1.1� Use�Case�Establishing�Connectivity�after�Disasters�and�in�Res-cue�
Missions.� In�disaster�scenarios,�the�major�concern�is�to�establish�a�robust�network�that�
maintains�connectivity�for�the�time�necessary�to�sufficiently�carry�out�the�disaster�
relief�task.�Thus,�prolonging�the�network�lifetime�is�a�major�concern,�in�particular,�in�the�
likely�case�that�some�or�all�ad-hoc�nodes�are�running�on�batteries.

To�study�such�a�situation,�a�simple�model�of�device�energy�depletion,�including�both�the�
idle� listening� footprint� and� cost�of� transmissions�on� the� ad-hoc�802.11� interface,�has�
been�added� to� the�NS3�simulator�as�described�by�Raciti�et�al.�[67].�In� the�context�of�a�
disaster�scenario,�it�is�shown�that�the�lifetime�of�the�network�can�be�extended�by�14%
with�no�major�loss�of�performance�if�each�node�uses�the�knowledge�about�own�current�
energy� levels�and�a� local�estimation�of� the�normality� (or�hostility)�of� the�behavior� in�
the� nearest� environment.�This�work� is� based� on� plugging� a�module� into�NS3�whose�
calibration�is�based�on�the�actual�energy�measurements�obtained�in�a�small-scale�testbed�
emulating�device�transmissions�[68].

In�addition�to�mobile�devices�such�as�notebooks�and�mobile�phones,�modern�search�
and� rescue�missions� commence� the� inclusion� of� battery-powered�micro�UAVs.� This�
allows,�first,�to�gather�image�data�of�an�area�and,�second,�to�establish�an�aerial�multi-hop�
network�to�transmit�over�wider�distances.�These�networks�are�sparse�but�can�make�use�
of�sending�aerial�vehicles� to�certain�waypoints� to�establish�and� improve�connectivity.�
Yet� this� comes� at� a� cost� in� terms� of� battery� depletion� of� the� vehicles�when�moving.�For�
example,�the�battery�of�small�airplanes�(wingspan�of�80�cm�and�battery�capacity�of
2100�mAh)�and�quadrocopters�(frame�of�64���64�cm�and�battery�capacity�of�3300�mAh)�
used� in� the� testbed� described� in�[69]� allows� flight� autonomy� in� the� range� of� 30� and�
20�min,�respectively�(at�speeds�of�about�10�and�5�m/s,�respectively).�Thus,�moving�the�
vehicle� away� from� its� original,�mission-driven� pathway� to� improve� connectivity� likely�
reduces�the�lifetime�of�the�vehicle�significantly�and�has�to�be�performed�carefully.

These� sample�use�cases� show� that�energy�efficiency� is�and� remains�an� important�
topic�for�ad-hoc�networks,�which�establish�connectivity�when�infrastructure�networks�are�
not�available�or�not�reliable.�Yet,�in�particular,�mobile�devices�can�further�act�as�clients�
of� infrastructure�networks� and�provide� additional�device-to-device� communication� to�
offload�the�infrastructure�and�to�enhance�the�connectivity�range�of�infrastructures.�This�
is�done�by�leveraging�technologies�providing�device-to-device�links�and�device�mobility,�
which�creates�new�“opportunities”�for�connectivity�as�we�discuss�next.

4.6.2� Opportunistic�and�Delay-Tolerant�Networking

Delay-tolerant� networks� (DTNs)� are� networks�where� end-to-end� connectivity� cannot�
be�assumed�resulting� in�nontraditional�delays�for�services.�Opportunistic�networks�are�
DTNs�that�make�use�of�mobility�to�establish�connections�when�devices�come�into�trans-
mission�range�of�one�another�[70].�Here,�mobile�devices�store�data�locally,�carry�them�
while�moving,�and�forward�the�data�through�wireless�transmission.�Mobile�devices�are�–
as�in�ad-hoc�networks�–�themselves�the�relays�in�the�network�but,�different�to�MANETs,�
are�extremely�mobile,�and�dissemination�is�more�based�on�flooding� than�on�setting�up�
deterministic�routes.

In�this�setting,�the�energy�consumption�of�mobile�devices,�mainly�smartphones,�is�
crucial�for�the�operation�of�an�opportunistic�network.�The�wireless�networks�primarily
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TABLE 4.3. Power and Energy Consumption of Wireless Technologies Measured on the
Samsung Galaxy Nexus Smartphone [71].

Technology Operation Power/Energy Average Standard Deviation

Bluetooth Discoverable 2.59mW 0.56mW
Bluetooth Discovery 2027.38mJ 146.7mJ
Bluetooth Connect slave (master) 1998.11 (944.81)mJ 157.77 (77.95)mJ
Bluetooth Connected slave (master) 58.49 (28.53)mW 3.29 (0.05)mW
WiFi Direct Turn on 633.31mJ 115.59mJ
WiFi Direct Discovery 340.89mW 4.02mW
WiFi Direct Connect station (AP) 3523.78 (1654.50)mJ 714.44 (395.25)mJ
WiFi Direct Connected station (AP) 49.75 (231.92)mW 3.9 (9.14)mW
WLAN-Opp WiFi scan 697.47mJ 115.07mJ
WLAN-Opp WiFi AP turn on 754.03mJ 257.30mJ
WLAN-Opp WiFi AP on 210.97mW 11.72mW
WLAN-Opp Associate station (AP) 3194.32 (2626.86)mJ 722.81 (366.25)mJ
WLAN-Opp Associated station (AP) 60.79 (210.97)mW 9.74 (11.72)mW

in use are Bluetooth and WiFi – here, not in ad-hoc mode, as this is not available for
most off-the-shelf smartphones (unless rooted or jail-broken), but using a kind of soft
AP mode. Example technologies are WiFi Direct and WLAN-Opp [66]. Table 4.3 sum-
marizes the energy consumption of a typical smartphone, the Samsung Galaxy Nexus,
as measured by the Monsoon Power Monitor [12].

One major observation [71] is that the average power consumption for discovery is
least for Bluetooth, and it depends on the duty cycle interval. Bluetooth is 2.5–3 times
more ef!cient than WLAN-Opp, which is twice as ef!cient as WiFi Direct. The ef!-
ciency of Bluetooth originates from its ability to operate while the phone is in sleep
mode. Yet, the low energy consumption of Bluetooth comes with the disadvantage of a
very short transmission range, which is a major drawback for opportunistic connectivity:
Bluetooth supports a transmission range of few tens of centimeters while WiFi allows a
range of few hundreds of meters on smartphones.

An additional important observation is that the different roles of the devices (access
point or station, master or slave) result in a different energy consumption for each of
the technologies. In a group of devices, thus, static role assignment leads to unequal
and unfair energy depletion of some devices. To overcome this phenomenon, a fair
role-switching scheme has been developed for WLAN-Opp based on estimating the
remaining contact duration of peers as a function of the elapsed contact time [71]. In
this way, an equal depletion of devices can be achieved without switching too often.

These insights for discovery and solutions for fair connectivity provisioning in
opportunistic are generally valid. In the following, we take the speci!c perspective of
opportunistic networking used to connect so far disconnected regions.

4.6.2.1 Use Case Opportunistic Networking to Connect Discon-
nected Regions. Despite the constantly rising numbers of mobile device usage and
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the� increased�mobile� Internet� access,� still� only� 28%� of� the� households� in� developing�
countries� can� access� the� Internet� (2013� report� of� the� ITU�[72]).� Here,� opportunistic�
networks� can� contribute� to� share� access� to� the� Internet� by� using�mobile� devices� as�
relays�and�data�carriers.�Mobile�devices�can�establish�contacts� to�other�mobile�devices�
to� forward� data� until,�!nally,� one� device�with� Internet� access� (via� 3G,� e.g.)� transfers�
the� data� to� the� Internet.�Alternatively,�mobile� devices�may� act� as� carriers� from� one�
stationary�hub�(access�point�with�storage�capacity)�to�another,�for�example,�from�a�city�
hub�with�Internet�access�to�a�village�hub�without.�In�both�cases,�mobile�devices�rely�on�
battery�power�and�if�communication�modules�are�always�on,�this�will�drain�the�battery.�
A way � to overcome � this � problem � is to � switch � communication � modules � off�
when �not � needed�and�on�when�contact�opportunities�exist.

In�case�of�device-to-device�communication,�this�requires�an�aligning�of�the�wake-up�
schedules�of�the�devices�as�proposed�in�[73].�In�this�approach,�the�wake-up�cycles�depend�
on� predicted� future� contacts,� while� energy� consumption� and� communication� perfor-
mance� are� analytically� balanced.� The� approach� is� studied� and� proven� successful� by�
applying� it� to�major�contact� traces.�Yet,� this� is�not�deterministic�and� the�delivery� ratio�
of� information�can�be�signi!cantly� impaired�by� the�prediction�error.�Similarly,� in�[74],�
the�device�discovery�duration� and� interval� are� configured�based�on� contact� character-
istics,� for� example,�originating� from�past�observations.�Thus,� the� energy� ef!ciency�of�
discovery� can�be� increased� as� long� as� the� actual� contact� characteristics� correspond� to�
the� distributions� used� for� estimation.�Once� the� peers� are� discovered,� the� role� switch-
ing�scheme�described�previously�[71]�provides�fairness�and�flexibility�by�adapting�role�
switching�depending�on�the�elapsed�contact�time�for�device-to-device�communication.

In� the� case� of� stationary� hubs,�mobile� devices� act� as� ferrying� stations� and� just�
transmit� to� hubs,�when� in� range.�As� devices� are� data� carriers,� the�mobility� "ows� of�
humans� determine� connectivity� and� transmission� options� and� the� overall� capacity� of�
this�opportunistic�network�[75].�Here,�it�is�crucial�to�switch�on�communication�modules�
for� discovery� and� connection� establishment� only�when� in� proximity� of� a� hub� (access�
point).�Providing�efficient�estimation�methods�for�wake-ups�is�a�major�concern�here.

4.6.3� Summary

In�ad-hoc�and�opportunistic�networks,�the�nodes�providing�connectivity�are�often�battery�
powered.�Thus,�it�is�of�importance�to�reduce�the�time�the�devices�stay�in�power-hungry�
networking�states� in�order� to�prolong� the�devices’� lifetime.�One�option� is� to�switch� the�
communication�modules�on�only� for�a� limited� time�and�apply�a�batch�communication�
style�and�to�apply�overhearing�of�communications.�Another�option�arises�from�the�way�
today’s�smartphones�can�be�spontaneously�connected.�As�802.11�ad-hoc�is�disabled�for�
normal�operation�mode�of�smartphones�and�Bluetooth�only�provides�very�limited�ranges,�
WiFi� adaptations� are� in� use,� such� as� WiFi� Direct� and� WLAN-Opp.� These� technologies�
leverage�a� soft�AP�mode� that�allows�clients� to�connect� to.� In� such�a� setting,�however,�
the�devices�are�not�equal�and�consume�different�amounts�of�energy�depending�on� their�
role.�Consequently,� in�addition� to�decreasing� the�energy�consumption�of� the� individual�
device,� fair� role-switching� strategies�may� be� employed.� In� a� different� setting,� in� case�
mobility�can�be�controlled� to�achieve�better�connectivity�as�for�battery-driven�(aerial)
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robot networks, energymoves evenmore to the center of investigation as energy required
for movement is orders of magnitude higher than energy consumed for networking.

It is worth noting that the research results in this !eld are often derived from sim-
ulations of larger groups of entities, yet based on realistic energy and mobility models.
The manifold of devices and embedded computers and modules around requires, so far,
ever new calibrations of the energy model along new arising technologies. Thus, there
is a need for methodological improvement to overcome this situation by providing sus-
tainable, modular energy models for ad-hoc and opportunistic node classes.

4.7 SUMMARY AND CONCLUSIONS

Wireless networks face particular challenges related to energy consumption, yet, also
provide speci!c options for energy-ef!cient networking. First, in wireless communi-
cations, the signal propagation, as well as the range of a wireless link and its quality
depends on the antenna pro!le and its power characteristics. Then, nodes and devices
connect and disconnect frequently and increase network dynamics and, thus, lead to
varying needs for connectivity. Finally, mobile nodes and devices are in the focus
of energy ef!ciency research, which are battery powered and the battery is a limited
resource. On the one hand, the user device is the !nal edge of an access network, where
the user is exposed to an eventual degradation of the quality of experience because of
energy saving for the sake of the battery lifetime. On the other hand, mobile nodes
and devices can provide network resources themselves in ad-hoc and opportunistic
networks.

In this wide !eld, we gave an introduction to wireless energy ef!ciency metrics and
discussed measurement methodologies followed in recent wireless networking research
with a strong focus on the battery-powered mobile device. The two principal meth-
ods, namely, external measurements and internal software-based estimation, can provide
valid insights in the energy consumption of wireless network operations. In particular
for wider !eld studies, software-based estimation is a feasible choice. Yet, the variety of
devices makes it impractical to refer to a single energy device depletion model leading
to inaccurate estimation. Thus, to retrieve accurate energy consumption values, external
measurements are preferable.

Concerning energy ef!ciency, we discussed challenges in access, wireless sensor,
and ad-hoc and opportunistic networks. Hereby, we put a focus on the trade-off between
quality of experience and energy consumption in access networks and discussed an
example mesh network in nature environments that is challenged by varying charging
and discharging in the !eld.WSNs require means to adapt to changing situations to oper-
ate ef!ciently, as has been exempli!ed by an adaptive MAC method. Finally, providing
connectivity by battery-powered devices is a major concern in ad-hoc and opportunis-
tic networks. Energy-ef!cient operation targets the reduction of energy consumption by,
for example, introducing duty cycling to communication, and also fairness in resource
provisioning. To do so, estimates about future connectivity demands are leveraged.

We conclude that adaptive wireless network solutions outperform static approaches
in access, sensor, and ad-hoc and opportunistic networks in terms of energy ef!ciency.
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The smartness of the algorithms described in this chapter stems from a good understand-
ing of the energy consumption of the networking operations and context information,
which can be used for optimization.
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